Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2024 Volume 52 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2024 Volume 52 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review)

  • Authors:
    • Hailong Li
    • Xia Li
    • Wei Du
  • View Affiliations / Copyright

    Affiliations: Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 107
    |
    Published online on: June 28, 2024
       https://doi.org/10.3892/or.2024.8766
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer (BC) is the most common malignancy in women worldwide. Wnt signaling is involved in tumorigenesis and cancer progression, and is closely associated with the characteristics of BC. Variation in the expression of exosomal microRNAs (miRNAs) modulates key cancer phenotypes, such as cellular proliferation, epithelial‑mesenchymal transition, metastatic potential, immune evasion and treatment resistance. The present review aimed to discuss the importance of Wnt signaling and exosomal miRNAs in regulating the occurrence and development of BC. In addition, the present review determined the crosstalk between Wnt signaling and exosomal miRNAs, and highlighted potential diagnostic biomarkers and therapeutic targets.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J and Cardoso F: Breast cancer. Nat Rev Dis Primers. 5:662019. View Article : Google Scholar : PubMed/NCBI

2 

Hachey SJ, Hatch CJ, Gaebler D, Mocherla A, Nee K, Kessenbrock K and Hughes CCW: Targeting tumor-stromal interactions in triple-negative breast cancer using a human vascularized micro-tumor model. Breast Cancer Res. 26:52024. View Article : Google Scholar : PubMed/NCBI

3 

Abeni E, Grossi I, Marchina E, Coniglio A, Incardona P, Cavalli P, Zorzi F, Chiodera PL, Paties CT, Crosatti M, et al: DNA methylation variations in familial female and male breast cancer. Oncol Lett. 21:4682021. View Article : Google Scholar : PubMed/NCBI

4 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI

5 

McDonald ES, Clark AS, Tchou J, Zhang P and Freedman GM: Clinical diagnosis and management of breast cancer. J Nucl Med. 57 (Suppl 1):9S–16S. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Rim EY, Clevers H and Nusse R: The wnt pathway: From signaling mechanisms to synthetic modulators. Annu Rev Biochem. 91:571–598. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X and Xu F: A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways. Cell Discov. 10:32024. View Article : Google Scholar : PubMed/NCBI

8 

Wang K, Ma F, Arai S, Wang Y, Varkaris A, Poluben L, Voznesensky O, Xie F, Zhang X, Yuan X and Balk SP: WNT5a signaling through ROR2 activates the hippo pathway to suppress YAP1 activity and tumor growth. Cancer Res. 83:1016–1030. 2023. View Article : Google Scholar : PubMed/NCBI

9 

Neiheisel A, Kaur M, Ma N, Havard P and Shenoy AK: Wnt pathway modulators in cancer therapeutics: An update on completed and ongoing clinical trials. Int J Cancer. 150:727–740. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Nusse R and Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 31:99–109. 1982. View Article : Google Scholar : PubMed/NCBI

11 

van Ooyen A and Nusse R: Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact. Cell. 39:233–240. 1984. View Article : Google Scholar : PubMed/NCBI

12 

Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, LesniakM S, et al: WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med. 5:264–279. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Katkat E, Demirci Y, Heger G, Karagulle D, Papatheodorou I, Brazma A and Ozhan G: Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration but suppress invasiveness, migration, and proliferation of melanoma cells. Front Cell Dev Biol. 11:12979102023. View Article : Google Scholar : PubMed/NCBI

14 

Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and Wrana JL: Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, Avivar-Valderas A, Nagi C, Girnius N, Davis RJ, et al: Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature. 540:588–592. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y, de Stanchina E and Massagué J: Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell. 165:45–60. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Leung CON, Yang Y, Leung RWH, So KKH, Guo HJ, Lei MML, Muliawan GK, Gao Y, Yu QQ, Yun JP, et al: Broad-spectrum kinome profiling identifies CDK6 upregulation as a driver of lenvatinib resistance in hepatocellular carcinoma. Nat Commun. 14:66992023. View Article : Google Scholar : PubMed/NCBI

18 

Piva M, Domenici G, Iriondo O, Rábano M, Simões BM, Comaills V, Barredo I, López-Ruiz JA, Zabalza I, Kypta R and Vivanco M: Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med. 6:66–79. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, et al: Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 25:210–225. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Kahn M: Can we safely target the WNT pathway? Nat Rev Drug Discov. 13:513–532. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Chen XJ, Guo CH, Wang ZC, Yang Y, Pan YH, Liang JY, Sun MG, Fan LS, Liang L and Wang W: Hypoxia-induced ZEB1 promotes cervical cancer immune evasion by strengthening the CD47-SIRPα axis. Cell Commun Signal. 22:152024. View Article : Google Scholar : PubMed/NCBI

23 

Yu X, Odenthal M and Fries JW: Exosomes as miRNA carriers: Formation-function-future. Int J Mol Sci. 17:20282016. View Article : Google Scholar : PubMed/NCBI

24 

Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, et al: Isolation and characterization of exosomes for cancer research. J Hematol Oncol. 13:1522020. View Article : Google Scholar : PubMed/NCBI

25 

Li X, Han Y, Meng Y and Yin L: Small RNA-big impact: Exosomal miRNAs in mitochondrial dysfunction in various disease. RNA Biol. 21:1–20. 2024. View Article : Google Scholar

26 

Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z and Yuan W: Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 17:1472018. View Article : Google Scholar : PubMed/NCBI

27 

Lakshmi S, Hughes TA and Priya S: Exosomes and exosomal RNAs in breast cancer: A status update. Eur J Cancer. 144:252–268. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Zhao Y, Jin LJ and Zhang XY: Exosomal miRNA-205 promotes breast cancer chemoresistance and tumorigenesis through E2F1. Aging (Albany NY). 13:18498–18514. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Scognamiglio I, Cocca L, Puoti I, Palma F, Ingenito F, Quintavalle C, Affinito A, Roscigno G, Nuzzo S, Chianese RV, et al: Exosomal microRNAs synergistically trigger stromal fibroblasts in breast cancer. Mol Ther Nucleic Acids. 28:17–31. 2022. View Article : Google Scholar : PubMed/NCBI

30 

Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M, de Rink I, Henneman L, Kas SM, Prekovic S, Hau CS, et al: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature. 572:538–542. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Staal FJ and Clevers HC: WNT signalling and haematopoiesis: A WNT-WNT situation. Nat Rev Immunol. 5:21–30. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Sidaway P: Prostate cancer: Wnt signalling induces resistance. Nat Rev Urol. 12:5972015. View Article : Google Scholar : PubMed/NCBI

34 

Xu X, Zhang M, Xu F and Jiang S: Wnt signaling in breast cancer: Biological mechanisms, challenges and opportunities. Mol Cancer. 19:1652020. View Article : Google Scholar : PubMed/NCBI

35 

Xiao Q and Chen Z, Jin X, Mao R and Chen Z: The many postures of noncanonical Wnt signaling in development and diseases. Biomed Pharmacother. 93:359–369. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Ozawa M, Baribault H and Kemler R: The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8:1711–1717. 1989. View Article : Google Scholar : PubMed/NCBI

37 

McCrea PD and Gumbiner BM: Purification of a 92-kDa cytoplasmic protein tightly associated with the cell-cell adhesion molecule E-cadherin (uvomorulin). Characterization and extractability of the protein complex from the cell cytostructure. J Biol Chem. 266:4514–4520. 1991. View Article : Google Scholar : PubMed/NCBI

38 

Zhan T, Chen M, Liu W, Han Z, Zhu Q, Liu M, Tan J, Liu J, Chen X, Tian X and Huang X: MiR-455-3p inhibits gastric cancer progression by repressing Wnt/β-catenin signaling through binding to ARMC8. BMC Med Genomics. 16:1552023. View Article : Google Scholar : PubMed/NCBI

39 

Yang Y and Mlodzik M: Wnt-Frizzled/planar cell polarity signaling: Cellular orientation by facing the wind (Wnt). Annu Rev Cell Dev Biol. 31:623–646. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Katoh M: WNT/PCP signaling pathway and human cancer (review). Oncol Rep. 14:1583–1588. 2005.PubMed/NCBI

41 

Saneyoshi T, Kume S, Amasaki Y and Mikoshiba K: The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature. 417:295–299. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R and Jones SN: Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell. 4:349–360. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, Yu J, Zhang X, Yang Q and Hu G: Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 19:1274–1285. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Mahdi T, Hänzelmann S, Salehi A, Muhammed SJ, Reinbothe TM, Tang Y, Axelsson AS, Zhou Y, Jing X, Almgren P, et al: Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab. 16:625–633. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Slusarski DC, Corces VG and Moon RT: Interaction of wnt and a frizzled homologue triggers g-protein-linked phosphatidylinositol signalling. Nature. 390:410–413. 1997. View Article : Google Scholar : PubMed/NCBI

46 

Fang Y, Xiao X, Wang J, Dasari S, Pepin D, Nephew KP, Zamarin D and Mitra AK: Cancer associated fibroblasts serve as an ovarian cancer stem cell niche through noncanonical Wnt5a signaling. NPJ Precis Oncol. 8:72024. View Article : Google Scholar : PubMed/NCBI

47 

Ge J, Yu YJ, Li JY, Li MY, Xia SM, Xue K, WangS Y and Yang C: Activating Wnt/β-catenin signaling by autophagic degradation of APC contributes to the osteoblast differentiation effect of soy isoflavone on osteoporotic mesenchymal stem cells. Acta Pharmacol Sin. 44:1841–1855. 2023. View Article : Google Scholar : PubMed/NCBI

48 

Zhu Y, Zhang E, Gao H, Shang C, Yin M, Ma M, Liu Y, Zhang X and Li X: Resistomycin inhibits Wnt/β-catenin signaling to induce the apoptotic death of human colorectal cancer cells. Mar Drugs. 21:6222023. View Article : Google Scholar : PubMed/NCBI

49 

Rui Q, Dong S, Jiang W and Wang D: Response of canonical Wnt/β-catenin signaling pathway in the intestine to microgravity stress in Caenorhabditis elegans. Ecotoxicol Environ Saf. 186:1097822019. View Article : Google Scholar : PubMed/NCBI

50 

Šopin T, Liška F, Kučera T, Cmarko D and Vacík T: Lysine demethylase KDM2A promotes proteasomal degradation of TCF/LEF transcription factors in a neddylation-dependent manner. Cells. 12:26202023. View Article : Google Scholar : PubMed/NCBI

51 

Xu Y, Yang Z, Yuan H, Li Z, Li Y, Liu Q and Chen J: PCDH10 inhibits cell proliferation of multiple myeloma via the negative regulation of the Wnt/β-catenin/BCL-9 signaling pathway. Oncol Rep. 34:747–754. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Wang C, Zhang R, Wang X, Zheng Y, Jia H, Li H, Wang J, Wang N, Xiang F and Li Y: Silencing of KIF3B suppresses breast cancer progression by regulating EMT and Wnt/β-catenin signaling. Front Oncol. 10:5974642020. View Article : Google Scholar : PubMed/NCBI

53 

Malla RR and Kiran P: Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis. 9:310–324. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R and Zhang W: Breast cancer stem cells: Signaling pathways, cellular interactions, and therapeutic implications. Cancers (Basel). 14:32872022. View Article : Google Scholar : PubMed/NCBI

55 

Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Dri A, Arpino G, Bianchini G, Curigliano G, Danesi R, De Laurentiis M, Del Mastro L, Fabi A, Generali D, Gennari A, et al: Puglisi, Breaking barriers in triple negative breast cancer (TNBC)-Unleashing the power of antibody-drug conjugates (ADCs). Cancer Treat Rev. 123:1026722024. View Article : Google Scholar : PubMed/NCBI

57 

Park M, Kim D, Ko S, Kim A, Mo K and Yoon H: Breast cancer metastasis: Mechanisms and therapeutic implications. Int J Mol Sci. 23:68062022. View Article : Google Scholar : PubMed/NCBI

58 

Li Y, Jin K, van Pelt GW, van Dam H, Yu X, Mesker WE, Dijke PT, Zhou F and Zhang L: c-Myb enhances breast cancer invasion and metastasis through the Wnt/β-catenin/Axin2 pathway. Cancer Res. 76:3364–3375. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A and Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK and Giles FJ: Wnt/beta-catenin pathway: Modulating anticancer immune response. J Hematol Oncol. 10:1012017. View Article : Google Scholar : PubMed/NCBI

62 

Wang Q, Chen F, Yang N, Xu L, Yu X, Wu M and Zhou Y: DEPDC1B-mediated USP5 deubiquitination of β-catenin promotes breast cancer metastasis by activating the wnt/β-catenin pathway. Am J Physiol Cell Physiol. 325:C833–C848. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ and Weissman IL: CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 572:392–396. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD and Lindberg FP: Role of CD47 as a marker of self on red blood cells. Science. 288:2051–2054. 2000. View Article : Google Scholar : PubMed/NCBI

65 

Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P and Sakanaka C: Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene. 25:4361–4369. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Noman MZ, Van Moer K, Marani V, Gemmill RM, Tranchevent LC, Azuaje F, Muller A, Chouaib S, Thiery JP, Berchem G and Janji B: CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT. Oncoimmunology. 7:e13454152018. View Article : Google Scholar : PubMed/NCBI

67 

Blondeaux E, Arecco L, Punie K, Graffeo R, Toss A, De Angelis C, Trevisan L, Buzzatti G, Linn SC, Dubsky P, et al: Germline TP53 pathogenic variants and breast cancer: A narrative review. Cancer Treat Rev. 114:1025222023. View Article : Google Scholar : PubMed/NCBI

68 

Huang X, Shi D, Zou X, Wu X, Huang S, Kong L, Yang M, Xiao Y, Chen B, Chen X, et al: BAG2 drives chemoresistance of breast cancer by exacerbating mutant p53 aggregate. Theranostics. 13:339–354. 2023. View Article : Google Scholar : PubMed/NCBI

69 

Grote I, Bartels S, Kandt L, Bollmann L, Christgen H, Gronewold M, Raap M, Lehmann U, Gluz O, Nitz U, et al: TP53 mutations are associated with primary endocrine resistance in luminal early breast cancer. Cancer Med. 10:8581–8594. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Bai X, Ni J, Beretov J, Graham PA and Li Y: Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 69:152–163. 2018. View Article : Google Scholar : PubMed/NCBI

72 

VanderVorst K, Dreyer CA, Hatakeyama J, Bell GRR, Learn JA, Berg AL, Hernandez M, Lee H, Collins SR and Carraway KL III: Vangl-dependent Wnt/planar cell polarity signaling mediates collective breast carcinoma motility and distant metastasis. Breast Cancer Res. 25:522023. View Article : Google Scholar : PubMed/NCBI

73 

Puvirajesinghe TM, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, Sebbagh M, Lopez M, Brech A, Finetti P, et al: Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun. 7:103182016. View Article : Google Scholar : PubMed/NCBI

74 

Courtwright A, Siamakpour-Reihani S, Arbiser JL, Banet N, Hilliard E, Fried L, Livasy C, Ketelsen D, Nepal DB, Perou CM, et al: Secreted frizzle-related protein 2 stimulates angiogenesis via a calcineurin/NFAT signaling pathway. Cancer Res. 69:4621–4628. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI

76 

Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI

77 

Li BL, Lu W, Qu JJ, Ye L, Du GQ and Wan XP: Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol. 234:2943–2953. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Kim CK and Pak TR: miRNA degradation in the mammalian brain. Am J Physiol Cell Physiol. 319:C624–C629. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Califf RM: Biomarker definitions and their applications. Exp Biol Med (Maywood). 243:213–221. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Petroušková P, Hudáková N, Maloveská M, Humeník F and Cizkova D: Non-Exosomal and exosome-derived miRNAs as promising biomarkers in canine mammary cancer. Life (Basel). 12:5242022.PubMed/NCBI

81 

Li H and Tie XJ: Exploring research progress in studying serum exosomal miRNA-21 as a molecular diagnostic marker for breast cancer. Clin Transl Oncol. 11:10.1007/s12094–024-03454-z. 2024.

82 

Liu M, Mo F, Song X, He Y, Yuan Y, Yan J, Yang Y, Huang J and Zhang S: Exosomal hsa-miR-21-5p is a biomarker for breast cancer diagnosis. PeerJ. 9:e121472021. View Article : Google Scholar : PubMed/NCBI

83 

Li S, Zhang M, Xu F, Wang Y and Leng D: Detection significance of miR-3662, miR-146a, and miR-1290 in serum exosomes of breast cancer patients. J Cancer Res Ther. 17:749–755. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Wang W and Luo YP: MicroRNAs in breast cancer: Oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 16:18–31. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Wang B, Mao JH, Wang BY, Wang LX, Wen HY, Xu LJ, Fu JX and Yang H: Exosomal miR-1910-3p promotes proliferation, metastasis, and autophagy of breast cancer cells by targeting MTMR3 and activating the NF-κB signaling pathway. Cancer Lett. 489:87–99. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Wei Y, Li M, Cui S, Wang D, Zhang CY, Zen K and Li L: Shikonin inhibits the proliferation of human breast cancer cells by reducing tumor-derived exosomes. Molecules. 21:7772016. View Article : Google Scholar : PubMed/NCBI

87 

Viallard C and Larrivée B: Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Jung KO, Youn H, Lee CH, Kang KW and Chung JK: Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells. Oncotarget. 8:9899–9910. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7:e23122016. View Article : Google Scholar : PubMed/NCBI

90 

Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY and Cheng JQ: Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 33:679–689. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Kontomanolis E, Mitrakas A, Giatromanolaki A, Kareli D, Panteliadou M, Pouliliou S and Koukourakis MI: A pilot study on plasma levels of micro-RNAs involved in angiogenesis and vascular maturation in patients with breast cancer. Med Oncol. 34:202017. View Article : Google Scholar : PubMed/NCBI

92 

Luengo-Gil G, Gonzalez-Billalabeitia E, Perez-Henarejos SA, Manzano EN, Chaves-Benito A, Garcia-Martinez E, Garcia-Garre E, Vicente V and Ayala de la Peña F: Angiogenic role of miR-20a in breast cancer. PLoS One. 13:e01946382018. View Article : Google Scholar : PubMed/NCBI

93 

Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, Kim YG, Jang JY and Kim CW: Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 8:e842562013. View Article : Google Scholar : PubMed/NCBI

94 

Donnarumma E, Fiore D, Nappa M, Roscigno G, Adamo A, Iaboni M, Russo V, Affinito A, Puoti I, Quintavalle C, et al: Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget. 8:19592–19608. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Yan Z, Sheng Z, Zheng Y, Feng R, Xiao Q, Shi L, Li H, Yin C, Luo H, Hao C, et al: Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis. 12:11202021. View Article : Google Scholar : PubMed/NCBI

96 

Wang H, Wei H, Wang J, Li L, Chen A and Li Z: MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer. Mol Ther Nucleic Acids. 19:654–667. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, et al: A MicroRNA targeting dicer for metastasis control. Cell. 141:1195–1207. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, Tung YC and Hsu HL: MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer. 18:422019. View Article : Google Scholar : PubMed/NCBI

99 

Zhang Y, Lai X, Yue Q, Cao F, Zhang Y, Sun Y, Tian J, Lu Y, He L, Bai J and Wei Y: Bone marrow mesenchymal stem cells-derived exosomal microRNA-16-5p restrains epithelial-mesenchymal transition in breast cancer cells via EPHA1/NF-κB signaling axis. Genomics. 114:1103412022. View Article : Google Scholar : PubMed/NCBI

100 

Liang Z, Liu L, Gao R, Che C and Yang G: Downregulation of exosomal miR-7-5p promotes breast cancer migration and invasion by targeting RYK and participating in the atypical WNT signalling pathway. Cell Mol Biol Lett. 27:882022. View Article : Google Scholar : PubMed/NCBI

101 

Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Correction: Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 80:9222020. View Article : Google Scholar : PubMed/NCBI

102 

Chen WX, Wang DD, Zhu B, Zhu YZ, Zheng L, Feng ZQ and Qin XH: Exosomal miR-222 from adriamycin-resistant MCF-7 breast cancer cells promote macrophages M2 polarization via PTEN/Akt to induce tumor progression. Aging (Albany NY). 13:10415–10430. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Pakravan K, Mossahebi-Mohammadi M, Ghazimoradi MH, Cho WC, Sadeghizadeh M and Babashah S: Monocytes educated by cancer-associated fibroblasts secrete exosomal miR-181a to activate AKT signaling in breast cancer cells. J Transl Med. 20:5592022. View Article : Google Scholar : PubMed/NCBI

105 

Hao C, Sheng Z, Wang W, Feng R, Zheng Y, Xiao Q and Zhang B: Tumor-derived exosomal miR-148b-3p mediates M2 macrophage polarization via TSC2/mTORC1 to promote breast cancer migration and invasion. Thorac Cancer. 14:1477–1491. 2023. View Article : Google Scholar : PubMed/NCBI

106 

Yao X, Tu Y, Xu Y, Guo Y, Yao F and Zhang X: Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages. J Cell Mol Med. 24:9560–9573. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Jiang M, Zhang W, Zhang R, Liu P, Ye Y, Yu W, Guo X and Yu J: Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer. Oncogene. 39:4681–4694. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Salehi M, Vafadar A, Khatami SH, Taheri-Anganeh M, Vakili O, Savardashtaki A, Negahdari B, Naeli P, Behrouj H, Ghasemi H and Movahedpour A: Gastrointestinal cancer drug resistance: the role of exosomal miRNAs. Mol Biol Rep. 49:2421–2432. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Hu W, Tan C, He Y, Zhang G, Xu Y and Tang J: Functional miRNAs in breast cancer drug resistance. Onco Targets Ther. 11:1529–1541. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Sachdeva M, Wu H, Ru P, Hwang L, Trieu V and Mo YY: MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene. 30:822–831. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S and Majumder S: MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 283:29897–29903. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, Li H, Zhu X, Yao L and Zhang J: Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 147:423–431. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Gao M, Miao L, Liu M, Li C, Yu C, Yan H, Yin Y, Wang Y, Qi X and Ren J: miR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1. Oncotarget. 7:59714–59726. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Sueta A, Yamamoto Y, Tomiguchi M, Takeshita T, Yamamoto-Ibusuki M and Iwase H: Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget. 8:69934–69944. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Zhong Q, Nie Q, Wu R and Huang Y: Exosomal miR-18a-5p promotes EMT and metastasis of NPC cells via targeting BTG3 and activating the Wnt/β-catenin signaling pathway. Cell Cycle. 22:1544–1562. 2023. View Article : Google Scholar : PubMed/NCBI

116 

Xia Y, Wei K, Hu LQ, Zhou CE, Lu ZB, Zhan GS, Pan XL, Pan CF, Wang J, Wen W, et al: Exosome-mediated transfer of miR-1260b promotes cell invasion through Wnt/β-catenin signaling pathway in lung adenocarcinoma. J Cell Physiol. 235:6843–6853. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Huang Z, Zhen S, Jin L, Chen J, Han Y, Lei W and Zhang F: miRNA-1260b promotes breast cancer cell migration and invasion by downregulating CCDC134. Curr Gene Ther. 23:60–71. 2023. View Article : Google Scholar : PubMed/NCBI

118 

Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang W, Zhou J, Zhao J, Wang D, Wang Y, et al: Exosomal miR-10527-5p inhibits migration, invasion, lymphangiogenesis and lymphatic metastasis by affecting Wnt/β-catenin signaling via Rab10 in esophageal squamous cell carcinoma. Int J Nanomedicine. 18:95–114. 2023. View Article : Google Scholar : PubMed/NCBI

119 

Liu Y, Yang C, Chen S, Liu W, Liang J, He S and Hui J: Cancer-derived exosomal miR-375 targets DIP2C and promotes osteoblastic metastasis and prostate cancer progression by regulating the Wnt signaling pathway. Cancer Gene Ther. 30:437–449. 2023.PubMed/NCBI

120 

Li H, Xie C, Lu Y, Chang K, Guan F and Li X: Exosomal mir92a promotes cytarabine resistance in myelodysplastic syndromes by activating Wnt/β-catenin signal pathway. Biomolecules. 12:14482022. View Article : Google Scholar : PubMed/NCBI

121 

Yue X, Lan F and Xia T: Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7. Mol Ther. 27:1939–1949. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Yue X, Cao D, Lan F, Pan Q, Xia T and Yu H: MiR-301a is activated by the Wnt/β-catenin pathway and promotes glioma cell invasion by suppressing SEPT7. Neuro Oncol. 18:1288–1296. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Wang L, He M, Fu L and Jin Y: Exosomal release of microRNA-454 by breast cancer cells sustains biological properties of cancer stem cells via the PRRT2/Wnt axis in ovarian cancer. Life Sci. 257:1180242020. View Article : Google Scholar : PubMed/NCBI

124 

Fang F, Guo C, Zheng W, Wang Q and Zhou L: Exosome-mediated transfer of miR-1323 from cancer-associated fibroblasts confers radioresistance of c33a cells by targeting PABPN1 and activating Wnt/β-catenin signaling pathway in cervical cancer. Reprod Sci. 29:1809–1821. 2022. View Article : Google Scholar : PubMed/NCBI

125 

Shan G, Zhou X, Gu J, Zhou D, Cheng W, Wu H, Wang Y, Tang T and Wang X: Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN. Cell Oncol (Dordr). 44:45–59. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li H, Li X and Du W: Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review). Oncol Rep 52: 107, 2024.
APA
Li, H., Li, X., & Du, W. (2024). Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review). Oncology Reports, 52, 107. https://doi.org/10.3892/or.2024.8766
MLA
Li, H., Li, X., Du, W."Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review)". Oncology Reports 52.2 (2024): 107.
Chicago
Li, H., Li, X., Du, W."Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review)". Oncology Reports 52, no. 2 (2024): 107. https://doi.org/10.3892/or.2024.8766
Copy and paste a formatted citation
x
Spandidos Publications style
Li H, Li X and Du W: Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review). Oncol Rep 52: 107, 2024.
APA
Li, H., Li, X., & Du, W. (2024). Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review). Oncology Reports, 52, 107. https://doi.org/10.3892/or.2024.8766
MLA
Li, H., Li, X., Du, W."Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review)". Oncology Reports 52.2 (2024): 107.
Chicago
Li, H., Li, X., Du, W."Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review)". Oncology Reports 52, no. 2 (2024): 107. https://doi.org/10.3892/or.2024.8766
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team