|
1
|
Harbeck N, Penault-Llorca F, Cortes J,
Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J and Cardoso F:
Breast cancer. Nat Rev Dis Primers. 5:662019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hachey SJ, Hatch CJ, Gaebler D, Mocherla
A, Nee K, Kessenbrock K and Hughes CCW: Targeting tumor-stromal
interactions in triple-negative breast cancer using a human
vascularized micro-tumor model. Breast Cancer Res. 26:52024.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Abeni E, Grossi I, Marchina E, Coniglio A,
Incardona P, Cavalli P, Zorzi F, Chiodera PL, Paties CT, Crosatti
M, et al: DNA methylation variations in familial female and male
breast cancer. Oncol Lett. 21:4682021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
McDonald ES, Clark AS, Tchou J, Zhang P
and Freedman GM: Clinical diagnosis and management of breast
cancer. J Nucl Med. 57 (Suppl 1):9S–16S. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rim EY, Clevers H and Nusse R: The wnt
pathway: From signaling mechanisms to synthetic modulators. Annu
Rev Biochem. 91:571–598. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L,
Wei X, Zhao S, Zhu X and Xu F: A framework for Frizzled-G protein
coupling and implications to the PCP signaling pathways. Cell
Discov. 10:32024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang K, Ma F, Arai S, Wang Y, Varkaris A,
Poluben L, Voznesensky O, Xie F, Zhang X, Yuan X and Balk SP: WNT5a
signaling through ROR2 activates the hippo pathway to suppress YAP1
activity and tumor growth. Cancer Res. 83:1016–1030. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Neiheisel A, Kaur M, Ma N, Havard P and
Shenoy AK: Wnt pathway modulators in cancer therapeutics: An update
on completed and ongoing clinical trials. Int J Cancer.
150:727–740. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nusse R and Varmus HE: Many tumors induced
by the mouse mammary tumor virus contain a provirus integrated in
the same region of the host genome. Cell. 31:99–109. 1982.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
van Ooyen A and Nusse R: Structure and
nucleotide sequence of the putative mammary oncogene int-1;
proviral insertions leave the protein-encoding domain intact. Cell.
39:233–240. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wend P, Runke S, Wend K, Anchondo B,
Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, LesniakM
S, et al: WNT10B/β-catenin signalling induces HMGA2 and
proliferation in metastatic triple-negative breast cancer. EMBO Mol
Med. 5:264–279. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Katkat E, Demirci Y, Heger G, Karagulle D,
Papatheodorou I, Brazma A and Ozhan G: Canonical Wnt and TGF-β/BMP
signaling enhance melanocyte regeneration but suppress
invasiveness, migration, and proliferation of melanoma cells. Front
Cell Dev Biol. 11:12979102023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Luga V, Zhang L, Viloria-Petit AM,
Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and
Wrana JL: Exosomes mediate stromal mobilization of autocrine
Wnt-PCP signaling in breast cancer cell migration. Cell.
151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Harper KL, Sosa MS, Entenberg D, Hosseini
H, Cheung JF, Nobre R, Avivar-Valderas A, Nagi C, Girnius N, Davis
RJ, et al: Mechanism of early dissemination and metastasis in
Her2(+) mammary cancer. Nature. 540:588–592. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Malladi S, Macalinao DG, Jin X, He L,
Basnet H, Zou Y, de Stanchina E and Massagué J: Metastatic latency
and immune evasion through autocrine inhibition of WNT. Cell.
165:45–60. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Leung CON, Yang Y, Leung RWH, So KKH, Guo
HJ, Lei MML, Muliawan GK, Gao Y, Yu QQ, Yun JP, et al:
Broad-spectrum kinome profiling identifies CDK6 upregulation as a
driver of lenvatinib resistance in hepatocellular carcinoma. Nat
Commun. 14:66992023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Piva M, Domenici G, Iriondo O, Rábano M,
Simões BM, Comaills V, Barredo I, López-Ruiz JA, Zabalza I, Kypta R
and Vivanco M: Sox2 promotes tamoxifen resistance in breast cancer
cells. EMBO Mol Med. 6:66–79. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang
Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of
BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like
breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kahn M: Can we safely target the WNT
pathway? Nat Rev Drug Discov. 13:513–532. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pegtel DM and Gould SJ: Exosomes. Annu Rev
Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen XJ, Guo CH, Wang ZC, Yang Y, Pan YH,
Liang JY, Sun MG, Fan LS, Liang L and Wang W: Hypoxia-induced ZEB1
promotes cervical cancer immune evasion by strengthening the
CD47-SIRPα axis. Cell Commun Signal. 22:152024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yu X, Odenthal M and Fries JW: Exosomes as
miRNA carriers: Formation-function-future. Int J Mol Sci.
17:20282016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhu L, Sun HT, Wang S, Huang SL, Zheng Y,
Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, et al: Isolation and
characterization of exosomes for cancer research. J Hematol Oncol.
13:1522020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li X, Han Y, Meng Y and Yin L: Small
RNA-big impact: Exosomal miRNAs in mitochondrial dysfunction in
various disease. RNA Biol. 21:1–20. 2024. View Article : Google Scholar
|
|
26
|
Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang
G, Song J, Li Z, Zhang Z and Yuan W: Effect of exosomal miRNA on
cancer biology and clinical applications. Mol Cancer. 17:1472018.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lakshmi S, Hughes TA and Priya S: Exosomes
and exosomal RNAs in breast cancer: A status update. Eur J Cancer.
144:252–268. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao Y, Jin LJ and Zhang XY: Exosomal
miRNA-205 promotes breast cancer chemoresistance and tumorigenesis
through E2F1. Aging (Albany NY). 13:18498–18514. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Scognamiglio I, Cocca L, Puoti I, Palma F,
Ingenito F, Quintavalle C, Affinito A, Roscigno G, Nuzzo S,
Chianese RV, et al: Exosomal microRNAs synergistically trigger
stromal fibroblasts in breast cancer. Mol Ther Nucleic Acids.
28:17–31. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhan T, Rindtorff N and Boutros M: Wnt
signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wellenstein MD, Coffelt SB, Duits DEM, van
Miltenburg MH, Slagter M, de Rink I, Henneman L, Kas SM, Prekovic
S, Hau CS, et al: Loss of p53 triggers WNT-dependent systemic
inflammation to drive breast cancer metastasis. Nature.
572:538–542. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Staal FJ and Clevers HC: WNT signalling
and haematopoiesis: A WNT-WNT situation. Nat Rev Immunol. 5:21–30.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sidaway P: Prostate cancer: Wnt signalling
induces resistance. Nat Rev Urol. 12:5972015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xu X, Zhang M, Xu F and Jiang S: Wnt
signaling in breast cancer: Biological mechanisms, challenges and
opportunities. Mol Cancer. 19:1652020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xiao Q and Chen Z, Jin X, Mao R and Chen
Z: The many postures of noncanonical Wnt signaling in development
and diseases. Biomed Pharmacother. 93:359–369. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ozawa M, Baribault H and Kemler R: The
cytoplasmic domain of the cell adhesion molecule uvomorulin
associates with three independent proteins structurally related in
different species. EMBO J. 8:1711–1717. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
McCrea PD and Gumbiner BM: Purification of
a 92-kDa cytoplasmic protein tightly associated with the cell-cell
adhesion molecule E-cadherin (uvomorulin). Characterization and
extractability of the protein complex from the cell cytostructure.
J Biol Chem. 266:4514–4520. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhan T, Chen M, Liu W, Han Z, Zhu Q, Liu
M, Tan J, Liu J, Chen X, Tian X and Huang X: MiR-455-3p inhibits
gastric cancer progression by repressing Wnt/β-catenin signaling
through binding to ARMC8. BMC Med Genomics. 16:1552023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yang Y and Mlodzik M: Wnt-Frizzled/planar
cell polarity signaling: Cellular orientation by facing the wind
(Wnt). Annu Rev Cell Dev Biol. 31:623–646. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Katoh M: WNT/PCP signaling pathway and
human cancer (review). Oncol Rep. 14:1583–1588. 2005.PubMed/NCBI
|
|
41
|
Saneyoshi T, Kume S, Amasaki Y and
Mikoshiba K: The Wnt/calcium pathway activates NF-AT and promotes
ventral cell fate in Xenopus embryos. Nature. 417:295–299. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liang H, Chen Q, Coles AH, Anderson SJ,
Pihan G, Bradley A, Gerstein R, Jurecic R and Jones SN: Wnt5a
inhibits B cell proliferation and functions as a tumor suppressor
in hematopoietic tissue. Cancer Cell. 4:349–360. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhuang X, Zhang H, Li X, Li X, Cong M,
Peng F, Yu J, Zhang X, Yang Q and Hu G: Differential effects on
lung and bone metastasis of breast cancer by Wnt signalling
inhibitor DKK1. Nat Cell Biol. 19:1274–1285. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mahdi T, Hänzelmann S, Salehi A, Muhammed
SJ, Reinbothe TM, Tang Y, Axelsson AS, Zhou Y, Jing X, Almgren P,
et al: Secreted frizzled-related protein 4 reduces insulin
secretion and is overexpressed in type 2 diabetes. Cell Metab.
16:625–633. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Slusarski DC, Corces VG and Moon RT:
Interaction of wnt and a frizzled homologue triggers
g-protein-linked phosphatidylinositol signalling. Nature.
390:410–413. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fang Y, Xiao X, Wang J, Dasari S, Pepin D,
Nephew KP, Zamarin D and Mitra AK: Cancer associated fibroblasts
serve as an ovarian cancer stem cell niche through noncanonical
Wnt5a signaling. NPJ Precis Oncol. 8:72024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ge J, Yu YJ, Li JY, Li MY, Xia SM, Xue K,
WangS Y and Yang C: Activating Wnt/β-catenin signaling by
autophagic degradation of APC contributes to the osteoblast
differentiation effect of soy isoflavone on osteoporotic
mesenchymal stem cells. Acta Pharmacol Sin. 44:1841–1855. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhu Y, Zhang E, Gao H, Shang C, Yin M, Ma
M, Liu Y, Zhang X and Li X: Resistomycin inhibits Wnt/β-catenin
signaling to induce the apoptotic death of human colorectal cancer
cells. Mar Drugs. 21:6222023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Rui Q, Dong S, Jiang W and Wang D:
Response of canonical Wnt/β-catenin signaling pathway in the
intestine to microgravity stress in Caenorhabditis elegans.
Ecotoxicol Environ Saf. 186:1097822019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Šopin T, Liška F, Kučera T, Cmarko D and
Vacík T: Lysine demethylase KDM2A promotes proteasomal degradation
of TCF/LEF transcription factors in a neddylation-dependent manner.
Cells. 12:26202023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xu Y, Yang Z, Yuan H, Li Z, Li Y, Liu Q
and Chen J: PCDH10 inhibits cell proliferation of multiple myeloma
via the negative regulation of the Wnt/β-catenin/BCL-9 signaling
pathway. Oncol Rep. 34:747–754. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang C, Zhang R, Wang X, Zheng Y, Jia H,
Li H, Wang J, Wang N, Xiang F and Li Y: Silencing of KIF3B
suppresses breast cancer progression by regulating EMT and
Wnt/β-catenin signaling. Front Oncol. 10:5974642020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Malla RR and Kiran P: Tumor
microenvironment pathways: Cross regulation in breast cancer
metastasis. Genes Dis. 9:310–324. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang L, Jin Z, Master RP, Maharjan CK,
Carelock ME, Reccoppa TBA, Kim MC, Kolb R and Zhang W: Breast
cancer stem cells: Signaling pathways, cellular interactions, and
therapeutic implications. Cancers (Basel). 14:32872022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Pastushenko I and Blanpain C: EMT
transition states during tumor progression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Dri A, Arpino G, Bianchini G, Curigliano
G, Danesi R, De Laurentiis M, Del Mastro L, Fabi A, Generali D,
Gennari A, et al: Puglisi, Breaking barriers in triple negative
breast cancer (TNBC)-Unleashing the power of antibody-drug
conjugates (ADCs). Cancer Treat Rev. 123:1026722024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Park M, Kim D, Ko S, Kim A, Mo K and Yoon
H: Breast cancer metastasis: Mechanisms and therapeutic
implications. Int J Mol Sci. 23:68062022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li Y, Jin K, van Pelt GW, van Dam H, Yu X,
Mesker WE, Dijke PT, Zhou F and Zhang L: c-Myb enhances breast
cancer invasion and metastasis through the Wnt/β-catenin/Axin2
pathway. Cancer Res. 76:3364–3375. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang J, Mani SA, Donaher JL, Ramaswamy S,
Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A and
Weinberg RA: Twist, a master regulator of morphogenesis, plays an
essential role in tumor metastasis. Cell. 117:927–939. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pai SG, Carneiro BA, Mota JM, Costa R,
Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK and Giles FJ:
Wnt/beta-catenin pathway: Modulating anticancer immune response. J
Hematol Oncol. 10:1012017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang Q, Chen F, Yang N, Xu L, Yu X, Wu M
and Zhou Y: DEPDC1B-mediated USP5 deubiquitination of β-catenin
promotes breast cancer metastasis by activating the wnt/β-catenin
pathway. Am J Physiol Cell Physiol. 325:C833–C848. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Barkal AA, Brewer RE, Markovic M, Kowarsky
M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal
LJ and Weissman IL: CD24 signalling through macrophage Siglec-10 is
a target for cancer immunotherapy. Nature. 572:392–396. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Oldenborg PA, Zheleznyak A, Fang YF,
Lagenaur CF, Gresham HD and Lindberg FP: Role of CD47 as a marker
of self on red blood cells. Science. 288:2051–2054. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Shulewitz M, Soloviev I, Wu T, Koeppen H,
Polakis P and Sakanaka C: Repressor roles for TCF-4 and Sfrp1 in
Wnt signaling in breast cancer. Oncogene. 25:4361–4369. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Noman MZ, Van Moer K, Marani V, Gemmill
RM, Tranchevent LC, Azuaje F, Muller A, Chouaib S, Thiery JP,
Berchem G and Janji B: CD47 is a direct target of SNAI1 and ZEB1
and its blockade activates the phagocytosis of breast cancer cells
undergoing EMT. Oncoimmunology. 7:e13454152018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Blondeaux E, Arecco L, Punie K, Graffeo R,
Toss A, De Angelis C, Trevisan L, Buzzatti G, Linn SC, Dubsky P, et
al: Germline TP53 pathogenic variants and breast cancer: A
narrative review. Cancer Treat Rev. 114:1025222023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huang X, Shi D, Zou X, Wu X, Huang S, Kong
L, Yang M, Xiao Y, Chen B, Chen X, et al: BAG2 drives
chemoresistance of breast cancer by exacerbating mutant p53
aggregate. Theranostics. 13:339–354. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Grote I, Bartels S, Kandt L, Bollmann L,
Christgen H, Gronewold M, Raap M, Lehmann U, Gluz O, Nitz U, et al:
TP53 mutations are associated with primary endocrine resistance in
luminal early breast cancer. Cancer Med. 10:8581–8594. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Vasan N, Baselga J and Hyman DM: A view on
drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bai X, Ni J, Beretov J, Graham PA and Li
Y: Cancer stem cell in breast cancer therapeutic resistance. Cancer
Treat Rev. 69:152–163. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
VanderVorst K, Dreyer CA, Hatakeyama J,
Bell GRR, Learn JA, Berg AL, Hernandez M, Lee H, Collins SR and
Carraway KL III: Vangl-dependent Wnt/planar cell polarity signaling
mediates collective breast carcinoma motility and distant
metastasis. Breast Cancer Res. 25:522023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Puvirajesinghe TM, Bertucci F, Jain A,
Scerbo P, Belotti E, Audebert S, Sebbagh M, Lopez M, Brech A,
Finetti P, et al: Identification of p62/SQSTM1 as a component of
non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat
Commun. 7:103182016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Courtwright A, Siamakpour-Reihani S,
Arbiser JL, Banet N, Hilliard E, Fried L, Livasy C, Ketelsen D,
Nepal DB, Perou CM, et al: Secreted frizzle-related protein 2
stimulates angiogenesis via a calcineurin/NFAT signaling pathway.
Cancer Res. 69:4621–4628. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS,
Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted
exosomes promote metastasis and chemotherapy resistance by
enhancing cell stemness and epithelial-mesenchymal transition in
colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li BL, Lu W, Qu JJ, Ye L, Du GQ and Wan
XP: Loss of exosomal miR-148b from cancer-associated fibroblasts
promotes endometrial cancer cell invasion and cancer metastasis. J
Cell Physiol. 234:2943–2953. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kim CK and Pak TR: miRNA degradation in
the mammalian brain. Am J Physiol Cell Physiol. 319:C624–C629.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Califf RM: Biomarker definitions and their
applications. Exp Biol Med (Maywood). 243:213–221. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Petroušková P, Hudáková N, Maloveská M,
Humeník F and Cizkova D: Non-Exosomal and exosome-derived miRNAs as
promising biomarkers in canine mammary cancer. Life (Basel).
12:5242022.PubMed/NCBI
|
|
81
|
Li H and Tie XJ: Exploring research
progress in studying serum exosomal miRNA-21 as a molecular
diagnostic marker for breast cancer. Clin Transl Oncol.
11:10.1007/s12094–024-03454-z. 2024.
|
|
82
|
Liu M, Mo F, Song X, He Y, Yuan Y, Yan J,
Yang Y, Huang J and Zhang S: Exosomal hsa-miR-21-5p is a biomarker
for breast cancer diagnosis. PeerJ. 9:e121472021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li S, Zhang M, Xu F, Wang Y and Leng D:
Detection significance of miR-3662, miR-146a, and miR-1290 in serum
exosomes of breast cancer patients. J Cancer Res Ther. 17:749–755.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang W and Luo YP: MicroRNAs in breast
cancer: Oncogene and tumor suppressors with clinical potential. J
Zhejiang Univ Sci B. 16:18–31. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang B, Mao JH, Wang BY, Wang LX, Wen HY,
Xu LJ, Fu JX and Yang H: Exosomal miR-1910-3p promotes
proliferation, metastasis, and autophagy of breast cancer cells by
targeting MTMR3 and activating the NF-κB signaling pathway. Cancer
Lett. 489:87–99. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wei Y, Li M, Cui S, Wang D, Zhang CY, Zen
K and Li L: Shikonin inhibits the proliferation of human breast
cancer cells by reducing tumor-derived exosomes. Molecules.
21:7772016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Viallard C and Larrivée B: Tumor
angiogenesis and vascular normalization: Alternative therapeutic
targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Jung KO, Youn H, Lee CH, Kang KW and Chung
JK: Visualization of exosome-mediated miR-210 transfer from hypoxic
tumor cells. Oncotarget. 8:9899–9910. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Baroni S, Romero-Cordoba S, Plantamura I,
Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini
A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9
induces cancer-associated fibroblast-like properties in human
breast fibroblasts. Cell Death Dis. 7:e23122016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kong W, He L, Richards EJ, Challa S, Xu
CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY and
Cheng JQ: Upregulation of miRNA-155 promotes tumour angiogenesis by
targeting VHL and is associated with poor prognosis and
triple-negative breast cancer. Oncogene. 33:679–689. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kontomanolis E, Mitrakas A, Giatromanolaki
A, Kareli D, Panteliadou M, Pouliliou S and Koukourakis MI: A pilot
study on plasma levels of micro-RNAs involved in angiogenesis and
vascular maturation in patients with breast cancer. Med Oncol.
34:202017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Luengo-Gil G, Gonzalez-Billalabeitia E,
Perez-Henarejos SA, Manzano EN, Chaves-Benito A, Garcia-Martinez E,
Garcia-Garre E, Vicente V and Ayala de la Peña F: Angiogenic role
of miR-20a in breast cancer. PLoS One. 13:e01946382018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lee JK, Park SR, Jung BK, Jeon YK, Lee YS,
Kim MK, Kim YG, Jang JY and Kim CW: Exosomes derived from
mesenchymal stem cells suppress angiogenesis by down-regulating
VEGF expression in breast cancer cells. PLoS One. 8:e842562013.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Donnarumma E, Fiore D, Nappa M, Roscigno
G, Adamo A, Iaboni M, Russo V, Affinito A, Puoti I, Quintavalle C,
et al: Cancer-associated fibroblasts release exosomal microRNAs
that dictate an aggressive phenotype in breast cancer. Oncotarget.
8:19592–19608. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yan Z, Sheng Z, Zheng Y, Feng R, Xiao Q,
Shi L, Li H, Yin C, Luo H, Hao C, et al: Cancer-associated
fibroblast-derived exosomal miR-18b promotes breast cancer invasion
and metastasis by regulating TCEAL7. Cell Death Dis. 12:11202021.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang H, Wei H, Wang J, Li L, Chen A and Li
Z: MicroRNA-181d-5p-containing exosomes derived from CAFs promote
EMT by regulating CDX2/HOXA5 in breast cancer. Mol Ther Nucleic
Acids. 19:654–667. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Martello G, Rosato A, Ferrari F, Manfrin
A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T,
et al: A MicroRNA targeting dicer for metastasis control. Cell.
141:1195–1207. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Weng YS, Tseng HY, Chen YA, Shen PC, Al
Haq AT, Chen LM, Tung YC and Hsu HL: MCT-1/miR-34a/IL-6/IL-6R
signaling axis promotes EMT progression, cancer stemness and M2
macrophage polarization in triple-negative breast cancer. Mol
Cancer. 18:422019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang Y, Lai X, Yue Q, Cao F, Zhang Y, Sun
Y, Tian J, Lu Y, He L, Bai J and Wei Y: Bone marrow mesenchymal
stem cells-derived exosomal microRNA-16-5p restrains
epithelial-mesenchymal transition in breast cancer cells via
EPHA1/NF-κB signaling axis. Genomics. 114:1103412022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liang Z, Liu L, Gao R, Che C and Yang G:
Downregulation of exosomal miR-7-5p promotes breast cancer
migration and invasion by targeting RYK and participating in the
atypical WNT signalling pathway. Cell Mol Biol Lett. 27:882022.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang X, Luo G, Zhang K, Cao J, Huang C,
Jiang T, Liu B, Su L and Qiu Z: Correction: Hypoxic tumor-derived
exosomal miR-301a mediates M2 macrophage polarization via
PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res.
80:9222020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chen WX, Wang DD, Zhu B, Zhu YZ, Zheng L,
Feng ZQ and Qin XH: Exosomal miR-222 from adriamycin-resistant
MCF-7 breast cancer cells promote macrophages M2 polarization via
PTEN/Akt to induce tumor progression. Aging (Albany NY).
13:10415–10430. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Gordon S and Martinez FO: Alternative
activation of macrophages: Mechanism and functions. Immunity.
32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Pakravan K, Mossahebi-Mohammadi M,
Ghazimoradi MH, Cho WC, Sadeghizadeh M and Babashah S: Monocytes
educated by cancer-associated fibroblasts secrete exosomal miR-181a
to activate AKT signaling in breast cancer cells. J Transl Med.
20:5592022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Hao C, Sheng Z, Wang W, Feng R, Zheng Y,
Xiao Q and Zhang B: Tumor-derived exosomal miR-148b-3p mediates M2
macrophage polarization via TSC2/mTORC1 to promote breast cancer
migration and invasion. Thorac Cancer. 14:1477–1491. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yao X, Tu Y, Xu Y, Guo Y, Yao F and Zhang
X: Endoplasmic reticulum stress-induced exosomal miR-27a-3p
promotes immune escape in breast cancer via regulating PD-L1
expression in macrophages. J Cell Mol Med. 24:9560–9573. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Jiang M, Zhang W, Zhang R, Liu P, Ye Y, Yu
W, Guo X and Yu J: Cancer exosome-derived miR-9 and miR-181a
promote the development of early-stage MDSCs via interfering with
SOCS3 and PIAS3 respectively in breast cancer. Oncogene.
39:4681–4694. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Salehi M, Vafadar A, Khatami SH,
Taheri-Anganeh M, Vakili O, Savardashtaki A, Negahdari B, Naeli P,
Behrouj H, Ghasemi H and Movahedpour A: Gastrointestinal cancer
drug resistance: the role of exosomal miRNAs. Mol Biol Rep.
49:2421–2432. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hu W, Tan C, He Y, Zhang G, Xu Y and Tang
J: Functional miRNAs in breast cancer drug resistance. Onco Targets
Ther. 11:1529–1541. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Sachdeva M, Wu H, Ru P, Hwang L, Trieu V
and Mo YY: MicroRNA-101-mediated Akt activation and
estrogen-independent growth. Oncogene. 30:822–831. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Miller TE, Ghoshal K, Ramaswamy B, Roy S,
Datta J, Shapiro CL, Jacob S and Majumder S: MicroRNA-221/222
confers tamoxifen resistance in breast cancer by targeting p27Kip1.
J Biol Chem. 283:29897–29903. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y,
Li H, Zhu X, Yao L and Zhang J: Exosomal miR-221/222 enhances
tamoxifen resistance in recipient ER-positive breast cancer cells.
Breast Cancer Res Treat. 147:423–431. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Gao M, Miao L, Liu M, Li C, Yu C, Yan H,
Yin Y, Wang Y, Qi X and Ren J: miR-145 sensitizes breast cancer to
doxorubicin by targeting multidrug resistance-associated protein-1.
Oncotarget. 7:59714–59726. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Sueta A, Yamamoto Y, Tomiguchi M,
Takeshita T, Yamamoto-Ibusuki M and Iwase H: Differential
expression of exosomal miRNAs between breast cancer patients with
and without recurrence. Oncotarget. 8:69934–69944. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhong Q, Nie Q, Wu R and Huang Y: Exosomal
miR-18a-5p promotes EMT and metastasis of NPC cells via targeting
BTG3 and activating the Wnt/β-catenin signaling pathway. Cell
Cycle. 22:1544–1562. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Xia Y, Wei K, Hu LQ, Zhou CE, Lu ZB, Zhan
GS, Pan XL, Pan CF, Wang J, Wen W, et al: Exosome-mediated transfer
of miR-1260b promotes cell invasion through Wnt/β-catenin signaling
pathway in lung adenocarcinoma. J Cell Physiol. 235:6843–6853.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Huang Z, Zhen S, Jin L, Chen J, Han Y, Lei
W and Zhang F: miRNA-1260b promotes breast cancer cell migration
and invasion by downregulating CCDC134. Curr Gene Ther. 23:60–71.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang
W, Zhou J, Zhao J, Wang D, Wang Y, et al: Exosomal miR-10527-5p
inhibits migration, invasion, lymphangiogenesis and lymphatic
metastasis by affecting Wnt/β-catenin signaling via Rab10 in
esophageal squamous cell carcinoma. Int J Nanomedicine. 18:95–114.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Liu Y, Yang C, Chen S, Liu W, Liang J, He
S and Hui J: Cancer-derived exosomal miR-375 targets DIP2C and
promotes osteoblastic metastasis and prostate cancer progression by
regulating the Wnt signaling pathway. Cancer Gene Ther. 30:437–449.
2023.PubMed/NCBI
|
|
120
|
Li H, Xie C, Lu Y, Chang K, Guan F and Li
X: Exosomal mir92a promotes cytarabine resistance in
myelodysplastic syndromes by activating Wnt/β-catenin signal
pathway. Biomolecules. 12:14482022. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yue X, Lan F and Xia T: Hypoxic glioma
cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling
and promotes radiation resistance by targeting TCEAL7. Mol Ther.
27:1939–1949. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Yue X, Cao D, Lan F, Pan Q, Xia T and Yu
H: MiR-301a is activated by the Wnt/β-catenin pathway and promotes
glioma cell invasion by suppressing SEPT7. Neuro Oncol.
18:1288–1296. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang L, He M, Fu L and Jin Y: Exosomal
release of microRNA-454 by breast cancer cells sustains biological
properties of cancer stem cells via the PRRT2/Wnt axis in ovarian
cancer. Life Sci. 257:1180242020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Fang F, Guo C, Zheng W, Wang Q and Zhou L:
Exosome-mediated transfer of miR-1323 from cancer-associated
fibroblasts confers radioresistance of c33a cells by targeting
PABPN1 and activating Wnt/β-catenin signaling pathway in cervical
cancer. Reprod Sci. 29:1809–1821. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Shan G, Zhou X, Gu J, Zhou D, Cheng W, Wu
H, Wang Y, Tang T and Wang X: Downregulated exosomal
microRNA-148b-3p in cancer associated fibroblasts enhance
chemosensitivity of bladder cancer cells by downregulating the
Wnt/β-catenin pathway and upregulating PTEN. Cell Oncol (Dordr).
44:45–59. 2021. View Article : Google Scholar : PubMed/NCBI
|