Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review)
- Authors:
- Jia Wu
- Ying Zhu
- Dandan Liu
- Qingwei Cong
- Changchuan Bai
-
Affiliations: Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning 116013, P.R. China - Published online on: July 5, 2024 https://doi.org/10.3892/or.2024.8772
- Article Number: 113
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Jemal A, Grey N, Ferlay J and Forman D: Global cancer transitions according to the human development index (2008–2030): A population-based study. Lancet Oncol. 13:790–801. 2012. View Article : Google Scholar : PubMed/NCBI | |
Farmer P, Frenk J, Knaul FM, Shulman LN, Alleyne G, Armstrong L, Atun R, Blayney D, Chen L, Feachem R, et al: Expansion of cancer care and control in countries of low and middle income: A call to action. Lancet. 376:1186–1193. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maskalenko NA, Zhigarev D and Campbell KS: Harnessing natural killer cells for cancer immunotherapy: Dispatching the first responders. Nat Rev Drug Discov. 21:559–577. 2022. View Article : Google Scholar : PubMed/NCBI | |
Punekar SR, Velcheti V, Neel BG and Wong KK: The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol. 19:637–655. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, et al: Immune checkpoint modulators in cancer immunotherapy: Recent advances and emerging concepts. J Hematol Oncol. 15:1112022. View Article : Google Scholar : PubMed/NCBI | |
Kozomara A, Birgaoanu M and Griffiths-Jones S: miRBase: From microRNA sequences to function. Nucleic Acids Res. 47(D1): D155–D162. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Lin J and Tsung A: Manipulation of autophagy by MIR375 generates antitumor effects in liver cancer. Autophagy. 8:1833–1834. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV and Croce CM: MicroRNAs in cancer: Small molecules with a huge impact. J Clin Oncol. 27:5848–5856. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Chen P, Tan C, Cheng X, Zhang W, Shen C and Zhang D: LncRNA LINC00667 gets involved in clear cell renal cell carcinoma development and chemoresistance by regulating the miR-143-3p/ZEB1 axis. Aging (Albany NY). 15:10057–10071. 2023. View Article : Google Scholar : PubMed/NCBI | |
Panza E, Ercolano G, De Cicco P, Armogida C, Scognamiglio G, Botti G, Cirino G and Ianaro A: MicroRNA-143-3p inhibits growth and invasiveness of melanoma cells by targeting cyclooxygenase-2 and inversely correlates with malignant melanoma progression. Biochem Pharmacol. 156:52–59. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou JH, Yao ZX, Zheng Z, Yang J, Wang R, Fu SJ, Pan XF, Liu ZH and Wu K: G-MDSCs-derived exosomal miRNA-143-3p promotes proliferation via targeting of ITM2B in lung cancer. Onco Targets Ther. 13:9701–9719. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Jeon K, Lee JT, Kim S and Kim VN: MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 21:4663–4670. 2002. View Article : Google Scholar : PubMed/NCBI | |
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A and Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34((Database Issue)): D140–D144. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
Morales-Martinez M and Vega MI: Role of MicroRNA-7 (MiR-7) in cancer physiopathology. Int J Mol Sci. 23:90912022. View Article : Google Scholar : PubMed/NCBI | |
Wu XL, Cheng B, Li PY, Huang HJ, Zhao Q, Dan ZL, Tian DA and Zhang P: MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2. World J Gastroenterol. 19:7758–7765. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu T, Qiu T, Han B, Wang Y, Sun X, Qin Y, Liu A, Ge N and Jiao W: Circular RNA circCSNK1G3 induces HOXA10 signaling and promotes the growth and metastasis of lung adenocarcinoma cells through hsa-miR-143-3p sponging. Cell Oncol (Dordr). 44:297–310. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Song Z, Meng Q, Xia S, Wang C and Huang X: Circular RNA circ_0006089 regulates the IGF1R expression by targeting miR-143-3p to promote gastric cancer proliferation, migration and invasion. Cell Cycle. May 11;1–14. 2022.(Epub ahead of print). doi: 10.1080/15384101.2022.2075197. View Article : Google Scholar | |
Huang CS, Tsai CH, Yu CP, Wu YS, Yee MF, Ho JY and Yu DS: Long Noncoding RNA LINC02470 sponges MicroRNA-143-3p and enhances SMAD3-mediated epithelial-to-mesenchymal transition to promote the aggressive properties of bladder cancer. Cancers (Basel). 14:9682022. View Article : Google Scholar : PubMed/NCBI | |
Liu XX, Bao QX, Li YM and Zhang YH: The promotion of cervical cancer progression by signal transducer and activator of transcription 1-induced up-regulation of lncRNA MEOX2-AS1 as a competing endogenous RNA through miR-143-3p/VDAC1 pathway. Bioengineered. 12:3322–3335. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang ZL, Wang C, Liu W and Ai ZL: Upregulation of microRNA-143-3p induces apoptosis and suppresses proliferation, invasion, and migration of papillary thyroid carcinoma cells by targeting MSI2. Exp Mol Pathol. 112:1043422020. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Zhang CF, Cheng YD, Wang SQ, Lin H and Zhang H: LncRNA UCC promotes epithelial-mesenchymal transition via the miR-143-3p/SOX5 axis in non-small-cell lung cancer. Lab Invest. 101:1153–1165. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Bian Y and Li QL: Down-regulation of TMPO-AS1 induces apoptosis in lung carcinoma cells by regulating miR-143-3p/CDK1 axis. Technol Cancer Res Treat. 20:15330338209488802021.PubMed/NCBI | |
Yang Y, Li S, Cao J, Li Y, Hu H and Wu Z: RRM2 regulated by LINC00667/miR-143-3p signal is responsible for non-small cell lung cancer cell progression. Onco Targets Ther. 12:9927–9939. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Jia Y, Wang B, Yang S, Du K, Luo Y, Li Y and Zhu B: Circular RNA TUBA1C accelerates the progression of non-small-cell lung cancer by sponging miR-143-3p. Cell Signal. 74:1096932020. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Hua X, Peng X, Pei Y and Chen Z: Integrated dissection of lncRNA-miRNA-mRNA pairs and potential regulatory role of lncRNA PCAT19 in lung adenocarcinoma. Front Genet. 12:7652752022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Deng Q, Lv Z, Ling Y, Hou X, Chen Z, Dinglin X, Ma S, Li D, Wu Y, et al: N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer. 18:1812019. View Article : Google Scholar : PubMed/NCBI | |
Song LN, Qiao GL, Yu J, Yang CM, Chen Y, Deng ZF, Song LH, Ma LJ and Yan HL: Hsa_circ_0003998 promotes epithelial to mesenchymal transition of hepatocellular carcinoma by sponging miR-143-3p and PCBP1. J Exp Clin Cancer Res. 39:1142020. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Bi M, Lou M, Yang X and Sun L: Downregulation of SOX2-OT prevents hepatocellular carcinoma progression through miR-143-3p/MSI2. Front Oncol. 11:6859122021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Yao H, Wang K and Liu X: Long non-coding RNA MALAT1 regulates ZEB1 expression by sponging miR-143-3p and promotes hepatocellular carcinoma progression. J Cell Biochem. 118:4836–4843. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Huang J, Chen W, Hu Z and Wang X: miR-143-3p targets lncRNA PSMG3-AS1 to inhibit the proliferation of hepatocellular carcinoma cells. Cancer Manag Res. 12:6303–6309. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Wu HJ, Zhang HF, Fang SQ and Zeng R: miR-143-3p inhibits proliferation and invasion of hepatocellular carcinoma cells by regulating its target gene FGF1. Clin Transl Oncol. 23:468–480. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan H, Ge Y, Ma X, Li Z, Shi L, Lin L, Xiao J, Chen W, Ni P, Yang L and Xu Z: Long non-coding RNA CCDC144NL-AS1 sponges miR-143-3p and regulates MAP3K7 by acting as a competing endogenous RNA in gastric cancer. Cell Death Dis. 11:5212020. View Article : Google Scholar : PubMed/NCBI | |
He W, Zhang D, Li D, Zhu D, Geng Y, Wang Q, He J and Wu J: Knockdown of long non-coding RNA LINC00200 inhibits gastric cancer progression by regulating miR-143-3p/SERPINE1 axis. Dig Dis Sci. 66:3404–3414. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin GR, Chen WR, Zheng PH, Chen WS and Cai GY: Circular RNA circ_0006089 promotes the progression of gastric cancer by regulating the miR-143-3p/PTBP3 axis and PI3K/AKT signaling pathway. J Dig Dis. 23:376–387. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xiang T, Jiang HS, Zhang BT and Liu G: CircFOXO3 functions as a molecular sponge for miR-143-3p to promote the progression of gastric carcinoma via upregulating USP44. Gene. 753:1447982020. View Article : Google Scholar : PubMed/NCBI | |
Kim JK, Qu X, Chen CT, Smith JJ, Sanchez-Vega F and Garcia-Aguilar J: Identifying diagnostic MicroRNAs and investigating their biological implications in rectal cancer. JAMA Netw Open. 4:e21369132021. View Article : Google Scholar : PubMed/NCBI | |
Moreno EC, Pascual A, Prieto-Cuadra D, Laza VF, Molina-Cerrillo J, Ramos-Muñoz ME, Rodríguez-Serrano EM, Soto JL, Carrato A, García-Bermejo ML and Guillén-Ponce C: Novel molecular characterization of colorectal primary tumors based on miRNAs. Cancers (Basel). 11:3462019. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Liu Z, Zhong J and Lin L: Circ-ACAP2 facilitates the progression of colorectal cancer through mediating miR-143-3p/FZD4 axis. Eur J Clin Invest. 51:e136072021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Li Y and Song A: Inhibition of lncRNA TMPO-AS1 suppresses proliferation, migration and invasion of colorectal cancer cells by targeting miR-143-3p. Mol Med Rep. 22:3245–3254. 2020.PubMed/NCBI | |
Shan TD, Tian ZB, Li Q, Jiang YP, Liu FG, Sun XG, Han Y, Sun LJ and Chen L: Long intergenic noncoding RNA 00908 promotes proliferation and inhibits apoptosis of colorectal cancer cells by regulating KLF5 expression. J Cell Physiol. 236:889–899. 2021. View Article : Google Scholar : PubMed/NCBI | |
Abd El Fattah YK, Abulsoud AI, AbdelHamid SG, AbdelHalim S and Hamdy NM: CCDC144NL-AS1/hsa-miR-143-3p/HMGA2 interaction: In-silico and clinically implicated in CRC progression, correlated to tumor stage and size in case-controlled study; step toward ncRNA precision. Int J Biol Macromol. 253:1267392023. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Fu J, Sun S, Zhu M, Zhang L, Niu H, Chen Z, Zhang Y, Guo L and Wang S: MicroRNA-143-3p inhibits colorectal cancer metastases by targeting ITGA6 and ASAP3. Cancer Sci. 110:805–816. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Du J, Mao K, Wang X, Ding Y and Wang F: MicroRNA-143-3p suppresses tumorigenesis by targeting catenin-delta1 in colorectal cancer. Onco Targets Ther. 12:3255–3265. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shu YJ, Bao RF, Jiang L, Wang Z, Wang XA, Zhang F, Liang HB, Li HF, Ye YY, Xiang SS, et al: MicroRNA-29c-5p suppresses gallbladder carcinoma progression by directly targeting CPEB4 and inhibiting the MAPK pathway. Cell Death Differ. 24:445–457. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin YP, Hu YP, Wu XS, Wu YS, Ye YY, Li HF, Liu YC, Jiang L, Liu FT, Zhang YJ, et al: miR-143-3p targeting of ITGA6 suppresses tumour growth and angiogenesis by downregulating PLGF expression via the PI3K/AKT pathway in gallbladder carcinoma. Cell Death Dis. 9:1822018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang H and Luo H: Long non-coding RNA OIP5-AS1 contributes to gallbladder cancer cell invasion and migration by miR-143-3p suppression. Cancer Manag Res. 12:12983–12992. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Xu Y, Wei Y, Lv L, Liu N, Lin R, Wang X and Shi B: Human mesenchymal stem cell-derived exosomal microRNA-143 promotes apoptosis and suppresses cell growth in pancreatic cancer via target gene regulation. Front Genet. 12:5816942021. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Li C, Zhang X, Peng W and Wen T: MiR-143-3p suppresses tumorigenesis in pancreatic ductal adenocarcinoma by targeting KRAS. Biomed Pharmacother. 119:1094242019. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Wang D, Zu Y and Deng Y: Long noncoding RNA CASC7 is a novel regulator of glycolysis in oesophageal cancer via a miR-143-3p-mediated HK2 signalling pathway. Cell Death Discov. 8:2312022. View Article : Google Scholar : PubMed/NCBI | |
Dong LM, Zhang XL, Mao MH, Li YP, Zhang XY, Xue DW and Liu YL: LINC00511/miRNA-143-3p modulates apoptosis and malignant phenotype of bladder carcinoma cells via PCMT1. Front Cell Dev Biol. 9:6509992021. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Huang J and Wang F: Increased transcription of hsa_circ_0000644 upon RUNX family transcription factor 3 downregulation participates in the malignant development of bladder cancer. Cell Signal. 104:1105902023. View Article : Google Scholar : PubMed/NCBI | |
Xiang W, Lyu L, Huang T, Zheng F, Yuan J, Zhang C and Jiang G: The long non-coding RNA SNHG1 promotes bladder cancer progression by interacting with miR-143-3p and EZH2. J Cell Mol Med. 24:11858–11873. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhong S, Zhu Z, Jiang X, Zhang J, Gu J and Chen F: LncRNA MAFG-AS1 promotes the progression of bladder cancer by targeting the miR-143-3p/COX-2 axis. Pathobiology. 87:345–355. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Chen L and Luo G: Long non-coding RNA PCAT6 regulates bladder cancer progression via the microRNA-143-3p/PDIA6 axis. Exp Ther Med. 22:9472021. View Article : Google Scholar : PubMed/NCBI | |
Huang K and Tang Y: SChLAP1 promotes prostate cancer development through interacting with EZH2 to mediate promoter methylation modification of multiple miRNAs of chromosome 5 with a DNMT3a-feedback loop. Cell Death Dis. 12:1882021. View Article : Google Scholar : PubMed/NCBI | |
Sun F, Wu K, Yao Z, Mu X, Zheng Z, Sun M, Wang Y, Liu Z and Zhu Y: Long noncoding RNA PVT1 promotes prostate cancer metastasis by increasing NOP2 expression via targeting tumor suppressor MicroRNAs. Onco Targets Ther. 13:6755–6765. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Wang L, Li R, Zhao Y, Gu Y, Liu S, Cheng T, Huang K, Yuan Y, Song D and Gao S: The long non-coding RNA PCSEAT exhibits an oncogenic property in prostate cancer and functions as a competing endogenous RNA that associates with EZH2. Biochem Biophys Res Commun. 502:262–268. 2018. View Article : Google Scholar : PubMed/NCBI | |
Armstrong L, Willoughby CE and McKenna DJ: Targeting of AKT1 by miR-143-3p suppresses epithelial-to-mesenchymal transition in prostate cancer. Cells. 12:22072023. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Jiang H, Zhang Y, Wang C, Xia X and Sun Y: GR silencing impedes the progression of castration-resistant prostate cancer through the JAG1/NOTCH2 pathway via up-regulation of microRNA-143-3p. Cancer Biomark. 28:483–497. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ljungberg B, Albiges L, Abu-Ghanem Y, Bedke J, Capitanio U, Dabestani S, Fernández-Pello S, Giles RH, Hofmann F, Hora M, et al: European association of urology guidelines on renal cell carcinoma: The 2022 update. Eur Urol. 82:399–410. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhai W, Sun Y, Guo C, Hu G, Wang M, Zheng J, Lin W, Huang Q, Li G, Zheng J and Chang C: LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ. 24:1502–1517. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li YZ, Zhu HC, Du Y, Zhao HC and Wang L: Silencing lncRNA SLC16A1-AS1 induced ferroptosis in renal cell carcinoma through miR-143-3p/SLC7A11 signaling. Technol Cancer Res Treat. 21:153303382210778032022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Xiong D, Yang H, Ye L, Mei S, Wu J, Chen S, Shang X, Wang K and Huang L: Long noncoding RNA OPA-interacting protein 5 antisense transcript 1 upregulated SMAD3 expression to contribute to metastasis of cervical cancer by sponging miR-143-3p. J Cell Physiol. 234:5264–5275. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Jiang B, Hai J, Duan S, Dong X and Chen C: Long noncoding RNA opa-interacting protein 5 antisense transcript 1 promotes proliferation and invasion through elevating integrin α6 expression by sponging miR-143-3p in cervical cancer. J Cell Biochem. 120:907–916. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song L, Wang L, Pan X and Yang C: lncRNA OIP5-AS1 targets ROCK1 to promote cell proliferation and inhibit cell apoptosis through a mechanism involving miR-143-3p in cervical cancer. Braz J Med Biol Res. 53:e88832020. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Wang M, Li X, Luo C, Tan S, Yin S, Liu L and Zhu X: A novel mechanism by which ACTA2-AS1 promotes cervical cancer progression: acting as a ceRNA of miR-143-3p to regulate SMAD3 expression. Cancer Cell Int. 20:3722020. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Jia J, Wang X, Liu Y, Wang C and Fan R: Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p. Cancer Biol Ther. 19:391–399. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gang X, Yuan M and Zhang J: Long non-coding RNA TMPO-AS1 promotes cervical cancer cell proliferation, migration, and invasion by regulating miR-143-3p/ZEB1 axis. Cancer Manag Res. 12:1587–1599. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Pan H, Wang W, Qi C, Gu C, Shang A and Zhu J: MiR-495-3p and miR-143-3p co-target CDK1 to inhibit the development of cervical cancer. Clin Transl Oncol. 23:2323–2334. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhou D, Guan W, Ren W, Sun W, Shi J, Lin Q, Zhang J, Qiao T, Ye Y, et al: Pyridoxine 5′-phosphate oxidase is a novel therapeutic target and regulated by the TGF-β signalling pathway in epithelial ovarian cancer. Cell Death Dis. 8:32142017. View Article : Google Scholar : PubMed/NCBI | |
Guan W, Wang X, Lin Q, Zhang J, Ren W and Xu G: Transforming growth factor-β/miR-143-3p/cystatin B axis is a therapeutic target in human ovarian cancer. Int J Oncol. 55:267–276. 2019.PubMed/NCBI | |
Shi J, Zhang L, Zhou D, Zhang J, Lin Q, Guan W, Zhang J, Ren W and Xu G: Biological Function of ribosomal protein L10 on cell behavior in human epithelial ovarian cancer. J Cancer. 9:745–756. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Li W: Dysregulation of micro-143-3p and BALBP1 contributes to the pathogenesis of the development of ovarian carcinoma. Oncol Rep. 36:3605–3610. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Shen H, Xu J, Zhao S, Yao S and Jiang N: MiR-143-3p suppresses the progression of ovarian cancer. Am J Transl Res. 10:866–874. 2018.PubMed/NCBI | |
Tan X, Shao Y, Teng Y, Liu S, Li W, Xue L, Cao Y, Sun C, Zhang J, Han J, et al: The cancer-testis long non-coding RNA PCAT6 facilitates the malignant phenotype of ovarian cancer by sponging miR-143-3p. Front Cell Dev Biol. 9:5936772021. View Article : Google Scholar : PubMed/NCBI | |
Lin Q, Guan W, Ren W, Zhang L, Zhang J and Xu G: MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 39:2644–2652. 2018.PubMed/NCBI | |
Xu C, Zhai J and Fu Y: LncRNA CDKN2B-AS1 promotes the progression of ovarian cancer by miR-143-3p/SMAD3 axis and predicts a poor prognosis. Neoplasma. 67:782–793. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Wang X, Zhai J, Wang Q and Zhang B: Long noncoding RNA UCA1 facilitates endometrial cancer development by regulating KLF5 and RXFP1 gene expressions. Cancer Biother Radiopharm. 36:521–533. 2021.PubMed/NCBI | |
Wang ZL, Wang C, Liu W and Ai ZL: Emerging roles of the long non-coding RNA 01296/microRNA-143-3p/MSI2 axis in development of thyroid cancer. Biosci Rep. 39:BSR201823762019. View Article : Google Scholar : PubMed/NCBI | |
Zhang F and Cao H: MicroRNA-143-3p suppresses cell growth and invasion in laryngeal squamous cell carcinoma via targeting the k-Ras/Raf/MEK/ERK signaling pathway. Int J Oncol. 54:689–701. 2019.PubMed/NCBI | |
Han L, Tang M, Xu X, Jiang B, Wei Y, Qian H and Lu X: MiR-143-3p suppresses cell proliferation, migration, and invasion by targeting melanoma-associated antigen A9 in laryngeal squamous cell carcinoma. J Cell Biochem. 120:1245–1257. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Teng Y, Li Y, Lin X, Guan M, Li Y, Cao X and Gao Y: MiR-143-3p suppresses the progression of nasal squamous cell carcinoma by targeting Bcl-2 and IGF1R. Biochem Biophys Res Commun. 518:492–499. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen J and Chen X: MYBL2 is targeted by miR-143-3p and regulates breast cancer cell proliferation and apoptosis. Oncol Res. 26:913–922. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Yang Y, Kong F, Kong Q and Shan C: MiR-143-3p inhibits the proliferation, cell migration and invasion of human breast cancer cells by modulating the expression of MAPK7. Biochimie. 147:98–104. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li D, Hu J, Song H, Xu H, Wu C, Zhao B, Xie D, Wu T, Zhao J and Fang L: miR-143-3p targeting LIM domain kinase 1 suppresses the progression of triple-negative breast cancer cells. Am J Transl Res. 9:2276–2285. 2017.PubMed/NCBI | |
Cui Y, Fan Y, Zhao G, Zhang Q, Bao Y, Cui Y, Ye Z, Chen G, Piao X, Guo F, et al: Novel lncRNA PSMG3-AS1 functions as a miR-143-3p sponge to increase the proliferation and migration of breast cancer cells. Oncol Rep. 43:229–239. 2020.PubMed/NCBI | |
Li GH, Yu JH, Yang B, Gong FC and Zhang KW: LncRNA LOXL1-AS1 inhibited cell proliferation, migration and invasion as well as induced apoptosis in breast cancer via regulating miR-143-3p. Eur Rev Med Pharmacol Sci. 23:10400–10409. 2019.PubMed/NCBI | |
Zhu J, Xiang XL, Cai P, Jiang YL, Zhu ZW, Hu FL and Wang J: CircRNA-ACAP2 contributes to the invasion, migration, and anti-apoptosis of neuroblastoma cells through targeting the miRNA-143-3p-hexokinase 2 axis. Transl Pediatr. 10:3237–3247. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Jiang J, He G, Zhou H and Ji C: miR-143-3p represses leukemia cell proliferation by inhibiting KAT6A expression. Anticancer Drugs. 33:e662–e669. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hou Y, Feng H, Jiao J, Qian L, Sun B, Chen P, Li Q and Liang Z: Mechanism of miR-143-3p inhibiting proliferation, migration and invasion of osteosarcoma cells by targeting MAPK7. Artif Cells Nanomed Biotechnol. 47:2065–2071. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Dai G, Yu L, Hu Q, Chen J and Guo W: miR-143-3p inhibits the proliferation, migration and invasion in osteosarcoma by targeting FOSL2. Sci Rep. 8:6062018. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Feng Q, Li L, Xiong Y, Liu S, Liu J and Wu Q: Long-noncoding RNA PCAT6 aggravates osteosarcoma tumourigenesis via the MiR-143-3p/ZEB1 axis. Onco Targets Ther. 13:8705–8714. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tian S, Han G, Lu L and Meng X: Circ-FOXM1 contributes to cell proliferation, invasion, and glycolysis and represses apoptosis in melanoma by regulating miR-143-3p/FLOT2 axis. World J Surg Oncol. 18:562020. View Article : Google Scholar : PubMed/NCBI | |
Duan Q, Xu M, Wu M, Zhang X, Gan M and Jiang H: Long noncoding RNA UCA1 promotes cell growth, migration, and invasion by targeting miR-143-3p in oral squamous cell carcinoma. Cancer Med. 9:3115–3129. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Li W, Yang L, Yuan J, Wang L, Li N and Zhao H: CircPVT1 facilitates the progression of oral squamous cell carcinoma by regulating miR-143-3p/SLC7A11 axis through MAPK signaling pathway. Funct Integr Genomics. 22:891–903. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Shao X, Huo L and Zhang T: Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes cell proliferation and migration by regulating miR-143-3p and MAGE family member A9 (MAGEA9) in oral squamous cell carcinoma. Med Sci Monit. 26:e9241872020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI | |
Abdelhamed S, Ogura K, Yokoyama S, Saiki I and Hayakawa Y: AKT-STAT3 pathway as a downstream target of EGFR signaling to regulate PD-L1 expression on NSCLC cells. J Cancer. 7:1579–1586. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mei J, Zhu C, Pan L and Li M: MACC1 regulates the AKT/STAT3 signaling pathway to induce migration, invasion, cancer stemness, and suppress apoptosis in cervical cancer cells. Bioengineered. 13:61–70. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao J and Luo Z: Discovery of raf family is a milestone in deciphering the ras-mediated intracellular signaling pathway. Int J Mol Sci. 23:51582022. View Article : Google Scholar : PubMed/NCBI | |
Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N and Pegtel DM: Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 6:1272015. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Wu Y, Xu Y, Li G, Li Z and Liu T: Mesenchymal stem cell-derived exosomes in cancer therapy resistance: Recent advances and therapeutic potential. Mol Cancer. 21:1792022. View Article : Google Scholar : PubMed/NCBI |