Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2024 Volume 52 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 52 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review)

  • Authors:
    • Jia Wu
    • Ying Zhu
    • Dandan Liu
    • Qingwei Cong
    • Changchuan Bai
  • View Affiliations / Copyright

    Affiliations: Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning 116013, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 113
    |
    Published online on: July 5, 2024
       https://doi.org/10.3892/or.2024.8772
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In recent years, microRNAs (miRNAs or miRs) have been increasingly studied for their role in cancer and have shown potential as cancer biomarkers. miR‑143‑3p and miR‑143‑5p are the mature miRNAs derived from pre‑miRNA‑143. At present, there are numerous studies on the function of miR‑143‑3p in cancer progression, but there are no systematic reviews describing the function of miR‑143‑3p in cancer. It is widely considered that miR‑143‑3p is downregulated in most malignant tumors and that upstream regulators can act on this gene, which in turn regulates the corresponding target to act on the tumor. In addition, miRNA‑143‑3p can regulate target genes to affect the biological process of tumors through various signaling pathways, such as the PI3K/Akt, Wnt/β‑catenin, AKT/STAT3 and Ras‑Raf‑MEK‑ERK pathways. The present review comprehensively described the biogenesis of miR‑143‑3p, the biological functions of miR‑143‑3p and the related roles and mechanisms in different cancer types. The potential of miR‑143‑3p as a biomarker for cancer was also highlighted and valuable future research directions were discussed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Bray F, Jemal A, Grey N, Ferlay J and Forman D: Global cancer transitions according to the human development index (2008–2030): A population-based study. Lancet Oncol. 13:790–801. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Farmer P, Frenk J, Knaul FM, Shulman LN, Alleyne G, Armstrong L, Atun R, Blayney D, Chen L, Feachem R, et al: Expansion of cancer care and control in countries of low and middle income: A call to action. Lancet. 376:1186–1193. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Maskalenko NA, Zhigarev D and Campbell KS: Harnessing natural killer cells for cancer immunotherapy: Dispatching the first responders. Nat Rev Drug Discov. 21:559–577. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Punekar SR, Velcheti V, Neel BG and Wong KK: The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol. 19:637–655. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, et al: Immune checkpoint modulators in cancer immunotherapy: Recent advances and emerging concepts. J Hematol Oncol. 15:1112022. View Article : Google Scholar : PubMed/NCBI

7 

Kozomara A, Birgaoanu M and Griffiths-Jones S: miRBase: From microRNA sequences to function. Nucleic Acids Res. 47(D1): D155–D162. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Chang Y, Lin J and Tsung A: Manipulation of autophagy by MIR375 generates antitumor effects in liver cancer. Autophagy. 8:1833–1834. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Iorio MV and Croce CM: MicroRNAs in cancer: Small molecules with a huge impact. J Clin Oncol. 27:5848–5856. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Zhao J, Chen P, Tan C, Cheng X, Zhang W, Shen C and Zhang D: LncRNA LINC00667 gets involved in clear cell renal cell carcinoma development and chemoresistance by regulating the miR-143-3p/ZEB1 axis. Aging (Albany NY). 15:10057–10071. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Panza E, Ercolano G, De Cicco P, Armogida C, Scognamiglio G, Botti G, Cirino G and Ianaro A: MicroRNA-143-3p inhibits growth and invasiveness of melanoma cells by targeting cyclooxygenase-2 and inversely correlates with malignant melanoma progression. Biochem Pharmacol. 156:52–59. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Zhou JH, Yao ZX, Zheng Z, Yang J, Wang R, Fu SJ, Pan XF, Liu ZH and Wu K: G-MDSCs-derived exosomal miRNA-143-3p promotes proliferation via targeting of ITM2B in lung cancer. Onco Targets Ther. 13:9701–9719. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Lee Y, Jeon K, Lee JT, Kim S and Kim VN: MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 21:4663–4670. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A and Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34((Database Issue)): D140–D144. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Morales-Martinez M and Vega MI: Role of MicroRNA-7 (MiR-7) in cancer physiopathology. Int J Mol Sci. 23:90912022. View Article : Google Scholar : PubMed/NCBI

18 

Wu XL, Cheng B, Li PY, Huang HJ, Zhao Q, Dan ZL, Tian DA and Zhang P: MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2. World J Gastroenterol. 19:7758–7765. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Lu T, Qiu T, Han B, Wang Y, Sun X, Qin Y, Liu A, Ge N and Jiao W: Circular RNA circCSNK1G3 induces HOXA10 signaling and promotes the growth and metastasis of lung adenocarcinoma cells through hsa-miR-143-3p sponging. Cell Oncol (Dordr). 44:297–310. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Wang X, Song Z, Meng Q, Xia S, Wang C and Huang X: Circular RNA circ_0006089 regulates the IGF1R expression by targeting miR-143-3p to promote gastric cancer proliferation, migration and invasion. Cell Cycle. May 11;1–14. 2022.(Epub ahead of print). doi: 10.1080/15384101.2022.2075197. View Article : Google Scholar

21 

Huang CS, Tsai CH, Yu CP, Wu YS, Yee MF, Ho JY and Yu DS: Long Noncoding RNA LINC02470 sponges MicroRNA-143-3p and enhances SMAD3-mediated epithelial-to-mesenchymal transition to promote the aggressive properties of bladder cancer. Cancers (Basel). 14:9682022. View Article : Google Scholar : PubMed/NCBI

22 

Liu XX, Bao QX, Li YM and Zhang YH: The promotion of cervical cancer progression by signal transducer and activator of transcription 1-induced up-regulation of lncRNA MEOX2-AS1 as a competing endogenous RNA through miR-143-3p/VDAC1 pathway. Bioengineered. 12:3322–3335. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Wang ZL, Wang C, Liu W and Ai ZL: Upregulation of microRNA-143-3p induces apoptosis and suppresses proliferation, invasion, and migration of papillary thyroid carcinoma cells by targeting MSI2. Exp Mol Pathol. 112:1043422020. View Article : Google Scholar : PubMed/NCBI

24 

Chen R, Zhang CF, Cheng YD, Wang SQ, Lin H and Zhang H: LncRNA UCC promotes epithelial-mesenchymal transition via the miR-143-3p/SOX5 axis in non-small-cell lung cancer. Lab Invest. 101:1153–1165. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Li Q, Bian Y and Li QL: Down-regulation of TMPO-AS1 induces apoptosis in lung carcinoma cells by regulating miR-143-3p/CDK1 axis. Technol Cancer Res Treat. 20:15330338209488802021.PubMed/NCBI

26 

Yang Y, Li S, Cao J, Li Y, Hu H and Wu Z: RRM2 regulated by LINC00667/miR-143-3p signal is responsible for non-small cell lung cancer cell progression. Onco Targets Ther. 12:9927–9939. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Yang J, Jia Y, Wang B, Yang S, Du K, Luo Y, Li Y and Zhu B: Circular RNA TUBA1C accelerates the progression of non-small-cell lung cancer by sponging miR-143-3p. Cell Signal. 74:1096932020. View Article : Google Scholar : PubMed/NCBI

28 

Tang X, Hua X, Peng X, Pei Y and Chen Z: Integrated dissection of lncRNA-miRNA-mRNA pairs and potential regulatory role of lncRNA PCAT19 in lung adenocarcinoma. Front Genet. 12:7652752022. View Article : Google Scholar : PubMed/NCBI

29 

Wang H, Deng Q, Lv Z, Ling Y, Hou X, Chen Z, Dinglin X, Ma S, Li D, Wu Y, et al: N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer. 18:1812019. View Article : Google Scholar : PubMed/NCBI

30 

Song LN, Qiao GL, Yu J, Yang CM, Chen Y, Deng ZF, Song LH, Ma LJ and Yan HL: Hsa_circ_0003998 promotes epithelial to mesenchymal transition of hepatocellular carcinoma by sponging miR-143-3p and PCBP1. J Exp Clin Cancer Res. 39:1142020. View Article : Google Scholar : PubMed/NCBI

31 

Zhao H, Bi M, Lou M, Yang X and Sun L: Downregulation of SOX2-OT prevents hepatocellular carcinoma progression through miR-143-3p/MSI2. Front Oncol. 11:6859122021. View Article : Google Scholar : PubMed/NCBI

32 

Chen L, Yao H, Wang K and Liu X: Long non-coding RNA MALAT1 regulates ZEB1 expression by sponging miR-143-3p and promotes hepatocellular carcinoma progression. J Cell Biochem. 118:4836–4843. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Zhang J, Huang J, Chen W, Hu Z and Wang X: miR-143-3p targets lncRNA PSMG3-AS1 to inhibit the proliferation of hepatocellular carcinoma cells. Cancer Manag Res. 12:6303–6309. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Peng J, Wu HJ, Zhang HF, Fang SQ and Zeng R: miR-143-3p inhibits proliferation and invasion of hepatocellular carcinoma cells by regulating its target gene FGF1. Clin Transl Oncol. 23:468–480. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Fan H, Ge Y, Ma X, Li Z, Shi L, Lin L, Xiao J, Chen W, Ni P, Yang L and Xu Z: Long non-coding RNA CCDC144NL-AS1 sponges miR-143-3p and regulates MAP3K7 by acting as a competing endogenous RNA in gastric cancer. Cell Death Dis. 11:5212020. View Article : Google Scholar : PubMed/NCBI

36 

He W, Zhang D, Li D, Zhu D, Geng Y, Wang Q, He J and Wu J: Knockdown of long non-coding RNA LINC00200 inhibits gastric cancer progression by regulating miR-143-3p/SERPINE1 axis. Dig Dis Sci. 66:3404–3414. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Lin GR, Chen WR, Zheng PH, Chen WS and Cai GY: Circular RNA circ_0006089 promotes the progression of gastric cancer by regulating the miR-143-3p/PTBP3 axis and PI3K/AKT signaling pathway. J Dig Dis. 23:376–387. 2022. View Article : Google Scholar : PubMed/NCBI

38 

Xiang T, Jiang HS, Zhang BT and Liu G: CircFOXO3 functions as a molecular sponge for miR-143-3p to promote the progression of gastric carcinoma via upregulating USP44. Gene. 753:1447982020. View Article : Google Scholar : PubMed/NCBI

39 

Kim JK, Qu X, Chen CT, Smith JJ, Sanchez-Vega F and Garcia-Aguilar J: Identifying diagnostic MicroRNAs and investigating their biological implications in rectal cancer. JAMA Netw Open. 4:e21369132021. View Article : Google Scholar : PubMed/NCBI

40 

Moreno EC, Pascual A, Prieto-Cuadra D, Laza VF, Molina-Cerrillo J, Ramos-Muñoz ME, Rodríguez-Serrano EM, Soto JL, Carrato A, García-Bermejo ML and Guillén-Ponce C: Novel molecular characterization of colorectal primary tumors based on miRNAs. Cancers (Basel). 11:3462019. View Article : Google Scholar : PubMed/NCBI

41 

Zhang G, Liu Z, Zhong J and Lin L: Circ-ACAP2 facilitates the progression of colorectal cancer through mediating miR-143-3p/FZD4 axis. Eur J Clin Invest. 51:e136072021. View Article : Google Scholar : PubMed/NCBI

42 

Zhao L, Li Y and Song A: Inhibition of lncRNA TMPO-AS1 suppresses proliferation, migration and invasion of colorectal cancer cells by targeting miR-143-3p. Mol Med Rep. 22:3245–3254. 2020.PubMed/NCBI

43 

Shan TD, Tian ZB, Li Q, Jiang YP, Liu FG, Sun XG, Han Y, Sun LJ and Chen L: Long intergenic noncoding RNA 00908 promotes proliferation and inhibits apoptosis of colorectal cancer cells by regulating KLF5 expression. J Cell Physiol. 236:889–899. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Abd El Fattah YK, Abulsoud AI, AbdelHamid SG, AbdelHalim S and Hamdy NM: CCDC144NL-AS1/hsa-miR-143-3p/HMGA2 interaction: In-silico and clinically implicated in CRC progression, correlated to tumor stage and size in case-controlled study; step toward ncRNA precision. Int J Biol Macromol. 253:1267392023. View Article : Google Scholar : PubMed/NCBI

45 

Guo L, Fu J, Sun S, Zhu M, Zhang L, Niu H, Chen Z, Zhang Y, Guo L and Wang S: MicroRNA-143-3p inhibits colorectal cancer metastases by targeting ITGA6 and ASAP3. Cancer Sci. 110:805–816. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Ding X, Du J, Mao K, Wang X, Ding Y and Wang F: MicroRNA-143-3p suppresses tumorigenesis by targeting catenin-delta1 in colorectal cancer. Onco Targets Ther. 12:3255–3265. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Shu YJ, Bao RF, Jiang L, Wang Z, Wang XA, Zhang F, Liang HB, Li HF, Ye YY, Xiang SS, et al: MicroRNA-29c-5p suppresses gallbladder carcinoma progression by directly targeting CPEB4 and inhibiting the MAPK pathway. Cell Death Differ. 24:445–457. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Jin YP, Hu YP, Wu XS, Wu YS, Ye YY, Li HF, Liu YC, Jiang L, Liu FT, Zhang YJ, et al: miR-143-3p targeting of ITGA6 suppresses tumour growth and angiogenesis by downregulating PLGF expression via the PI3K/AKT pathway in gallbladder carcinoma. Cell Death Dis. 9:1822018. View Article : Google Scholar : PubMed/NCBI

49 

Li J, Zhang H and Luo H: Long non-coding RNA OIP5-AS1 contributes to gallbladder cancer cell invasion and migration by miR-143-3p suppression. Cancer Manag Res. 12:12983–12992. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Wang B, Xu Y, Wei Y, Lv L, Liu N, Lin R, Wang X and Shi B: Human mesenchymal stem cell-derived exosomal microRNA-143 promotes apoptosis and suppresses cell growth in pancreatic cancer via target gene regulation. Front Genet. 12:5816942021. View Article : Google Scholar : PubMed/NCBI

51 

Xie F, Li C, Zhang X, Peng W and Wen T: MiR-143-3p suppresses tumorigenesis in pancreatic ductal adenocarcinoma by targeting KRAS. Biomed Pharmacother. 119:1094242019. View Article : Google Scholar : PubMed/NCBI

52 

Sun W, Wang D, Zu Y and Deng Y: Long noncoding RNA CASC7 is a novel regulator of glycolysis in oesophageal cancer via a miR-143-3p-mediated HK2 signalling pathway. Cell Death Discov. 8:2312022. View Article : Google Scholar : PubMed/NCBI

53 

Dong LM, Zhang XL, Mao MH, Li YP, Zhang XY, Xue DW and Liu YL: LINC00511/miRNA-143-3p modulates apoptosis and malignant phenotype of bladder carcinoma cells via PCMT1. Front Cell Dev Biol. 9:6509992021. View Article : Google Scholar : PubMed/NCBI

54 

Zhou H, Huang J and Wang F: Increased transcription of hsa_circ_0000644 upon RUNX family transcription factor 3 downregulation participates in the malignant development of bladder cancer. Cell Signal. 104:1105902023. View Article : Google Scholar : PubMed/NCBI

55 

Xiang W, Lyu L, Huang T, Zheng F, Yuan J, Zhang C and Jiang G: The long non-coding RNA SNHG1 promotes bladder cancer progression by interacting with miR-143-3p and EZH2. J Cell Mol Med. 24:11858–11873. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Li D, Zhong S, Zhu Z, Jiang X, Zhang J, Gu J and Chen F: LncRNA MAFG-AS1 promotes the progression of bladder cancer by targeting the miR-143-3p/COX-2 axis. Pathobiology. 87:345–355. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Zhang Y, Chen L and Luo G: Long non-coding RNA PCAT6 regulates bladder cancer progression via the microRNA-143-3p/PDIA6 axis. Exp Ther Med. 22:9472021. View Article : Google Scholar : PubMed/NCBI

58 

Huang K and Tang Y: SChLAP1 promotes prostate cancer development through interacting with EZH2 to mediate promoter methylation modification of multiple miRNAs of chromosome 5 with a DNMT3a-feedback loop. Cell Death Dis. 12:1882021. View Article : Google Scholar : PubMed/NCBI

59 

Sun F, Wu K, Yao Z, Mu X, Zheng Z, Sun M, Wang Y, Liu Z and Zhu Y: Long noncoding RNA PVT1 promotes prostate cancer metastasis by increasing NOP2 expression via targeting tumor suppressor MicroRNAs. Onco Targets Ther. 13:6755–6765. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Yang X, Wang L, Li R, Zhao Y, Gu Y, Liu S, Cheng T, Huang K, Yuan Y, Song D and Gao S: The long non-coding RNA PCSEAT exhibits an oncogenic property in prostate cancer and functions as a competing endogenous RNA that associates with EZH2. Biochem Biophys Res Commun. 502:262–268. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Armstrong L, Willoughby CE and McKenna DJ: Targeting of AKT1 by miR-143-3p suppresses epithelial-to-mesenchymal transition in prostate cancer. Cells. 12:22072023. View Article : Google Scholar : PubMed/NCBI

62 

Zhang L, Jiang H, Zhang Y, Wang C, Xia X and Sun Y: GR silencing impedes the progression of castration-resistant prostate cancer through the JAG1/NOTCH2 pathway via up-regulation of microRNA-143-3p. Cancer Biomark. 28:483–497. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Ljungberg B, Albiges L, Abu-Ghanem Y, Bedke J, Capitanio U, Dabestani S, Fernández-Pello S, Giles RH, Hofmann F, Hora M, et al: European association of urology guidelines on renal cell carcinoma: The 2022 update. Eur Urol. 82:399–410. 2022. View Article : Google Scholar : PubMed/NCBI

64 

Zhai W, Sun Y, Guo C, Hu G, Wang M, Zheng J, Lin W, Huang Q, Li G, Zheng J and Chang C: LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ. 24:1502–1517. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Li YZ, Zhu HC, Du Y, Zhao HC and Wang L: Silencing lncRNA SLC16A1-AS1 induced ferroptosis in renal cell carcinoma through miR-143-3p/SLC7A11 signaling. Technol Cancer Res Treat. 21:153303382210778032022. View Article : Google Scholar : PubMed/NCBI

66 

Chen X, Xiong D, Yang H, Ye L, Mei S, Wu J, Chen S, Shang X, Wang K and Huang L: Long noncoding RNA OPA-interacting protein 5 antisense transcript 1 upregulated SMAD3 expression to contribute to metastasis of cervical cancer by sponging miR-143-3p. J Cell Physiol. 234:5264–5275. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Yang J, Jiang B, Hai J, Duan S, Dong X and Chen C: Long noncoding RNA opa-interacting protein 5 antisense transcript 1 promotes proliferation and invasion through elevating integrin α6 expression by sponging miR-143-3p in cervical cancer. J Cell Biochem. 120:907–916. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Song L, Wang L, Pan X and Yang C: lncRNA OIP5-AS1 targets ROCK1 to promote cell proliferation and inhibit cell apoptosis through a mechanism involving miR-143-3p in cervical cancer. Braz J Med Biol Res. 53:e88832020. View Article : Google Scholar : PubMed/NCBI

69 

Luo L, Wang M, Li X, Luo C, Tan S, Yin S, Liu L and Zhu X: A novel mechanism by which ACTA2-AS1 promotes cervical cancer progression: acting as a ceRNA of miR-143-3p to regulate SMAD3 expression. Cancer Cell Int. 20:3722020. View Article : Google Scholar : PubMed/NCBI

70 

Liu M, Jia J, Wang X, Liu Y, Wang C and Fan R: Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p. Cancer Biol Ther. 19:391–399. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Gang X, Yuan M and Zhang J: Long non-coding RNA TMPO-AS1 promotes cervical cancer cell proliferation, migration, and invasion by regulating miR-143-3p/ZEB1 axis. Cancer Manag Res. 12:1587–1599. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Tang J, Pan H, Wang W, Qi C, Gu C, Shang A and Zhu J: MiR-495-3p and miR-143-3p co-target CDK1 to inhibit the development of cervical cancer. Clin Transl Oncol. 23:2323–2334. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Zhang L, Zhou D, Guan W, Ren W, Sun W, Shi J, Lin Q, Zhang J, Qiao T, Ye Y, et al: Pyridoxine 5′-phosphate oxidase is a novel therapeutic target and regulated by the TGF-β signalling pathway in epithelial ovarian cancer. Cell Death Dis. 8:32142017. View Article : Google Scholar : PubMed/NCBI

74 

Guan W, Wang X, Lin Q, Zhang J, Ren W and Xu G: Transforming growth factor-β/miR-143-3p/cystatin B axis is a therapeutic target in human ovarian cancer. Int J Oncol. 55:267–276. 2019.PubMed/NCBI

75 

Shi J, Zhang L, Zhou D, Zhang J, Lin Q, Guan W, Zhang J, Ren W and Xu G: Biological Function of ribosomal protein L10 on cell behavior in human epithelial ovarian cancer. J Cancer. 9:745–756. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Zhang H and Li W: Dysregulation of micro-143-3p and BALBP1 contributes to the pathogenesis of the development of ovarian carcinoma. Oncol Rep. 36:3605–3610. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Shi H, Shen H, Xu J, Zhao S, Yao S and Jiang N: MiR-143-3p suppresses the progression of ovarian cancer. Am J Transl Res. 10:866–874. 2018.PubMed/NCBI

78 

Tan X, Shao Y, Teng Y, Liu S, Li W, Xue L, Cao Y, Sun C, Zhang J, Han J, et al: The cancer-testis long non-coding RNA PCAT6 facilitates the malignant phenotype of ovarian cancer by sponging miR-143-3p. Front Cell Dev Biol. 9:5936772021. View Article : Google Scholar : PubMed/NCBI

79 

Lin Q, Guan W, Ren W, Zhang L, Zhang J and Xu G: MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 39:2644–2652. 2018.PubMed/NCBI

80 

Xu C, Zhai J and Fu Y: LncRNA CDKN2B-AS1 promotes the progression of ovarian cancer by miR-143-3p/SMAD3 axis and predicts a poor prognosis. Neoplasma. 67:782–793. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Liu T, Wang X, Zhai J, Wang Q and Zhang B: Long noncoding RNA UCA1 facilitates endometrial cancer development by regulating KLF5 and RXFP1 gene expressions. Cancer Biother Radiopharm. 36:521–533. 2021.PubMed/NCBI

82 

Wang ZL, Wang C, Liu W and Ai ZL: Emerging roles of the long non-coding RNA 01296/microRNA-143-3p/MSI2 axis in development of thyroid cancer. Biosci Rep. 39:BSR201823762019. View Article : Google Scholar : PubMed/NCBI

83 

Zhang F and Cao H: MicroRNA-143-3p suppresses cell growth and invasion in laryngeal squamous cell carcinoma via targeting the k-Ras/Raf/MEK/ERK signaling pathway. Int J Oncol. 54:689–701. 2019.PubMed/NCBI

84 

Han L, Tang M, Xu X, Jiang B, Wei Y, Qian H and Lu X: MiR-143-3p suppresses cell proliferation, migration, and invasion by targeting melanoma-associated antigen A9 in laryngeal squamous cell carcinoma. J Cell Biochem. 120:1245–1257. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Qian Y, Teng Y, Li Y, Lin X, Guan M, Li Y, Cao X and Gao Y: MiR-143-3p suppresses the progression of nasal squamous cell carcinoma by targeting Bcl-2 and IGF1R. Biochem Biophys Res Commun. 518:492–499. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Chen J and Chen X: MYBL2 is targeted by miR-143-3p and regulates breast cancer cell proliferation and apoptosis. Oncol Res. 26:913–922. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Xia C, Yang Y, Kong F, Kong Q and Shan C: MiR-143-3p inhibits the proliferation, cell migration and invasion of human breast cancer cells by modulating the expression of MAPK7. Biochimie. 147:98–104. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Li D, Hu J, Song H, Xu H, Wu C, Zhao B, Xie D, Wu T, Zhao J and Fang L: miR-143-3p targeting LIM domain kinase 1 suppresses the progression of triple-negative breast cancer cells. Am J Transl Res. 9:2276–2285. 2017.PubMed/NCBI

89 

Cui Y, Fan Y, Zhao G, Zhang Q, Bao Y, Cui Y, Ye Z, Chen G, Piao X, Guo F, et al: Novel lncRNA PSMG3-AS1 functions as a miR-143-3p sponge to increase the proliferation and migration of breast cancer cells. Oncol Rep. 43:229–239. 2020.PubMed/NCBI

90 

Li GH, Yu JH, Yang B, Gong FC and Zhang KW: LncRNA LOXL1-AS1 inhibited cell proliferation, migration and invasion as well as induced apoptosis in breast cancer via regulating miR-143-3p. Eur Rev Med Pharmacol Sci. 23:10400–10409. 2019.PubMed/NCBI

91 

Zhu J, Xiang XL, Cai P, Jiang YL, Zhu ZW, Hu FL and Wang J: CircRNA-ACAP2 contributes to the invasion, migration, and anti-apoptosis of neuroblastoma cells through targeting the miRNA-143-3p-hexokinase 2 axis. Transl Pediatr. 10:3237–3247. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Xu D, Jiang J, He G, Zhou H and Ji C: miR-143-3p represses leukemia cell proliferation by inhibiting KAT6A expression. Anticancer Drugs. 33:e662–e669. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Hou Y, Feng H, Jiao J, Qian L, Sun B, Chen P, Li Q and Liang Z: Mechanism of miR-143-3p inhibiting proliferation, migration and invasion of osteosarcoma cells by targeting MAPK7. Artif Cells Nanomed Biotechnol. 47:2065–2071. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Sun X, Dai G, Yu L, Hu Q, Chen J and Guo W: miR-143-3p inhibits the proliferation, migration and invasion in osteosarcoma by targeting FOSL2. Sci Rep. 8:6062018. View Article : Google Scholar : PubMed/NCBI

95 

Wu K, Feng Q, Li L, Xiong Y, Liu S, Liu J and Wu Q: Long-noncoding RNA PCAT6 aggravates osteosarcoma tumourigenesis via the MiR-143-3p/ZEB1 axis. Onco Targets Ther. 13:8705–8714. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Tian S, Han G, Lu L and Meng X: Circ-FOXM1 contributes to cell proliferation, invasion, and glycolysis and represses apoptosis in melanoma by regulating miR-143-3p/FLOT2 axis. World J Surg Oncol. 18:562020. View Article : Google Scholar : PubMed/NCBI

97 

Duan Q, Xu M, Wu M, Zhang X, Gan M and Jiang H: Long noncoding RNA UCA1 promotes cell growth, migration, and invasion by targeting miR-143-3p in oral squamous cell carcinoma. Cancer Med. 9:3115–3129. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Wang S, Li W, Yang L, Yuan J, Wang L, Li N and Zhao H: CircPVT1 facilitates the progression of oral squamous cell carcinoma by regulating miR-143-3p/SLC7A11 axis through MAPK signaling pathway. Funct Integr Genomics. 22:891–903. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Yu L, Shao X, Huo L and Zhang T: Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes cell proliferation and migration by regulating miR-143-3p and MAGE family member A9 (MAGEA9) in oral squamous cell carcinoma. Med Sci Monit. 26:e9241872020. View Article : Google Scholar : PubMed/NCBI

100 

Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI

101 

Abdelhamed S, Ogura K, Yokoyama S, Saiki I and Hayakawa Y: AKT-STAT3 pathway as a downstream target of EGFR signaling to regulate PD-L1 expression on NSCLC cells. J Cancer. 7:1579–1586. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Mei J, Zhu C, Pan L and Li M: MACC1 regulates the AKT/STAT3 signaling pathway to induce migration, invasion, cancer stemness, and suppress apoptosis in cervical cancer cells. Bioengineered. 13:61–70. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Zhao J and Luo Z: Discovery of raf family is a milestone in deciphering the ras-mediated intracellular signaling pathway. Int J Mol Sci. 23:51582022. View Article : Google Scholar : PubMed/NCBI

104 

Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N and Pegtel DM: Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 6:1272015. View Article : Google Scholar : PubMed/NCBI

105 

Lin Z, Wu Y, Xu Y, Li G, Li Z and Liu T: Mesenchymal stem cell-derived exosomes in cancer therapy resistance: Recent advances and therapeutic potential. Mol Cancer. 21:1792022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu J, Zhu Y, Liu D, Cong Q and Bai C: Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review). Oncol Rep 52: 113, 2024.
APA
Wu, J., Zhu, Y., Liu, D., Cong, Q., & Bai, C. (2024). Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review). Oncology Reports, 52, 113. https://doi.org/10.3892/or.2024.8772
MLA
Wu, J., Zhu, Y., Liu, D., Cong, Q., Bai, C."Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review)". Oncology Reports 52.3 (2024): 113.
Chicago
Wu, J., Zhu, Y., Liu, D., Cong, Q., Bai, C."Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review)". Oncology Reports 52, no. 3 (2024): 113. https://doi.org/10.3892/or.2024.8772
Copy and paste a formatted citation
x
Spandidos Publications style
Wu J, Zhu Y, Liu D, Cong Q and Bai C: Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review). Oncol Rep 52: 113, 2024.
APA
Wu, J., Zhu, Y., Liu, D., Cong, Q., & Bai, C. (2024). Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review). Oncology Reports, 52, 113. https://doi.org/10.3892/or.2024.8772
MLA
Wu, J., Zhu, Y., Liu, D., Cong, Q., Bai, C."Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review)". Oncology Reports 52.3 (2024): 113.
Chicago
Wu, J., Zhu, Y., Liu, D., Cong, Q., Bai, C."Biological functions and potential mechanisms of miR‑143‑3p in cancers (Review)". Oncology Reports 52, no. 3 (2024): 113. https://doi.org/10.3892/or.2024.8772
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team