Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July-2024 Volume 52 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 52 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review)

  • Authors:
    • Sadaf Anwar
    • Mubashir Zafar
    • Malik Asif Hussain
    • Naveed Iqbal
    • Abrar Ali
    • Sadaf
    • Simran Kaur
    • Mohammad Zeeshan Najm
    • Mohd Adnan Kausar
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 2440, Saudi Arabia, Department of Family and Community Medicine, College of Medicine, University of Ha'il, Ha'il 2440, Saudi Arabia, Department of Pathology, College of Medicine, University of Ha'il, Ha'il 2440, Saudi Arabia, Department of Obstetrics and Gynecology, College of Medicine, University of Ha'il 2440, Saudi Arabia, Department of Ophthalmology, College of Medicine, University of Ha'il 2440, Saudi Arabia, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India, School of Biosciences, Apeejay Stya University, Sohna, Gurugram, Haryana 122103, India
    Copyright: © Anwar et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 92
    |
    Published online on: June 4, 2024
       https://doi.org/10.3892/or.2024.8751
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer, a prominent cause of mortality among women, develops from abnormal growth of breast tissue, thereby rendering it one of the most commonly detected cancers in the female population. Although numerous treatment strategies are available for breast cancer, discordance in terms of effective treatment and response still exists. Recently, the potential of signaling pathways and transcription factors has gained substantial attention in the cancer community; therefore, understanding their role will assist researchers in comprehending the onset and advancement of breast cancer. Forkhead box (FOX) proteins, which are important transcription factors, are considered crucial regulators of various cellular activities, including cell division and proliferation. The present study explored several subclasses of FOX proteins and their possible role in breast carcinogenesis, followed by the interaction between microRNA (miRNA) and FOX proteins. This interaction is implicated in promoting cell infiltration into surrounding tissues, ultimately leading to metastasis. The various roles that FOX proteins play in breast cancer development, their intricate relationships with miRNA, and their involvement in therapeutic resistance highlight the complexity of breast cancer dynamics. Therefore, recognizing the progress and challenges in current treatments is crucial because, despite advancements, persistent disparities in treatment effectiveness underscore the need for ongoing research, with future studies emphasizing the necessity for targeted strategies that account for the multifaceted aspects of breast cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Weiderpass E and Stewart BW: World cancer report: Cancer research for cancer prevention. International Agency for Research on Cancer; Lyon: 2020

2 

Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, et al: Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 5:77–106. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Laissue P: The forkhead-box family of transcription factors: Key molecular players in colorectal cancer pathogenesis. Mol Cancer. 18:52019. View Article : Google Scholar : PubMed/NCBI

4 

Bach DH, Long NP, Luu TT, Anh NH, Kwon SW and Lee SK: The dominant role of forkhead box proteins in cancer. Int J Mol Sci. 19:32792018. View Article : Google Scholar : PubMed/NCBI

5 

Myatt SS and Lam EW: The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 7:847–859. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Weigel D, Jürgens G, Küttner F, Seifert E and Jäckle H: The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell. 57:645–658. 1989. View Article : Google Scholar : PubMed/NCBI

7 

Vaidya HJ, Briones Leon A and Blackburn CC: FOXN1 in thymus organogenesis and development. Eur J Immunol. 46:1826–1837. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Lam EW and Gomes AR: Forkhead box transcription factors in cancer initiation, progression and chemotherapeutic drug response. Front Oncol. 4:3052014. View Article : Google Scholar : PubMed/NCBI

9 

Li C, Zhang K, Chen J, Chen L, Wang R and Chu X: MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers. Oncotarget. 8:12433–12450. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Seachrist DD, Anstine LJ and Keri RA: FOXA1: A pioneer of nuclear receptor action in breast cancer. Cancers (Basel). 13:52052021. View Article : Google Scholar : PubMed/NCBI

11 

Czerny CC, Borschel A, Cai M, Otto M and Hoyer-Fender S: FOXA1 is a transcriptional activator of Odf2/Cenexin and regulates primary ciliation. Sci Rep. 12:214682022. View Article : Google Scholar : PubMed/NCBI

12 

Cirillo LA and Zaret KS: Specific interactions of the wing domains of FOXA1 transcription factor with DNA. J Mol Biol. 366:720–724. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Bernardo GM and Keri RA: FOXA1: A transcription factor with parallel functions in development and cancer. Biosci Rep. 32:113–130. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Dai X, Cheng H, Bai Z and Li J: Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 8:3131–3141. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Liu Y, Zhao Y, Skerry B, Wang X, Colin-Cassin C, Radisky DC, Kaestner KH and Li Z: Foxa1 is essential for mammary duct formation. Genesis. 54:277–285. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Brisken C and O'Malley B: Hormone action in the mammary gland. Cold Spring Harb Perspect Biol. 2:a0031782010. View Article : Google Scholar : PubMed/NCBI

17 

Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG and Carroll JS: Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J. 30:3019–3027. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Yang YA, Zhao JC, Fong KW, Kim J, Li S, Song C, Song B, Zheng B, He C and Yu J: FOXA1 potentiates lineage-specific enhancer activation through modulating TET1 expression and function. Nucleic Acids Res. 44:8153–8164. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD, Godwin AK, Korach KS, Visvader JE, Kaestner KH, et al: FOXA1 is an essential determinant of ERalpha expression and mammary ductal morphogenesis. Development. 137:2045–2054. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Takaku M, Grimm SA, De Kumar B, Bennett BD and Wade PA: Cancer-specific mutation of GATA3 disrupts the transcriptional regulatory network governed by Estrogen Receptor alpha, FOXA1 and GATA3. Nucleic Acids Res. 48:4756–4768. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Ghosh S, Gu F, Wang CM, Lin CL, Liu J, Wang H, Ravdin P, Hu Y, Huang TH and Li R: Genome-wide DNA methylation profiling reveals parity-associated hypermethylation of FOXA1. Breast Cancer Res Treat. 147:653–659. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Slebe F, Rojo F, Vinaixa M, García-Rocha M, Testoni G, Guiu M, Planet E, Samino S, Arenas EJ, Beltran A, et al: FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth. Nat Commun. 7:111992016. View Article : Google Scholar : PubMed/NCBI

23 

Anzai E, Hirata K, Shibazaki M, Yamada C, Morii M, Honda T and Yamaguchi N and Yamaguchi N: FOXA1 induces E-cadherin expression at the protein level via suppression of slug in epithelial breast cancer cells. Biol Pharm Bull. 40:1483–1489. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Ambrosone CB and Higgins MJ: Relationships between breast feeding and breast cancer subtypes: Lessons learned from studies in humans and in mice. Cancer Res. 80:4871–4877. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Xia K, Huang W, Zhao X, Huang X, Chen Y, Yu L and Tan Y: Increased FOXA1 levels induce apoptosis and inhibit proliferation in FOXA1-low expressing basal breast cancer cells. Am J Cancer Res. 12:2641–2658. 2022.PubMed/NCBI

26 

Cantor JR and Sabatini DM: Cancer cell metabolism: One hallmark, many faces. Cancer Discov. 2:881–898. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Wang Y, Zhou Y and Graves DT: FOXO transcription factors: Their clinical significance and regulation. Biomed Res Int. 2014:9253502014.PubMed/NCBI

28 

Jiramongkol Y and Lam EW: FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev. 39:681–709. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Dumont SN, Lazar AJ, Bridge JA, Benjamin RS and Trent JC: PAX3/7-FOXO1 fusion status in older rhabdomyosarcoma patient population by fluorescent in situ hybridization. J Cancer Res Clin Oncol. 138:213–220. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Parry P, Wei Y and Evans G: Cloning and characterization of the t(X;11) breakpoint from a leukemic cell line identify a new member of the forkhead gene family. Genes Chromosomes Cancer. 11:79–84. 1994. View Article : Google Scholar : PubMed/NCBI

31 

Guttilla IK and White BA: Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 284:23204–23216. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Bullock M: FOXO factors and breast cancer: Outfoxing endocrine resistance. Endocr Relat Cancer. 23:R113–R130. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Farhan M, Wang H, Gaur U, Little PJ, Xu J and Zheng W: FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci. 13:815–827. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Di Blasio L, Gagliardi PA, Puliafito A and Primo L: Serine/threonine kinase 3-phosphoinositide-dependent protein Kinase-1 (PDK1) as a key regulator of cell migration and cancer dissemination. Cancers (Basel). 9:252017. View Article : Google Scholar : PubMed/NCBI

35 

Shaw RJ and Cantley LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 441:424–430. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Tzivion G, Dobson M and Ramakrishnan G: FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta. 1813:1938–1945. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Kim S, Kim Y, Lee J and Chung J: Regulation of FOXO1 by TAK1-Nemo-like kinase pathway. J Biol Chem. 285:8122–8129. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Liu H, Liu K and Dong Z: The role of p21-activated kinases in cancer and beyond: Where are we heading? Front Cell Dev Biol. 9:6413812021. View Article : Google Scholar : PubMed/NCBI

39 

Khan MA, Massey S, Ahmad I, Sada f, Akhter N, Habib M, Mustafa S, Deo SVS and Husain SA: FOXO1 gene downregulation and promoter methylation exhibits significant correlation with clinical parameters in Indian breast cancer patients. Front Genet. 13:8429432022. View Article : Google Scholar : PubMed/NCBI

40 

Peck B, Chen CY, Ho KK, Di Fruscia P, Myatt SS, Coombes RC, Fuchter MJ, Hsiao CD and Lam EW: SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther. 9:844–855. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Gong C, Yao S, Gomes AR, Man EP, Lee HJ, Gong G, Chang S, Kim SB, Fujino K, Kim SW, et al: BRCA1 positively regulates FOXO3 expression by restricting FOXO3 gene methylation and epigenetic silencing through targeting EZH2 in breast cancer. Oncogenesis. 5:e2142016. View Article : Google Scholar : PubMed/NCBI

42 

Liu H, Song Y, Qiu H, Liu Y, Luo K, Yi Y, Jiang G, Lu M, Zhang Z, Yin J, et al: Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis. Cell Death Differ. 27:966–983. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Sanders DA, Gormally MV, Marsico G, Beraldi D, Tannahill D and Balasubramanian S: FOXM1 binds directly to non-consensus sequences in the human genome. Genome Biol. 16:1302015. View Article : Google Scholar : PubMed/NCBI

44 

Korver W, Roose J, Heinen K, Weghuis DO, de Bruijn D, van Kessel AG and Clevers H: The human TRIDENT/HFH-11/FKHL16 gene: Structure, localization, and promoter characterization. Genomics. 46:435–442. 1997. View Article : Google Scholar : PubMed/NCBI

45 

Kalathil D, John S and Nair AS: FOXM1 and cancer: Faulty cellular signaling derails homeostasis. Front Oncol. 10:6268362021. View Article : Google Scholar : PubMed/NCBI

46 

Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG, Roebuck KA and Costa RH: Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol. 17:1626–1641. 1997. View Article : Google Scholar : PubMed/NCBI

47 

Halasi M and Gartel AL: FOX(M1) news-it is cancer. Mol Cancer Ther. 12:245–254. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, Feng XH, Sawaya R, Medema RH, Hung MC and Huang S: Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest. 124:564–579. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Speirs V and Walker RA: New perspectives into the biological and clinical relevance of oestrogen receptors in the human breast. J Pathol. 211:499–506. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Iqbal N and Iqbal N: Human epidermal growth factor Receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol Biol Int. 2014:8527482014. View Article : Google Scholar : PubMed/NCBI

51 

Francis RE, Myatt SS, Krol J, Hartman J, Peck B, McGovern UB, Wang J, Guest SK, Filipovic A, Gojis O, et al: FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int J Oncol. 35:57–68. 2009.PubMed/NCBI

52 

Chen X, Wei H, Li J, Liang X, Dai S, Jiang L, Guo M, Qu L, Chen Z, Chen L and Chen Y: Structural basis for DNA recognition by FOXC2. Nucleic Acids Res. 47:3752–3764. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Pierrou S, Enerbäck S and Carlsson P: Selection of high-affinity binding sites for sequence-specific, DNA binding proteins from random sequence oligonucleotides. Anal Biochem. 229:99–105. 1995. View Article : Google Scholar : PubMed/NCBI

54 

Yin L, Duan JJ, Bian XW and Yu SC: Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 22:612020. View Article : Google Scholar : PubMed/NCBI

55 

Han B, Bhowmick N, Qu Y, Chung S, Giuliano AE and Cui X: FOXC1: An emerging marker and therapeutic target for cancer. Oncogene. 36:3957–3963. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Wang J, Ray PS, Sim MS, Zhou XZ, Lu KP, Lee AV, Lin X, Bagaria SP, Giuliano AE and Cui X: FOXC1 regulates the functions of human basal-like breast cancer cells by activating NF-kappaB signaling. Oncogene. 31:4798–4802. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Nieto MA: Epithelial plasticity: A common theme in embryonic and cancer cells. Science. 342:12348502013. View Article : Google Scholar : PubMed/NCBI

58 

Bloushtain-Qimron N, Yao J, Snyder EL, Shipitsin M, Campbell LL, Mani SA, Hu M, Chen H, Ustyansky V, Antosiewicz JE, et al: Cell type-specific DNA methylation patterns in the human breast. Proc Natl Acad Sci USA. 105:14076–14081. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, et al: Single cell profiling of circulating tumor cells: Transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One. 7:e337882012. View Article : Google Scholar : PubMed/NCBI

60 

Lindley LE and Briegel KJ: Molecular characterization of TGFbeta-induced epithelial-mesenchymal transition in normal finite lifespan human mammary epithelial cells. Biochem Biophys Res Commun. 399:659–664. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Clark KL, Halay ED, Lai E and Burley SK: Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 364:412–420. 1993. View Article : Google Scholar : PubMed/NCBI

63 

Perumal K, Dirr HW and Fanucchi S: A single amino acid in the hinge loop region of the FOXP forkhead domain is significant for dimerisation. Protein J. 34:111–121. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S, Tong H and Chen L: Structure of the forkhead domain of FOXP2 bound to DNA. Structure. 14:159–166. 2006. View Article : Google Scholar : PubMed/NCBI

65 

Shigekawa T, Ijichi N, Ikeda K, Horie-Inoue K, Shimizu C, Saji S, Aogi K, Tsuda H, Osaki A, Saeki T and Inoue S: FOXP1, an estrogen-inducible transcription factor, modulates cell proliferation in breast cancer cells and 5-year recurrence-free survival of patients with tamoxifen-treated breast cancer. Horm Cancer. 2:286–297. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Beelen K, Hoefnagel LD, Opdam M, Wesseling J, Sanders J, Vincent AD, van Diest PJ and Linn SC: PI3K/AKT/mTOR pathway activation in primary and corresponding metastatic breast tumors after adjuvant endocrine therapy. Int J Cancer. 135:1257–1263. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Banham AH, Beasley N, Campo E, Fernandez PL, Fidler C, Gatter K, Jones M, Mason DY, Prime JE, Trougouboff P, et al: The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res. 61:8820–8829. 2001.PubMed/NCBI

68 

Liu Y, Chen T, Guo M, Li Y, Zhang Q, Tan G, Yu L and Tan Y: FOXA2-interacting FOXP2 prevents epithelial-mesenchymal transition of breast cancer cells by stimulating E-cadherin and PHF2 transcription. Front Oncol. 11:6050252021. View Article : Google Scholar : PubMed/NCBI

69 

Sada f, Akhter N, Alharbi RA, Sindi AAA, Najm MZ, Alhumaydhi FA, Khan MA, Deo SVS and Husain SA: Epigenetic alteration and its association with downregulated FOXP3 gene in indian breast cancer patients. Front Genet. 12:7814002021. View Article : Google Scholar : PubMed/NCBI

70 

Liu C, Han J, Li X, Huang T, Gao Y, Wang B, Zhang K, Wang S, Zhang W, Li W, et al: FOXP3 inhibits the metastasis of breast cancer by downregulating the expression of MTA1. Front Oncol. 11:6561902021. View Article : Google Scholar : PubMed/NCBI

71 

Ma B, Miao W, Xiao J, Chen X, Xu J and Li Y: The role of FOXP3 on tumor metastasis and its interaction with traditional Chinese medicine. Molecules. 27:67062022. View Article : Google Scholar : PubMed/NCBI

72 

Dai X, Cheng H, Chen X, Li T, Zhang J, Jin G, Cai D and Huang Z: FOXA1 is prognostic of triple negative breast cancers by transcriptionally suppressing SOD2 and IL6. Int J Biol Sci. 15:1030–1041. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Cao J, Wang X, Wang D, Ma R, Li X, Feng H, Wang J, Liu S and Wang L: PGC-1β cooperating with FOXA2 inhibits proliferation and migration of breast cancer cells. Cancer Cell Int. 19:932019. View Article : Google Scholar : PubMed/NCBI

74 

Song Y, Zeng S, Zheng G, Chen D, Li P, Yang M, Luo K, Yin J, Gu Y, Zhang Z, et al: FOXO3a-driven miRNA signatures suppresses VEGF-A/NRP1 signaling and breast cancer metastasis. Oncogene. 40:777–790. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Wei G, Yang X, Lu H, Zhang L, Wei Y, Li H, Zhu M and Zhou X: Prognostic value and immunological role of FOXM1 in human solid tumors. Aging (Albany NY). 14:9128–9148. 2022. View Article : Google Scholar : PubMed/NCBI

76 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Broughton JP, Lovci MT, Huang JL, Yeo GW and Pasquinelli AE: Pairing beyond the seed supports microRNA targeting specificity. Mol Cell. 64:320–333. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Arora T, Kausar MA, Aboelnaga SM, Anwar S, Hussain MA, Sadaf S, Kaur S, Eisa AA, Shingatgeri VMM, Najm MZ and Aloliqi AA: miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncol Rep. 48:1352022. View Article : Google Scholar : PubMed/NCBI

79 

Denli AM, Tops BB, Plasterk RH, Ketting RF and Hannon GJ: Processing of primary microRNAs by the microprocessor complex. Nature. 432:231–235. 2004. View Article : Google Scholar : PubMed/NCBI

80 

Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y and Tsukihara T: A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 326:1275–1279. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Zhang H, Kolb FA, Jaskiewicz L, Westhof E and Filipowicz W: Single processing center models for human Dicer and bacterial RNase III. Cell. 118:57–68. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Wang W and Luo YP: MicroRNAs in breast cancer: Oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 16:18–31. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Corcoran C, Friel AM, Duffy MJ, Crown J and O'Driscoll L: Intracellular and extracellular microRNAs in breast cancer. Clin Chem. 57:18–32. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Guo X, Connick MC, Vanderhoof J, Ishak MA and Hartley RS: MicroRNA-16 modulates HuR regulation of cyclin E1 in breast cancer cells. Int J Mol Sci. 16:7112–7132. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Jin T, Suk Kim H, Ki Choi S, Hye Hwang E, Woo J, Suk Ryu H, Kim K, Moon A and Kyung Moon W: microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival. Oncotarget. 8:32769–32782. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Chen S, Wang Y, Ni C, Meng G and Sheng X: HLF/miR-132/TTK axis regulates cell proliferation, metastasis and radiosensitivity of glioma cells. Biomed Pharmacother. 83:898–904. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Wang D, Ren J, Ren H, Fu JL and Yu D: MicroRNA-132 suppresses cell proliferation in human breast cancer by directly targeting FOXA1. Acta Pharmacol Sin. 39:124–131. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Gao T, Zou M, Shen T and Duan S: Dysfunction of miR-802 in tumors. J Clin Lab Anal. 35:e239892021. View Article : Google Scholar : PubMed/NCBI

90 

Yuan F and Wang W: MicroRNA-802 suppresses breast cancer proliferation through downregulation of FoxM1. Mol Med Rep. 12:4647–4651. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Wang Q, Ye B, Wang P, Yao F, Zhang C and Yu G: Overview of microRNA-199a regulation in cancer. Cancer Manag Res. 11:10327–10335. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Cuiffo BG, Campagne A, Bell GW, Lembo A, Orso F, Lien EC, Bhasin MK, Raimo M, Hanson SE, Marusyk A, et al: MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell. 15:762–774. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, Li J, Wang X and Song L: Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One. 5:e157972010. View Article : Google Scholar : PubMed/NCBI

94 

Yin Z, Wang W, Qu G, Wang L, Wang X and Pan Q: MiRNA-96-5p impacts the progression of breast cancer through targeting FOXO3. Thorac Cancer. 11:956–963. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Tan X, Li Z, Ren S, Rezaei K, Pan Q, Goldstein AT, Macri CJ, Cao D, Brem RF and Fu SW: Dynamically decreased miR-671-5p expression is associated with oncogenic transformation and radiochemoresistance in breast cancer. Breast Cancer Res. 21:892019. View Article : Google Scholar : PubMed/NCBI

96 

Kumar U, Hu Y, Masrour N, Castellanos-Uribe M, Harrod A, May ST, Ali S, Speirs V, Coombes RC and Yagüe E: MicroRNA-495/TGF-β/FOXC1 axis regulates multidrug resistance in metaplastic breast cancer cells. Biochem Pharmacol. 192:1146922021. View Article : Google Scholar : PubMed/NCBI

97 

Badve S, Turbin D, Thorat MA, Morimiya A, Nielsen TO, Perou CM, Dunn S, Huntsman DG and Nakshatri H: FOXA1 expression in breast cancer-correlation with luminal subtype A and survival. Clin Cancer Res. 13:4415–4421. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Fu X, Jeselsohn R, Pereira R, Hollingsworth EF, Creighton CJ, Li F, Shea M, Nardone A, De Angelis C, Heiser LM, et al: FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci USA. 113:E6600–E6609. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D and Carroll JS: FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 43:27–33. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Yamaguchi N, Nakayama Y and Yamaguchi N: Down-regulation of Forkhead box protein A1 (FOXA1) leads to cancer stem cell-like properties in tamoxifen-resistant breast cancer cells through induction of interleukin-6. J Biol Chem. 292:8136–8148. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Karunarathna U, Kongsema M, Zona S, Gong C, Cabrera E, Gomes AR, Man EP, Khongkow P, Tsang JW, Khoo US, et al: OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resistance. Oncogene. 35:1433–1444. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Nestal de Moraes G, Delbue D, Silva KL, Robaina MC, Khongkow P, Gomes AR, Zona S, Crocamo S, Mencalha AL, Magalhães LM, et al: FOXM1 targets XIAP and Survivin to modulate breast cancer survival and chemoresistance. Cell Signal. 27:2496–2505. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Nestal de Moraes G, Bella L, Zona S, Burton MJ and Lam EW: Insights into a critical role of the FOXO3a-FOXM1 axis in DNA damage response and genotoxic drug resistance. Curr Drug Targets. 17:164–177. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Di Fruscia P, Zacharioudakis E, Liu C, Moniot S, Laohasinnarong S, Khongkow M, Harrison IF, Koltsida K, Reynolds CR, Schmidtkunz K, et al: The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model. ChemMedChem. 10:69–82. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Saba R, Alsayed A, Zacny JP and Dudek AZ: The role of forkhead box protein M1 in breast cancer progression and resistance to therapy. Int Breast Cancer. 2016:97681832016.PubMed/NCBI

106 

Ji X, Tian X, Feng S, Zhang L, Wang J, Guo R, Zhu Y, Yu X, Zhang Y, Du H, et al: Intermittent F-actin perturbations by magnetic fields inhibit breast cancer metastasis. Research (Wash DC). 6:00802023.PubMed/NCBI

107 

Halasi M, Hitchinson B, Shah BN, Váraljai R, Khan I, Benevolenskaya EV, Gaponenko V, Arbiser JL and Gartel AL: Honokiol is a FOXM1 antagonist. Cell Death Dis. 9:842018. View Article : Google Scholar : PubMed/NCBI

108 

Rajamanickam S, Panneerdoss S, Gorthi A, Timilsina S, Onyeagucha B, Kovalskyy D, Ivanov D, Hanes MA, Vadlamudi RK, Chen Y, et al: Inhibition of FoxM1-mediated DNA repair by imipramine blue suppresses breast cancer growth and metastasis. Clin Cancer Res. 22:3524–3536. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Lopez JS and Banerji U: Combine and conquer: Challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 14:57–66. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Martel S, Bruzzone M, Ceppi M, Maurer C, Ponde NF, Ferreira AR, Viglietti G, Del Mastro L, Prady C, de Azambuja E and Lambertini M: Risk of adverse events with the addition of targeted agents to endocrine therapy in patients with hormone receptor-positive metastatic breast cancer: A systematic review and meta-analysis. Cancer Treat Rev. 62:123–132. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Pegram MD, Konecny GE, O'Callaghan C, Beryt M, Pietras R and Slamon DJ: Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst. 96:739–749. 2004. View Article : Google Scholar : PubMed/NCBI

112 

Waks AG and Winer EP: Breast cancer treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Guillen VS, Ziegler Y, Gopinath C, Kumar S, Dey P, Plotner BN, Dawson NZ, Kim SH, Katzenellenbogen JA and Katzenellenbogen BS: Effective combination treatments for breast cancer inhibition by FOXM1 inhibitors with other targeted cancer drugs. Breast Cancer Res Treat. 198:607–621. 2023. View Article : Google Scholar : PubMed/NCBI

114 

Lin Z, Huang W, He Q, Li D, Wang Z, Feng Y, Liu D, Zhang T, Wang Y, Xie M, et al: FOXC1 promotes HCC proliferation and metastasis by Upregulating DNMT3B to induce DNA Hypermethylation of CTH promoter. J Exp Clin Cancer Res. 40:502021. View Article : Google Scholar : PubMed/NCBI

115 

Bader AG and Lammers P: The therapeutic potential of microRNAs. Innov Pharm Technol. 52–55. 2011.

116 

Broderick JA and Zamore PD: MicroRNA therapeutics. Gene Ther. 18:1104–1110. 2011. View Article : Google Scholar : PubMed/NCBI

117 

Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME and Collins-Burow BM: Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 14:R792012. View Article : Google Scholar : PubMed/NCBI

118 

Linares A, Dalenc F, Balaguer P, Boulle N and Cavailles V: Manipulating protein acetylation in breast cancer: A promising approach in combination with hormonal therapies? J Biomed Biotechnol. 2011:8569852011. View Article : Google Scholar : PubMed/NCBI

119 

Khafaga AF, Shamma RN, Abdeen A, Barakat AM, Noreldin AE, Elzoghby AO and Sallam MA: Celecoxib repurposing in cancer therapy: Molecular mechanisms and nanomedicine-based delivery technologies. Nanomedicine (Lond). 16:1691–1712. 2021. View Article : Google Scholar : PubMed/NCBI

120 

National Library of Medicine (NIH), . Study to Compare Alisertib with Paclitaxel vs Paclitaxel Alone in Metastatic or Locally Recurrent Breast Cancer. Clinical trial: NCT02187991. NIH; Bethesda, MD: 2022, https://www.mycancergenome.org/content/clinical_trials/NCT02187991/December 1–2022

121 

National Library of Medicine (NIH), . First Time in Human Study of AZD8701 With or Without Durvalumab in Participants with Advanced Solid Tumours. Clinical trial: NCT04504669. NIH; Bethesda, MD: 2022, https://www.mycancergenome.org/content/clinical_trials/NCT04504669/December 1–2022

122 

National Library of Medicine (NIH), . Pre-op Pembro + Radiation Therapy in Breast Cancer (P-RAD). Clinical trial: NCT04443348. NIH; Bethesda, MD: 2022, https://www.mycancergenome.org/content/clinical_trials/NCT04443348/December 1–2022

123 

National Library of Medicine (NIH), . A Study of PDR001 in Combination with LCL161, Everolimus or Panobinostat. Clinical trial: NCT02890069. NIH; Bethesda, MD: 2022, https://www.mycancergenome.org/content/clinical_trials/NCT02890069/December 1–2022

124 

National Library of Medicine (NIH), . Phase I, Dose Study to Look at the Safety and Pharmacokinetics of AZD8835 in Patients with Advanced Solid Tumours. Clinical trial: NCT02260661. NIH; Bethesda, MD: 2022, https://www.mycancergenome.org/content/clinical_trials/NCT02260661/December 1–2022

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Anwar S, Zafar M, Hussain MA, Iqbal N, Ali A, Sadaf , Kaur S, Najm MZ and Kausar MA: Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review). Oncol Rep 52: 92, 2024.
APA
Anwar, S., Zafar, M., Hussain, M.A., Iqbal, N., Ali, A., Sadaf, ... Kausar, M.A. (2024). Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review). Oncology Reports, 52, 92. https://doi.org/10.3892/or.2024.8751
MLA
Anwar, S., Zafar, M., Hussain, M. A., Iqbal, N., Ali, A., Sadaf, , Kaur, S., Najm, M. Z., Kausar, M. A."Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review)". Oncology Reports 52.1 (2024): 92.
Chicago
Anwar, S., Zafar, M., Hussain, M. A., Iqbal, N., Ali, A., Sadaf, , Kaur, S., Najm, M. Z., Kausar, M. A."Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review)". Oncology Reports 52, no. 1 (2024): 92. https://doi.org/10.3892/or.2024.8751
Copy and paste a formatted citation
x
Spandidos Publications style
Anwar S, Zafar M, Hussain MA, Iqbal N, Ali A, Sadaf , Kaur S, Najm MZ and Kausar MA: Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review). Oncol Rep 52: 92, 2024.
APA
Anwar, S., Zafar, M., Hussain, M.A., Iqbal, N., Ali, A., Sadaf, ... Kausar, M.A. (2024). Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review). Oncology Reports, 52, 92. https://doi.org/10.3892/or.2024.8751
MLA
Anwar, S., Zafar, M., Hussain, M. A., Iqbal, N., Ali, A., Sadaf, , Kaur, S., Najm, M. Z., Kausar, M. A."Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review)". Oncology Reports 52.1 (2024): 92.
Chicago
Anwar, S., Zafar, M., Hussain, M. A., Iqbal, N., Ali, A., Sadaf, , Kaur, S., Najm, M. Z., Kausar, M. A."Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review)". Oncology Reports 52, no. 1 (2024): 92. https://doi.org/10.3892/or.2024.8751
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team