|
1
|
Restifo NP, Dudley ME and Rosenberg SA:
Adoptive immunotherapy for cancer: Harnessing the T cell response.
Nat Rev Immunol. 12:269–281. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Martínez-Lostao L, Anel A and Pardo J: How
do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res.
21:5047–5056. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Palucka AK and Coussens LM: The basis of
oncoimmunology. Cell. 164:1233–1247. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nagarsheth N, Wicha MS and Zou W:
Chemokines in the cancer microenvironment and their relevance in
cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Calzascia T, Pellegrini M, Hall H, Sabbagh
L, Ono N, Elford AR, Mak TW and Ohashi PS: TNF-alpha is critical
for antitumor but not antiviral T cell immunity in mice. J Clin
Invest. 117:3833–3845. 2007.PubMed/NCBI
|
|
6
|
Zaretsky JM, Garcia-Diaz A, Shin DS,
Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY,
Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations
associated with acquired resistance to PD-1 blockade in Melanoma. N
Engl J Med. 375:819–829. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ngiow SF, Young A, Jacquelot N, Yamazaki
T, Enot D, Zitvogel L and Smyth MJ: A threshold level of intratumor
CD8+ T-cell PD1 expression dictates therapeutic response to
anti-PD1. Cancer Res. 75:3800–3811. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Galon J, Angell HK, Bedognetti D and
Marincola FM: The continuum of cancer immunosurveillance:
Prognostic, predictive, and mechanistic signatures. Immunity.
39:11–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shrihari TG: Innate and adaptive immune
cells in tumor microenvironment. Gulf J Oncolog. 1:77–81. 2021.
|
|
10
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ahmadzadeh M, Johnson LA, Heemskerk B,
Wunderlich JR, Dudley ME, White DE and Rosenberg SA: Tumor
antigen-specific CD8 T cells infiltrating the tumor express high
levels of PD-1 and are functionally impaired. Blood. 114:1537–1544.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chevrier S, Levine JH, Zanotelli VRT,
Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H,
et al: An immune atlas of clear cell renal cell carcinoma. Cell.
169:736–749.e18. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zitvogel L, Tesniere A and Kroemer G:
Cancer despite immunosurveillance: Immunoselection and
immunosubversion. Nat Rev Immunol. 6:715–727. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wherry EJ: T cell exhaustion. Nat Immunol.
12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wherry EJ, Ha SJ, Kaech SM, Haining WN,
Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL and Ahmed
R: Molecular signature of CD8+ T cell exhaustion during chronic
viral infection. Immunity. 27:670–684. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Curran MA, Montalvo W, Yagita H and
Allison JP: PD-1 and CTLA-4 combination blockade expands
infiltrating T cells and reduces regulatory T and myeloid cells
within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jansen CS, Prokhnevska N, Master VA, Sanda
MG, Carlisle JW, Bilen MA, Cardenas M, Wilkinson S, Lake R,
Sowalsky AG, et al: An intra-tumoral niche maintains and
differentiates stem-like CD8 T cells. Nature. 576:465–470. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Dolina JS, Van Braeckel-Budimir N, Thomas
GD and Salek-Ardakani S: CD8+ T cell exhaustion in
cancer. Front Immunol. 12:7152342021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chang CH, Qiu J, O'Sullivan D, Buck MD,
Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ,
et al: Pearce, metabolic competition in the tumor microenvironment
is a driver of cancer progression. Cell. 162:1229–1241. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shimizu S, Hiratsuka H, Koike K,
Tsuchihashi K, Sonoda T, Ogi K, Miyakawa A, Kobayashi J, Kaneko T,
Igarashi T, et al: Tumor-infiltrating CD8+ T-cell
density is an independent prognostic marker for oral squamous cell
carcinoma. Cancer Med. 8:80–93. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chaudhary B, Al Samid MA, al-Ramadi BK and
Elkord E: Phenotypic alterations, clinical impact and therapeutic
potential of regulatory T cells in cancer. Expert Opin Biol Ther.
14:931–945. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hurkat P, Jain S, Jain R and Jain A:
Immunology behind tumors: A mini review. Curr Cancer Ther Rev.
15:174–183. 2019. View Article : Google Scholar
|
|
23
|
Saleh R and Elkord E: Treg-mediated
acquired resistance to immune checkpoint inhibitors. Cancer Lett.
457:168–179. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wu X, Zhang H, Xing Q, Cui J, Li J, Li Y,
Tan Y and Wang S: PD-1(+) CD8(+) T cells are exhausted in tumours
and functional in draining lymph nodes of colorectal cancer
patients. Br J Cancer. 111:1391–1399. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Xu B, Yuan L, Gao Q, Yuan P, Zhao P, Yuan
H, Fan H, Li T, Qin P, Han L, et al: Circulating and
tumor-infiltrating Tim-3 in patients with colorectal cancer.
Oncotarget. 6:20592–20603. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Toor SM, Nair VS, Decock J and Elkord E:
Immune checkpoints in the tumor microenvironment. Semin Cancer
Biol. 65:1–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Melero I, Rouzaut A, Motz GT and Coukos G:
T-cell and NK-cell infiltration into solid tumors: A key limiting
factor for efficacious cancer immunotherapy. Cancer Discov.
4:522–526. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Guan L, Wu B, Li T, Beer LA, Sharma G, Li
M, Lee CN, Liu S, Yang C, Huang L, et al: HRS phosphorylation
drives immunosuppressive exosome secretion and restricts
CD8+ T-cell infiltration into tumors. Nat Commun.
13:40782022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rossignol J, Belaid Z, Fouquet G, Guillem
F, Rignault R, Milpied P, Renand A, Coman T, D'Aveni M, Dussiot M,
et al: Neuropilin-1 cooperates with PD-1 in CD8+ T cells
predicting outcomes in melanoma patients treated with anti-PD1.
iScience. 25:1043532022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Johnston RJ, Comps-Agrar L, Hackney J, Yu
X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al:
The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T
cell effector function. Cancer Cell. 26:923–937. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu YH, Zang XY, Wang JC, Huang SS, Xu J
and Zhang P: Diagnosis and management of immune related adverse
events (irAEs) in cancer immunotherapy. Biomed Pharmacother.
120:1094372019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li L, Li G, Rao B, Dong AH, Liang W, Zhu
JX, Qin MP, Huang WW, Lu JM, Li ZF and Wu YZ: Landscape of immune
checkpoint inhibitor-related adverse events in Chinese population.
Sci Rep. 10:155672020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yuan Y, Zhu Z, Lan Y, Duan S, Zhu Z, Zhang
X, Li G, Qu H, Feng Y, Cai H and Song Z: Development and validation
of a CD8+ T cell infiltration-related signature for Melanoma
patients. Front Immunol. 12:6594442021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Baitsch L, Baumgaertner P, Devêvre E,
Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke
B, Romero P, et al: Exhaustion of tumor-specific CD8+ T
cells in metastases from melanoma patients. J Clin Invest.
121:2350–2360. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gros A, Robbins PF, Yao X, Li YF, Turcotte
S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, et al: PD-1
identifies the patient-specific CD8+ tumor-reactive
repertoire infiltrating human tumors. J Clin Invest. 124:2246–2259.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Thelen M, Lechner A, Wennhold K, von
Bergwelt-Baildon M and Schlößer HA: CD39 expression defines cell
exhaustion in tumor-infiltrating CD8+ T cells-letter.
Cancer Res. 78:5173–5174. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Berele BA, Cai Y and Yang G: Prognostic
value of tumor infiltrating lymphocytes in nasopharyngeal carcinoma
patients: Meta-analysis. Technol Cancer Res Treat.
20:153303382110342652021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang J, Chen J, Liang H and Yu Y:
Nasopharyngeal cancer cell-derived exosomal PD-L1 inhibits CD8+
T-cell activity and promotes immune escape. Cancer Sci.
113:3044–3054. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ono T, Azuma K, Kawahara A, Sasada T,
Matsuo N, Kakuma T, Kamimura H, Maeda R, Hattori C, On K, et al:
Prognostic stratification of patients with nasopharyngeal carcinoma
based on tumor immune microenvironment. Head Neck. 40:2007–2019.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhang YL, Li J, Mo HY, Qiu F, Zheng LM,
Qian CN and Zeng YX: Different subsets of tumor infiltrating
lymphocytes correlate with NPC progression in different ways. Mol
Cancer. 9:42010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Iams WT, Shiuan E, Meador CB, Roth M,
Bordeaux J, Vaupel C, Boyd KL, Summitt IB, Wang LL, Schneider JT,
et al: Improved prognosis and increased tumor-infiltrating
lymphocytes in patients who have SCLC with neurologic
paraneoplastic syndromes. J Thorac Oncol. 14:1970–1981. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hellmann MD, Callahan MK, Awad MM, Calvo
E, Ascierto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G,
Szustakowski JD, et al: Tumor mutational burden and efficacy of
nivolumab monotherapy and in combination with ipilimumab in
small-cell lung cancer. Cancer Cell. 33:853–861.e4. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yoneda K, Kuwata T, Kanayama M, Mori M,
Kawanami T, Yatera K, Ohguri T, Hisaoka M, Nakayama T and Tanaka F:
Alteration in tumoural PD-L1 expression and stromal CD8-positive
tumour-infiltrating lymphocytes after concurrent chemo-radiotherapy
for non-small cell lung cancer. Br J Cancer. 121:490–496. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Peranzoni E, Lemoine J, Vimeux L, Feuillet
V, Barrin S, Kantari-Mimoun C, Bercovici N, Guérin M, Biton J,
Ouakrim H, et al: Macrophages impede CD8 T cells from reaching
tumor cells and limit the efficacy of anti-PD-1 treatment. Proc
Natl Acad Sci USA. 115:E4041–E4050. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li S, Zhang Z, Lai WF, Cui L and Zhu X:
How to overcome the side effects of tumor immunotherapy. Biomed
Pharmacother. 130:1106392020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Choe EA, Cha YJ, Kim JH, Pyo KH, Hong MH,
Park SY, Shim HS, Jung I, Lee CY, Cho BC and Kim HR: Dynamic
changes in PD-L1 expression and CD8+ T cell infiltration
in non-small cell lung cancer following chemoradiation therapy.
Lung Cancer. 136:30–36. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhu X, Luo H and Xu Y: Transcriptome
analysis reveals an important candidate gene involved in both nodal
metastasis and prognosis in lung adenocarcinoma. Cell Biosci.
9:922019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Brummelman J, Mazza EMC, Alvisi G, Colombo
FS, Grilli A, Mikulak J, Mavilio D, Alloisio M, Ferrari F, Lopci E,
et al: High-dimensional single cell analysis identifies stem-like
cytotoxic CD8+ T cells infiltrating human tumors. J Exp
Med. 215:2520–2535. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Khaja AS, Toor SM, El Salhat H, Faour I,
Ul Haq N, Ali BR and Elkord E: Preferential accumulation of
regulatory T cells with highly immunosuppressive characteristics in
breast tumor microenvironment. Oncotarget. 8:33159–33171. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Xie F, Zhou X, Su P, Li H, Tu Y, Du J, Pan
C, Wei X, Zheng M, Jin K, et al: Breast cancer cell-derived
extracellular vesicles promote CD8+ T cell exhaustion
via TGF-β type II receptor signaling. Nat Commun. 13:44612022.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Baker K, Lachapelle J, Zlobec I, Bismar
TA, Terracciano L and Foulkes WD: Prognostic significance of CD8+ T
lymphocytes in breast cancer depends upon both oestrogen receptor
status and histological grade. Histopathology. 58:1107–1116.
2011.PubMed/NCBI
|
|
52
|
Gao G, Wang Z, Qu Z and Zhang Z:
Prognostic value of tumor-infiltrating lymphocytes in patients with
triple-negative breast cancer: A systematic review and
meta-analysis. BMC Cancer. 20:1792020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Blok EJ, Engels CC, Dekker-Ensink G,
Kranenbarg EMK, Putter H, Smit V, Liefers GJ, Morden JP, Bliss JM,
Coombes RC, et al: Exploration of tumour-infiltrating lymphocytes
as a predictive biomarker for adjuvant endocrine therapy in early
breast cancer. Breast Cancer Res Treat. 171:65–74. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Heppner BI, Untch M, Denkert C, Pfitzner
BM, Lederer B, Schmitt W, Eidtmann H, Fasching PA, Tesch H, Solbach
C, et al: Tumor-infiltrating lymphocytes: a predictive and
prognostic biomarker in neoadjuvant-treated HER2-positive breast
cancer. Clin Cancer Res. 22:5747–5754. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
West NR, Panet-Raymond V, Truong PT,
Alexander C, Babinszky S, Milne K, Ross LA, Loken S and Watson PH:
Intratumoral immune responses can distinguish new primary and true
recurrence types of ipsilateral breast tumor recurrences (IBTR).
Breast Cancer (Auckl). 5:105–115. 2011.PubMed/NCBI
|
|
56
|
de Ruiter EJ, Ooft ML, Devriese LA and
Willems SM: The prognostic role of tumor infiltrating T-lymphocytes
in squamous cell carcinoma of the head and neck: A systematic
review and meta-analysis. Oncoimmunology. 6:e13561482017.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nguyen N, Bellile E, Thomas D, McHugh J,
Rozek L, Virani S, Peterson L, Carey TE, Walline H, Moyer J, et al:
Tumor infiltrating lymphocytes and survival in patients with head
and neck squamous cell carcinoma. Head Neck. 38:1074–1084. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hartman DJ, Ahmad F, Ferris RL, Rimm DL
and Pantanowitz L: Utility of CD8 score by automated quantitative
image analysis in head and neck squamous cell carcinoma. Oral
Oncol. 86:278–287. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Xiao Y, Li H, Mao L, Yang QC, Fu LQ, Wu
CC, Liu B and Sun ZJ: CD103+ T and dendritic cells
indicate a favorable prognosis in oral cancer. J Dent Res.
98:1480–1487. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Stravodimou A, Tzelepi V, Papadaki H,
Mouzaki A, Georgiou S, Melachrinou M and Kourea EP: Evaluation of
T-lymphocyte subpopulations in actinic keratosis, in situ and
invasive squamous cell carcinoma of the skin. J Cutan Pathol.
45:337–347. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tavaré R, Danton M, Giurleo JT, Makonnen
S, Hickey C, Arnold TC, Kelly MP, Fredriksson F, Bruestle K,
Hermann A, et al: Immuno-PET monitoring of lymphocytes using the
CD8-specific antibody REGN5054. Cancer Immunol Res. 4:1190–1209.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Noh BJ, Kwak JY and Eom DW: Immune
classification for the PD-L1 expression and tumour-infiltrating
lymphocytes in colorectal adenocarcinoma. BMC Cancer. 20:582020.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Alsalman A, Al-Mterin MA, Murshed K,
Alloush F, Al-Shouli ST, Toor SM and Elkord E: Circulating and
tumor-infiltrating immune checkpoint-expressing CD8+
Treg/T cell subsets and their associations with disease-free
survival in colorectal Cancer patients. Cancers (Basel).
14:31942022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lee IK, Song H, Kim H, Kim IS, Tran NL,
Kim SH, Oh SJ and Lee JM: RORα regulates cholesterol metabolism of
CD8+ T cells for anticancer immunity. Cancers.
12:17332020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J
and Tang ZY: Dendritic cell infiltration and prognosis of human
hepatocellular carcinoma. J Cancer Res Clin Oncol. 132:293–301.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Moreno-Cubero E and Larrubia JR: Specific
CD8(+) T cell response immunotherapy for hepatocellular carcinoma
and viral hepatitis. World J Gastroenterol. 22:6469–6483. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Guo M, Yuan F, Qi F, Sun J, Rao Q, Zhao Z,
Huang P, Fang T, Yang B and Xia J: Expression and clinical
significance of LAG-3, FGL1, PD-L1 and CD8+T cells in
hepatocellular carcinoma using multiplex quantitative analysis. J
Transl Med. 18:3062020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xiao Y, Qiao G, Tang J, Tang R, Guo H,
Warwar S, Langdon WY, Tao L and Zhang J: Protein tyrosine
phosphatase SHP-1 modulates T cell responses by controlling Cbl-b
degradation. J Immunol. 195:4218–4227. 1950. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kroy DC, Ciuffreda D, Cooperrider JH,
Tomlinson M, Hauck GD, Aneja J, Berger C, Wolski D, Carrington M,
Wherry EJ, et al: Liver environment and HCV replication affect
human T-cell phenotype and expression of inhibitory receptors.
Gastroenterology. 146:550–561. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sakuishi K, Apetoh L, Sullivan JM, Blazar
BR, Kuchroo VK and Anderson AC: Targeting Tim-3 and PD-1 pathways
to reverse T cell exhaustion and restore anti-tumor immunity. J Exp
Med. 207:2187–2194. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Viganò S, Banga R, Bellanger F, Pellaton
C, Farina A, Comte D, Harari A and Perreau M: CD160-associated CD8
T-cell functional impairment is independent of PD-1 expression.
PLoS Pathog. 10:e10043802014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ma J, Zheng B, Goswami S, Meng L, Zhang D,
Cao C, Li T, Zhu F, Ma L, Zhang Z, et al: PD1Hi
CD8+ T cells correlate with exhausted signature and poor
clinical outcome in hepatocellular carcinoma. J Immunother Cancer.
7:3312019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang
Z, Zhang Z, Xie J, Wang C, Chen D, et al: Single-cell landscape of
the ecosystem in early-relapse hepatocellular carcinoma. Cell.
184:404–421.e16. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Peng R, Liu S, You W, Huang Y, Hu C, Gao
Y, Jia X, Li G, Xu Z and Chen Y: Gastric microbiome alterations are
associated with decreased CD8+ tissue-resident memory T
cells in the tumor microenvironment of gastric cancer. Cancer
Immunol Res. 10:1224–1240. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wei Y, Zhang J, Fan X, Zheng Z, Jiang X,
Chen D, Lu Y, Li Y, Wang M, Hu M, et al: Immune profiling in
gastric cancer reveals the dynamic landscape of immune signature
underlying tumor progression. Front Immunol. 13:9355522022.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhou X, Fang D, Liu H, Ou X, Zhang C, Zhao
Z, Zhao S, Peng J, Cai S, He Y and Xu J: PMN-MDSCs accumulation
induced by CXCL1 promotes CD8+ T cells exhaustion in
gastric cancer. Cancer Lett. 532:2155982022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yagi T, Baba Y, Ishimoto T, Iwatsuki M,
Miyamoto Y, Yoshida N, Watanabe M and Baba H: PD-L1 expression,
tumor-infiltrating lymphocytes, and clinical outcome in patients
with surgically resected esophageal cancer. Ann Surg. 269:471–478.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tanaka R, Kimura K, Eguchi S, Tauchi J,
Shibutani M, Shinkawa H, Ohira GO, Yamazoe S, Tanaka S, Amano R, et
al: Preoperative neutrophil-to-lymphocyte ratio predicts
tumor-infiltrating CD8+ T cells in biliary tract cancer.
Anticancer Res. 40:2881–2887. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Simoni Y, Becht E, Fehlings M, Loh CY, Koo
SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, et al:
Bystander CD8+ T cells are abundant and phenotypically
distinct in human tumour infiltrates. Nature. 557:575–579. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Carlisle JW, Jansen CS, Cardenas MA,
Sobierajska E, Reyes AM, Greenwald R, Del Balzo L, Prokhnevska N,
Kucuk O, Carthon BC, et al: Clinical outcome following checkpoint
therapy in renal cell carcinoma is associated with a burst of
activated CD8 T cells in blood. J Immunother Cancer.
10:e0048032022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Giese MA, Hind LE and Huttenlocher A:
Neutrophil plasticity in the tumor microenvironment. Blood.
133:2159–2167. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Gómez-Aleza C, Nguyen B, Yoldi G, Ciscar
M, Barranco A, Hernández-Jiménez E, Maetens M, Salgado R,
Zafeiroglou M, Pellegrini P, et al: Inhibition of RANK signaling in
breast cancer induces an anti-tumor immune response orchestrated by
CD8+ T cells. Nat Commun. 11:63352020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kaltenmeier C, Yazdani HO, Morder K,
Geller DA, Simmons RL and Tohme S: Neutrophil extracellular traps
promote T cell exhaustion in the tumor microenvironment. Front
Immunol. 12:7852222021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang J, Huang F, Zhao J, Huang P, Tan J,
Huang M, Ma R, Xiao Y, He S, Wang Z, et al: Tumor-infiltrated CD8+
T cell 10-gene signature related to clear cell renal cell carcinoma
prognosis. Front Immunol. 13:9309212022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sommer U, Ebersbach C, Beier AK, Baretton
GB, Thomas C, Borkowetz A and Erb HHH: Influence of androgen
deprivation therapy on the PD-L1 expression and immune activity in
prostate cancer tissue. Front Mol Biosci. 9:8783532022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Laumont CM, Wouters MCA, Smazynski J,
Gierc NS, Chavez EA, Chong LC, Thornton S, Milne K, Webb JR, Steidl
C and Nelson BH: Single-cell profiles and prognostic impact of
tumor-infiltrating lymphocytes coexpressing CD39, CD103, and PD-1
in ovarian cancer. Clin Cancer Res. 27:4089–4100. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Goode EL, Block MS, Kalli KR, Vierkant RA,
Chen W, Fogarty ZC, Gentry-Maharaj A, Tołoczko A, Hein A, Bouligny
AL, et al: Dose-response association of CD8+
tumor-infiltrating lymphocytes and survival time in high-grade
serous ovarian cancer. JAMA Oncol. 3:e1732902017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wan C, Keany MP, Dong H, Al-Alem LF,
Pandya UM, Lazo S, Boehnke K, Lynch KN, Xu R, Zarrella DT, et al:
Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint
blockade in high-grade serous ovarian cancer. Cancer Res.
81:158–173. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Krieg C, Nowicka M, Guglietta S, Schindler
S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, Levesque MP and
Becher B: High-dimensional single-cell analysis predicts response
to anti-PD-1 immunotherapy. Nat Med. 24:144–153. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Jacquelot N, Roberti MP, Enot DP,
Rusakiewicz S, Ternès N, Jegou S, Woods DM, Sodré AL, Hansen M,
Meirow Y, et al: Predictors of responses to immune checkpoint
blockade in advanced melanoma. Nat Commun. 8:5922017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hegde PS and Chen DS: Top 10 challenges in
cancer immunotherapy. Immunity. 52:17–35. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kalbasi A and Ribas A: Tumour-intrinsic
resistance to immune checkpoint blockade. Nat Rev Immunol.
20:25–39. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zajac AJ, Blattman JN, Murali-Krishna K,
Sourdive DJ, Suresh M, Altman JD and Ahmed R: Viral immune evasion
due to persistence of activated T cells without effector function.
J Exp Med. 188:2205–2213. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Barber DL, Wherry EJ, Masopust D, Zhu B,
Allison JP, Sharpe AH, Freeman GJ and Ahmed R: Restoring function
in exhausted CD8 T cells during chronic viral infection. Nature.
439:682–687. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Blackburn SD, Shin H, Freeman GJ and
Wherry EJ: Selective expansion of a subset of exhausted CD8 T cells
by alphaPD-L1 blockade. Proc Natl Acad Sci USA. 105:15016–15021.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Blackburn SD, Shin H, Haining WN, Zou T,
Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA and Wherry
EJ: Coregulation of CD8+ T cell exhaustion by multiple inhibitory
receptors during chronic viral infection. Nat Immunol. 10:29–37.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Im SJ, Hashimoto M, Gerner MY, Lee J,
Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al:
Defining CD8+ T cells that provide the proliferative burst after
PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Beltra JC, Manne S, Abdel-Hakeem MS,
Kurachi M, Giles JR, Chen Z, Casella V, Ngiow SF, Khan O, Huang YJ,
et al: Developmental relationships of four exhausted
CD8+ T cell subsets reveals underlying transcriptional
and epigenetic landscape control mechanisms. Immunity.
52:825–841.e8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zander R, Schauder D, Xin G, Nguyen C, Wu
X, Zajac A and Cui W: CD4+ T cell help is required for
the formation of a cytolytic CD8+ T cell subset that
protects against chronic infection and cancer. Immunity.
51:1028–1042.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|