Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July-2024 Volume 52 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 52 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review)

  • Authors:
    • Jing Luan
    • Yuxin Liu
    • Meng Cao
    • Xianing Guo
    • Na Guo
  • View Affiliations / Copyright

    Affiliations: Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
    Copyright: © Luan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 98
    |
    Published online on: June 17, 2024
       https://doi.org/10.3892/or.2024.8757
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cytotoxic T lymphocytes (CTLs), also known as CD8+ T cells, participate in immune function by secreting various cytokines after recognizing specific antigens and class I major histocompatibility complex molecules associated with tumor cells, and thus have a key role in antitumor immunity. However, certain CD8+ T cells show low reactivity and thus cannot effectively remove tumor cells or viral antigens. Due to this heterogeneity, effective biomarkers representing these differences in CD8+ cells are needed. The identification of suitable biomarkers will also enhance the management of cancer treatment. Recent research has improved the understanding of CD8+ T lymphocytes in the tumor microenvironment and circulatory system. Treatment efficacy is impacted directly by the pathogenic response of CTLs, and thus, the use of adjuvant therapies to address these pathological changes, e.g., stimulating the increase in the proportion of reactive T cells or suppressing the proportion of terminally exhausted T cells, would be advantageous.
View Figures
View References

1 

Restifo NP, Dudley ME and Rosenberg SA: Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat Rev Immunol. 12:269–281. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Martínez-Lostao L, Anel A and Pardo J: How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 21:5047–5056. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Palucka AK and Coussens LM: The basis of oncoimmunology. Cell. 164:1233–1247. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Nagarsheth N, Wicha MS and Zou W: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N, Elford AR, Mak TW and Ohashi PS: TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest. 117:3833–3845. 2007.PubMed/NCBI

6 

Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations associated with acquired resistance to PD-1 blockade in Melanoma. N Engl J Med. 375:819–829. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Ngiow SF, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L and Smyth MJ: A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1. Cancer Res. 75:3800–3811. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Galon J, Angell HK, Bedognetti D and Marincola FM: The continuum of cancer immunosurveillance: Prognostic, predictive, and mechanistic signatures. Immunity. 39:11–26. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Shrihari TG: Innate and adaptive immune cells in tumor microenvironment. Gulf J Oncolog. 1:77–81. 2021.

10 

Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE and Rosenberg SA: Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 114:1537–1544. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H, et al: An immune atlas of clear cell renal cell carcinoma. Cell. 169:736–749.e18. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Zitvogel L, Tesniere A and Kroemer G: Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat Rev Immunol. 6:715–727. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Wherry EJ: T cell exhaustion. Nat Immunol. 12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL and Ahmed R: Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 27:670–684. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Curran MA, Montalvo W, Yagita H and Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Jansen CS, Prokhnevska N, Master VA, Sanda MG, Carlisle JW, Bilen MA, Cardenas M, Wilkinson S, Lake R, Sowalsky AG, et al: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature. 576:465–470. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Dolina JS, Van Braeckel-Budimir N, Thomas GD and Salek-Ardakani S: CD8+ T cell exhaustion in cancer. Front Immunol. 12:7152342021. View Article : Google Scholar : PubMed/NCBI

19 

Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Pearce, metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Shimizu S, Hiratsuka H, Koike K, Tsuchihashi K, Sonoda T, Ogi K, Miyakawa A, Kobayashi J, Kaneko T, Igarashi T, et al: Tumor-infiltrating CD8+ T-cell density is an independent prognostic marker for oral squamous cell carcinoma. Cancer Med. 8:80–93. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Chaudhary B, Al Samid MA, al-Ramadi BK and Elkord E: Phenotypic alterations, clinical impact and therapeutic potential of regulatory T cells in cancer. Expert Opin Biol Ther. 14:931–945. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Hurkat P, Jain S, Jain R and Jain A: Immunology behind tumors: A mini review. Curr Cancer Ther Rev. 15:174–183. 2019. View Article : Google Scholar

23 

Saleh R and Elkord E: Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett. 457:168–179. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Wu X, Zhang H, Xing Q, Cui J, Li J, Li Y, Tan Y and Wang S: PD-1(+) CD8(+) T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients. Br J Cancer. 111:1391–1399. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Xu B, Yuan L, Gao Q, Yuan P, Zhao P, Yuan H, Fan H, Li T, Qin P, Han L, et al: Circulating and tumor-infiltrating Tim-3 in patients with colorectal cancer. Oncotarget. 6:20592–20603. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Toor SM, Nair VS, Decock J and Elkord E: Immune checkpoints in the tumor microenvironment. Semin Cancer Biol. 65:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Melero I, Rouzaut A, Motz GT and Coukos G: T-cell and NK-cell infiltration into solid tumors: A key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 4:522–526. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Guan L, Wu B, Li T, Beer LA, Sharma G, Li M, Lee CN, Liu S, Yang C, Huang L, et al: HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors. Nat Commun. 13:40782022. View Article : Google Scholar : PubMed/NCBI

29 

Rossignol J, Belaid Z, Fouquet G, Guillem F, Rignault R, Milpied P, Renand A, Coman T, D'Aveni M, Dussiot M, et al: Neuropilin-1 cooperates with PD-1 in CD8+ T cells predicting outcomes in melanoma patients treated with anti-PD1. iScience. 25:1043532022. View Article : Google Scholar : PubMed/NCBI

30 

Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al: The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 26:923–937. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Liu YH, Zang XY, Wang JC, Huang SS, Xu J and Zhang P: Diagnosis and management of immune related adverse events (irAEs) in cancer immunotherapy. Biomed Pharmacother. 120:1094372019. View Article : Google Scholar : PubMed/NCBI

32 

Li L, Li G, Rao B, Dong AH, Liang W, Zhu JX, Qin MP, Huang WW, Lu JM, Li ZF and Wu YZ: Landscape of immune checkpoint inhibitor-related adverse events in Chinese population. Sci Rep. 10:155672020. View Article : Google Scholar : PubMed/NCBI

33 

Yuan Y, Zhu Z, Lan Y, Duan S, Zhu Z, Zhang X, Li G, Qu H, Feng Y, Cai H and Song Z: Development and validation of a CD8+ T cell infiltration-related signature for Melanoma patients. Front Immunol. 12:6594442021. View Article : Google Scholar : PubMed/NCBI

34 

Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, et al: Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Invest. 121:2350–2360. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, et al: PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 124:2246–2259. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Thelen M, Lechner A, Wennhold K, von Bergwelt-Baildon M and Schlößer HA: CD39 expression defines cell exhaustion in tumor-infiltrating CD8+ T cells-letter. Cancer Res. 78:5173–5174. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Berele BA, Cai Y and Yang G: Prognostic value of tumor infiltrating lymphocytes in nasopharyngeal carcinoma patients: Meta-analysis. Technol Cancer Res Treat. 20:153303382110342652021. View Article : Google Scholar : PubMed/NCBI

38 

Yang J, Chen J, Liang H and Yu Y: Nasopharyngeal cancer cell-derived exosomal PD-L1 inhibits CD8+ T-cell activity and promotes immune escape. Cancer Sci. 113:3044–3054. 2022. View Article : Google Scholar : PubMed/NCBI

39 

Ono T, Azuma K, Kawahara A, Sasada T, Matsuo N, Kakuma T, Kamimura H, Maeda R, Hattori C, On K, et al: Prognostic stratification of patients with nasopharyngeal carcinoma based on tumor immune microenvironment. Head Neck. 40:2007–2019. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Zhang YL, Li J, Mo HY, Qiu F, Zheng LM, Qian CN and Zeng YX: Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer. 9:42010. View Article : Google Scholar : PubMed/NCBI

41 

Iams WT, Shiuan E, Meador CB, Roth M, Bordeaux J, Vaupel C, Boyd KL, Summitt IB, Wang LL, Schneider JT, et al: Improved prognosis and increased tumor-infiltrating lymphocytes in patients who have SCLC with neurologic paraneoplastic syndromes. J Thorac Oncol. 14:1970–1981. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G, Szustakowski JD, et al: Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell. 33:853–861.e4. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Yoneda K, Kuwata T, Kanayama M, Mori M, Kawanami T, Yatera K, Ohguri T, Hisaoka M, Nakayama T and Tanaka F: Alteration in tumoural PD-L1 expression and stromal CD8-positive tumour-infiltrating lymphocytes after concurrent chemo-radiotherapy for non-small cell lung cancer. Br J Cancer. 121:490–496. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guérin M, Biton J, Ouakrim H, et al: Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 115:E4041–E4050. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Li S, Zhang Z, Lai WF, Cui L and Zhu X: How to overcome the side effects of tumor immunotherapy. Biomed Pharmacother. 130:1106392020. View Article : Google Scholar : PubMed/NCBI

46 

Choe EA, Cha YJ, Kim JH, Pyo KH, Hong MH, Park SY, Shim HS, Jung I, Lee CY, Cho BC and Kim HR: Dynamic changes in PD-L1 expression and CD8+ T cell infiltration in non-small cell lung cancer following chemoradiation therapy. Lung Cancer. 136:30–36. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Zhu X, Luo H and Xu Y: Transcriptome analysis reveals an important candidate gene involved in both nodal metastasis and prognosis in lung adenocarcinoma. Cell Biosci. 9:922019. View Article : Google Scholar : PubMed/NCBI

48 

Brummelman J, Mazza EMC, Alvisi G, Colombo FS, Grilli A, Mikulak J, Mavilio D, Alloisio M, Ferrari F, Lopci E, et al: High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J Exp Med. 215:2520–2535. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Khaja AS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR and Elkord E: Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget. 8:33159–33171. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Xie F, Zhou X, Su P, Li H, Tu Y, Du J, Pan C, Wei X, Zheng M, Jin K, et al: Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 13:44612022. View Article : Google Scholar : PubMed/NCBI

51 

Baker K, Lachapelle J, Zlobec I, Bismar TA, Terracciano L and Foulkes WD: Prognostic significance of CD8+ T lymphocytes in breast cancer depends upon both oestrogen receptor status and histological grade. Histopathology. 58:1107–1116. 2011.PubMed/NCBI

52 

Gao G, Wang Z, Qu Z and Zhang Z: Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: A systematic review and meta-analysis. BMC Cancer. 20:1792020. View Article : Google Scholar : PubMed/NCBI

53 

Blok EJ, Engels CC, Dekker-Ensink G, Kranenbarg EMK, Putter H, Smit V, Liefers GJ, Morden JP, Bliss JM, Coombes RC, et al: Exploration of tumour-infiltrating lymphocytes as a predictive biomarker for adjuvant endocrine therapy in early breast cancer. Breast Cancer Res Treat. 171:65–74. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Heppner BI, Untch M, Denkert C, Pfitzner BM, Lederer B, Schmitt W, Eidtmann H, Fasching PA, Tesch H, Solbach C, et al: Tumor-infiltrating lymphocytes: a predictive and prognostic biomarker in neoadjuvant-treated HER2-positive breast cancer. Clin Cancer Res. 22:5747–5754. 2016. View Article : Google Scholar : PubMed/NCBI

55 

West NR, Panet-Raymond V, Truong PT, Alexander C, Babinszky S, Milne K, Ross LA, Loken S and Watson PH: Intratumoral immune responses can distinguish new primary and true recurrence types of ipsilateral breast tumor recurrences (IBTR). Breast Cancer (Auckl). 5:105–115. 2011.PubMed/NCBI

56 

de Ruiter EJ, Ooft ML, Devriese LA and Willems SM: The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oncoimmunology. 6:e13561482017. View Article : Google Scholar : PubMed/NCBI

57 

Nguyen N, Bellile E, Thomas D, McHugh J, Rozek L, Virani S, Peterson L, Carey TE, Walline H, Moyer J, et al: Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck. 38:1074–1084. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Hartman DJ, Ahmad F, Ferris RL, Rimm DL and Pantanowitz L: Utility of CD8 score by automated quantitative image analysis in head and neck squamous cell carcinoma. Oral Oncol. 86:278–287. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Xiao Y, Li H, Mao L, Yang QC, Fu LQ, Wu CC, Liu B and Sun ZJ: CD103+ T and dendritic cells indicate a favorable prognosis in oral cancer. J Dent Res. 98:1480–1487. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Stravodimou A, Tzelepi V, Papadaki H, Mouzaki A, Georgiou S, Melachrinou M and Kourea EP: Evaluation of T-lymphocyte subpopulations in actinic keratosis, in situ and invasive squamous cell carcinoma of the skin. J Cutan Pathol. 45:337–347. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Tavaré R, Danton M, Giurleo JT, Makonnen S, Hickey C, Arnold TC, Kelly MP, Fredriksson F, Bruestle K, Hermann A, et al: Immuno-PET monitoring of lymphocytes using the CD8-specific antibody REGN5054. Cancer Immunol Res. 4:1190–1209. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Noh BJ, Kwak JY and Eom DW: Immune classification for the PD-L1 expression and tumour-infiltrating lymphocytes in colorectal adenocarcinoma. BMC Cancer. 20:582020. View Article : Google Scholar : PubMed/NCBI

63 

Alsalman A, Al-Mterin MA, Murshed K, Alloush F, Al-Shouli ST, Toor SM and Elkord E: Circulating and tumor-infiltrating immune checkpoint-expressing CD8+ Treg/T cell subsets and their associations with disease-free survival in colorectal Cancer patients. Cancers (Basel). 14:31942022. View Article : Google Scholar : PubMed/NCBI

64 

Lee IK, Song H, Kim H, Kim IS, Tran NL, Kim SH, Oh SJ and Lee JM: RORα regulates cholesterol metabolism of CD8+ T cells for anticancer immunity. Cancers. 12:17332020. View Article : Google Scholar : PubMed/NCBI

65 

Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J and Tang ZY: Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol. 132:293–301. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Moreno-Cubero E and Larrubia JR: Specific CD8(+) T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis. World J Gastroenterol. 22:6469–6483. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Guo M, Yuan F, Qi F, Sun J, Rao Q, Zhao Z, Huang P, Fang T, Yang B and Xia J: Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis. J Transl Med. 18:3062020. View Article : Google Scholar : PubMed/NCBI

68 

Xiao Y, Qiao G, Tang J, Tang R, Guo H, Warwar S, Langdon WY, Tao L and Zhang J: Protein tyrosine phosphatase SHP-1 modulates T cell responses by controlling Cbl-b degradation. J Immunol. 195:4218–4227. 1950. View Article : Google Scholar : PubMed/NCBI

69 

Kroy DC, Ciuffreda D, Cooperrider JH, Tomlinson M, Hauck GD, Aneja J, Berger C, Wolski D, Carrington M, Wherry EJ, et al: Liver environment and HCV replication affect human T-cell phenotype and expression of inhibitory receptors. Gastroenterology. 146:550–561. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK and Anderson AC: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 207:2187–2194. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Viganò S, Banga R, Bellanger F, Pellaton C, Farina A, Comte D, Harari A and Perreau M: CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression. PLoS Pathog. 10:e10043802014. View Article : Google Scholar : PubMed/NCBI

72 

Ma J, Zheng B, Goswami S, Meng L, Zhang D, Cao C, Li T, Zhu F, Ma L, Zhang Z, et al: PD1Hi CD8+ T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer. 7:3312019. View Article : Google Scholar : PubMed/NCBI

73 

Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, Zhang Z, Xie J, Wang C, Chen D, et al: Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 184:404–421.e16. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Peng R, Liu S, You W, Huang Y, Hu C, Gao Y, Jia X, Li G, Xu Z and Chen Y: Gastric microbiome alterations are associated with decreased CD8+ tissue-resident memory T cells in the tumor microenvironment of gastric cancer. Cancer Immunol Res. 10:1224–1240. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Wei Y, Zhang J, Fan X, Zheng Z, Jiang X, Chen D, Lu Y, Li Y, Wang M, Hu M, et al: Immune profiling in gastric cancer reveals the dynamic landscape of immune signature underlying tumor progression. Front Immunol. 13:9355522022. View Article : Google Scholar : PubMed/NCBI

76 

Zhou X, Fang D, Liu H, Ou X, Zhang C, Zhao Z, Zhao S, Peng J, Cai S, He Y and Xu J: PMN-MDSCs accumulation induced by CXCL1 promotes CD8+ T cells exhaustion in gastric cancer. Cancer Lett. 532:2155982022. View Article : Google Scholar : PubMed/NCBI

77 

Yagi T, Baba Y, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, Watanabe M and Baba H: PD-L1 expression, tumor-infiltrating lymphocytes, and clinical outcome in patients with surgically resected esophageal cancer. Ann Surg. 269:471–478. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Tanaka R, Kimura K, Eguchi S, Tauchi J, Shibutani M, Shinkawa H, Ohira GO, Yamazoe S, Tanaka S, Amano R, et al: Preoperative neutrophil-to-lymphocyte ratio predicts tumor-infiltrating CD8+ T cells in biliary tract cancer. Anticancer Res. 40:2881–2887. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, et al: Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 557:575–579. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Carlisle JW, Jansen CS, Cardenas MA, Sobierajska E, Reyes AM, Greenwald R, Del Balzo L, Prokhnevska N, Kucuk O, Carthon BC, et al: Clinical outcome following checkpoint therapy in renal cell carcinoma is associated with a burst of activated CD8 T cells in blood. J Immunother Cancer. 10:e0048032022. View Article : Google Scholar : PubMed/NCBI

81 

Giese MA, Hind LE and Huttenlocher A: Neutrophil plasticity in the tumor microenvironment. Blood. 133:2159–2167. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Gómez-Aleza C, Nguyen B, Yoldi G, Ciscar M, Barranco A, Hernández-Jiménez E, Maetens M, Salgado R, Zafeiroglou M, Pellegrini P, et al: Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells. Nat Commun. 11:63352020. View Article : Google Scholar : PubMed/NCBI

83 

Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL and Tohme S: Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 12:7852222021. View Article : Google Scholar : PubMed/NCBI

84 

Wang J, Huang F, Zhao J, Huang P, Tan J, Huang M, Ma R, Xiao Y, He S, Wang Z, et al: Tumor-infiltrated CD8+ T cell 10-gene signature related to clear cell renal cell carcinoma prognosis. Front Immunol. 13:9309212022. View Article : Google Scholar : PubMed/NCBI

85 

Sommer U, Ebersbach C, Beier AK, Baretton GB, Thomas C, Borkowetz A and Erb HHH: Influence of androgen deprivation therapy on the PD-L1 expression and immune activity in prostate cancer tissue. Front Mol Biosci. 9:8783532022. View Article : Google Scholar : PubMed/NCBI

86 

Laumont CM, Wouters MCA, Smazynski J, Gierc NS, Chavez EA, Chong LC, Thornton S, Milne K, Webb JR, Steidl C and Nelson BH: Single-cell profiles and prognostic impact of tumor-infiltrating lymphocytes coexpressing CD39, CD103, and PD-1 in ovarian cancer. Clin Cancer Res. 27:4089–4100. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Goode EL, Block MS, Kalli KR, Vierkant RA, Chen W, Fogarty ZC, Gentry-Maharaj A, Tołoczko A, Hein A, Bouligny AL, et al: Dose-response association of CD8+ tumor-infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol. 3:e1732902017. View Article : Google Scholar : PubMed/NCBI

88 

Wan C, Keany MP, Dong H, Al-Alem LF, Pandya UM, Lazo S, Boehnke K, Lynch KN, Xu R, Zarrella DT, et al: Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high-grade serous ovarian cancer. Cancer Res. 81:158–173. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, Levesque MP and Becher B: High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 24:144–153. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Ternès N, Jegou S, Woods DM, Sodré AL, Hansen M, Meirow Y, et al: Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun. 8:5922017. View Article : Google Scholar : PubMed/NCBI

91 

Hegde PS and Chen DS: Top 10 challenges in cancer immunotherapy. Immunity. 52:17–35. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Kalbasi A and Ribas A: Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 20:25–39. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD and Ahmed R: Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 188:2205–2213. 1998. View Article : Google Scholar : PubMed/NCBI

94 

Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ and Ahmed R: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 439:682–687. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Blackburn SD, Shin H, Freeman GJ and Wherry EJ: Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc Natl Acad Sci USA. 105:15016–15021. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA and Wherry EJ: Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 10:29–37. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, Casella V, Ngiow SF, Khan O, Huang YJ, et al: Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity. 52:825–841.e8. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Zander R, Schauder D, Xin G, Nguyen C, Wu X, Zajac A and Cui W: CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity. 51:1028–1042.e4. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Luan J, Liu Y, Cao M, Guo X and Guo N: The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review). Oncol Rep 52: 98, 2024.
APA
Luan, J., Liu, Y., Cao, M., Guo, X., & Guo, N. (2024). The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review). Oncology Reports, 52, 98. https://doi.org/10.3892/or.2024.8757
MLA
Luan, J., Liu, Y., Cao, M., Guo, X., Guo, N."The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review)". Oncology Reports 52.1 (2024): 98.
Chicago
Luan, J., Liu, Y., Cao, M., Guo, X., Guo, N."The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review)". Oncology Reports 52, no. 1 (2024): 98. https://doi.org/10.3892/or.2024.8757
Copy and paste a formatted citation
x
Spandidos Publications style
Luan J, Liu Y, Cao M, Guo X and Guo N: The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review). Oncol Rep 52: 98, 2024.
APA
Luan, J., Liu, Y., Cao, M., Guo, X., & Guo, N. (2024). The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review). Oncology Reports, 52, 98. https://doi.org/10.3892/or.2024.8757
MLA
Luan, J., Liu, Y., Cao, M., Guo, X., Guo, N."The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review)". Oncology Reports 52.1 (2024): 98.
Chicago
Luan, J., Liu, Y., Cao, M., Guo, X., Guo, N."The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review)". Oncology Reports 52, no. 1 (2024): 98. https://doi.org/10.3892/or.2024.8757
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team