|
1
|
de Visser KE and Joyce JA: The evolving
tumor microenvironment: From cancer initiation to metastatic
outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Feinberg AP and Levchenko A: Epigenetics
as a mediator of plasticity in cancer. Science. 379:eaaw38352023.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wang X, Chen G, Zhang Y, Ghareeb WM, Yu Q,
Zhu H, Lu X, Huang Y, Huang S, Hou D and Chi P: The impact of
circumferential tumour location on the clinical outcome of rectal
cancer patients managed with neoadjuvant chemoradiotherapy followed
by total mesorectal excision. Eur J Surg Oncol. 46:1118–1123. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Diori Karidio I and Sanlier SH: Reviewing
cancer's biology: An eclectic approach. J Egypt Natl Canc Inst.
33:322021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zeng Q and Jiang T: The role of FHL1 in
tumors. Gene. 11:1483472024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dietlein F, Wang AB, Fagre C, Tang A,
Besselink NJM, Cuppen E, Li C, Sunyaev SR, Neal JT and Van Allen
EM: Genome-wide analysis of somatic noncoding mutation patterns in
cancer. Science. 376:eabg56012022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lou Z, Gong YQ, Zhou X and Hu GH: Low
expression of miR-199 in hepatocellular carcinoma contributes to
tumor cell hyper-proliferation by negatively suppressing XBP1.
Oncol Lett. 16:6531–6539. 2018.PubMed/NCBI
|
|
8
|
Li L, Wang S and Zhou W: Balance cell
apoptosis and pyroptosis of caspase-3-activating chemotherapy for
better antitumor therapy. Cancers (Basel). 15:262022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Du TT, Dewey JB, Wagner EL, Cui R, Heo J,
Park JJ, Francis SP, Perez-Reyes E, Guillot SJ, Sherman NE, et al:
LMO7 deficiency reveals the significance of the cuticular plate for
hearing function. Nat Commun. 10:11172019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Huang W, Xu Q, Su J, Tang L, Hao ZZ, Xu C,
Liu R, Shen Y, Sang X, Xu N, et al: Linking transcriptomes with
morphological and functional phenotypes in mammalian retinal
ganglion cells. Cell Rep. 40:1113222022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mull A, Kim G and Holaska JM: LMO7-null
mice exhibit phenotypes consistent with emery-dreifuss muscular
dystrophy. Muscle Nerve. 51:222–228. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Possidonio AC, Soares CP, Fontenele M,
Morris ER, Mouly V, Costa ML and Mermelstein C: Knockdown of Lmo7
inhibits chick myogenesis. FEBS Lett. 590:317–329. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gomes G, do Amaral MJ, Bagri KM,
Vasconcellos LM, Almeida MDS, Alvares LE and Mermelstein C: New
findings on LMO7 transcripts, proteins and regulatory regions in
human and vertebrate model organisms and the intracellular
distribution in skeletal muscle cells. Int J Mol Sci. 22:128852021.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
She M, Tang M, Jiang T and Zeng Q: The
roles of the LIM domain proteins in Drosophila cardiac and
hematopoietic morphogenesis. Front Cardiovasc Med. 8:6168512021.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
She M, Zhang J, Jiang T, Zhang Y, Liu Y,
Tang M and Zeng Q: The function of Lmpt in Drosophila heart
tissue. Biochem Biophys Res Commun. 612:15–21. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang J, She M, Dai Y, Nie X, Tang M and
Zeng Q: Lmpt regulates the function of Drosophila muscle by
acting as a repressor of Wnt signaling. Gene. 876:1475142023.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sánta A, Czajlik A, Batta G, Péterfia B
and Gáspári Z: Resonance assignment of the Shank1 PDZ domain.
Biomol NMR Assign. 16:121–127. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mieszczanek J, Strutt H, Rutherford TJ,
Strutt D, Bienz M and Gammons MV: Selective function of the PDZ
domain of Dishevelled in noncanonical Wnt signalling. J Cell Sci.
135:jcs2595472022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Palani S, Ghosh S, Ivorra-Molla E, Clarke
S, Suchenko A, Balasubramanian MK and Köster DV: Calponin-homology
domain mediated bending of membrane-associated actin filaments.
Elife. 10:e610782021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mei L, Reynolds MJ, Garbett D, Gong R,
Meyer T and Alushin GM: Structural mechanism for bidirectional
actin cross-linking by T-plastin. Proc Natl Acad Sci USA.
119:e22053701192022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ecke M, Prassler J and Gerisch G:
Expanding ring-shaped cleavage furrows in multinucleate cells. Mol
Biol Cell. 34:ar272023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cuadrado M and Robles-Valero J: VAV
proteins as double agents in cancer: Oncogenes with tumor
suppressor roles. Biology (Basel). 10:8882021.PubMed/NCBI
|
|
23
|
Guérin A, Roy NH, Kugler EM, Berry L,
Burkhardt JK, Shin JB and Striepen B: Cryptosporidium rhoptry
effector protein ROP1 injected during invasion targets the host
cytoskeletal modulator LMO7. Cell Host Microbe. 29:1407–1420.e5.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li M, An Z, Tang Q, Ma Y, Yan J, Chen S
and Wang Y: Mixed responses to first-line alectinib in non-small
cell lung cancer patients with rare ALK gene fusions: A case series
and literature review. J Cell Mol Med. 25:9476–9481. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hariyanto NI, Yo EC and Wanandi SI:
Regulation and signaling of TGF-β autoinduction. Int J Mol Cell
Med. 10:234–247. 2021.PubMed/NCBI
|
|
26
|
Perou CM, Sørlie T, Eisen MB, van de Rijn
M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA,
et al: Molecular portraits of human breast tumours. Nature.
406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xia H, Chen D, Wu Q, Wu G, Zhou Y, Zhang Y
and Zhang L: CELF1 preferentially binds to exon-intron boundary and
regulates alternative splicing in HeLa cells. Biochim Biophys Acta
Gene Regul Mech. 1860:911–921. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45((W1)):
W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Miano JM, Long X and Fujiwara K: Serum
response factor: Master regulator of the actin cytoskeleton and
contractile apparatus. Am J Physiol Cell Physiol. 292:C70–C81.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Medjkane S, Perez-Sanchez C, Gaggioli C,
Sahai E and Treisman R: Myocardin-related transcription factors and
SRF are required for cytoskeletal dynamics and experimental
metastasis. Nat Cell Biol. 11:257–268. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pomiès P, Pashmforoush M, Vegezzi C, Chien
KR, Auffray C and Beckerle MC: The cytoskeleton-associated PDZ-LIM
protein, ALP, acts on serum response factor activity to regulate
muscle differentiation. Mol Biol Cell. 18:1723–1733. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kim D, Jung SH and Chung YJ: Development
of an RNA sequencing panel to detect gene fusions in thyroid
cancer. Genomics Inform. 19:e412021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
He H, Li W, Yan P, Bundschuh R, Killian
JA, Labanowska J, Brock P, Shen R, Heerema NA and de la Chapelle A:
Identification of a recurrent LMO7-BRAF fusion in papillary thyroid
carcinoma. Thyroid. 28:748–754. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Oyinlade O, Wei S, Kammers K, Liu S, Wang
S, Ma D, Huang ZY, Qian J, Zhu H, Wan J and Xia S: Analysis of KLF4
regulated genes in cancer cells reveals a role of DNA methylation
in promoter-enhancer interactions. Epigenetics. 13:751–768. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tanaka-Okamoto M, Hori K, Ishizaki H,
Hosoi A, Itoh Y, Wei M, Wanibuchi H, Mizoguchi A, Nakamura H and
Miyoshi J: Increased susceptibility to spontaneous lung cancer in
mice lacking LIM-domain only 7. Cancer Sci. 100:608–616. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nakamura H, Hori K, Tanaka-Okamoto M,
Higashiyama M, Itoh Y, Inoue M, Morinaka S and Miyoshi J: Decreased
expression of LMO7 and its clinicopathological significance in
human lung adenocarcinoma. Exp Ther Med. 2:1053–1057. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Karlsson T, Kvarnbrink S, Holmlund C,
Botling J, Micke P, Henriksson R, Johansson M and Hedman H: LMO7
and LIMCH1 interact with LRIG proteins in lung cancer, with
prognostic implications for early-stage disease. Lung Cancer.
125:174–184. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wu H, Zhou J, Mei S, Wu D, Mu Z, Chen B,
Xie Y, Ye Y and Liu J: Circulating exosomal microRNA-96 promotes
cell proliferation, migration and drug resistance by targeting
LMO7. J Cell Mol Med. 21:1228–1236. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ren B, Cui M, Yang G, Wang H, Feng M, You
L and Zhao Y: Tumor microenvironment participates in metastasis of
pancreatic cancer. Mol Cancer. 17:1082018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bayard Q, Caruso S, Couchy G, Rebouissou
S, Bioulac Sage P, Balabaud C, Paradis V, Sturm N, de Muret A,
Guettier C, et al: Recurrent chromosomal rearrangements of ROS1,
FRK and IL6 activating JAK/STAT pathway in inflammatory
hepatocellular adenomas. Gut. 69:1667–1676. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu X, Yuan H, Zhou J, Wang Q, Qi X,
Bernal C, Avella D, Kaifi JT, Kimchi ET, Timothy P, et al: LMO7 as
an unrecognized factor promoting pancreatic cancer progression and
metastasis. Front Cell Dev Biol. 9:6473872021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Davuluri RV, Suzuki Y, Sugano S, Plass C
and Huang TH: The functional consequences of alternative promoter
use in mammalian genomes. Trends Genet. 24:167–177. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Inchingolo MA, Diman A, Adamczewski M,
Humphreys T, Jaquier-Gubler P and Curran JA: TP53BP1, a dual-coding
gene, uses promoter switching and translational reinitiation to
express a smORF protein. iScience. 26:1067572023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Thorsen K, Schepeler T, Øster B, Rasmussen
MH, Vang S, Wang K, Hansen KQ, Lamy P, Pedersen JS, Eller A, et al:
Tumor-specific usage of alternative transcription start sites in
colorectal cancer identified by genome-wide exon array analysis.
BMC Genomics. 12:5052011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Furuya M, Tsuji N, Endoh T, Moriai R,
Kobayashi D, Yagihashi A and Watanabe N: A novel gene containing
PDZ and LIM domains, PCD1, is overexpressed in human colorectal
cancer. Anticancer Res. 22:4183–4186. 2002.PubMed/NCBI
|
|
46
|
Kang S, Xu H, Duan X, Liu JJ, He Z, Yu F,
Zhou S, Meng XQ, Cao M and Kennedy GC: PCD1, a novel gene
containing PDZ and LIM domains, is overexpressed in several human
cancers. Cancer Res. 60:5296–5302. 2000.PubMed/NCBI
|
|
47
|
Jiang ZR, Yang LH, Jin LZ, Yi LM, Bing PP,
Zhou J and Yang JS: Identification of novel cuproptosis-related
lncRNA signatures to predict the prognosis and immune
microenvironment of breast cancer patients. Front Oncol.
12:9886802022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bao Z, Zeng W, Zhang D, Wang L, Deng X,
Lai J, Li J, Gong J and Xiang G: SNAIL induces EMT and lung
metastasis of tumours secreting CXCL2 to promote the invasion of
M2-type immunosuppressed macrophages in colorectal cancer. Int J
Biol Sci. 18:2867–2881. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen J, Chen L, Hua J and Song W:
Long-term dynamic compression enhancement TGF-β3-induced
chondrogenesis in bovine stem cells: A gene expression analysis.
BMC Genom Data. 22:132021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hu Q, Guo C, Li Y, Aronow BJ and Zhang J:
LMO7 mediates cell-specific activation of the Rho-myocardin-related
transcription factor-serum response factor pathway and plays an
important role in breast cancer cell migration. Mol Cell Biol.
31:3223–3240. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sun L, Zhang H and Gao P: Metabolic
reprogramming and epigenetic modifications on the path to cancer.
Protein Cell. 13:877–919. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
He B, Dai C, Lang J, Bing P, Tian G, Wang
B and Yang J: A machine learning framework to trace tumor
tissue-of-origin of 13 types of cancer based on DNA somatic
mutation. Biochim Biophys Acta Mol Basis Dis. 1866:1659162020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xie Y, Ostriker AC, Jin Y, Hu H, Sizer AJ,
Peng G, Morris AH, Ryu C, Herzog EL, Kyriakides T, et al: LMO7 is a
negative feedback regulator of transforming growth factor β
signaling and fibrosis. Circulation. 139:679–693. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kim M and Moon A: A curcumin analog CA-5f
inhibits urokinase-type plasminogen activator and invasive
phenotype of triple-negative breast cancer cells. Toxicol Res.
38:19–26. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang L, Qiang P, Yu J, Miao Y, Chen Z, Qu
J, Zhao Q, Chen Z, Liu Y, Yao X, et al: Identification of compound
CA-5f as a novel late-stage autophagy inhibitor with potent
anti-tumor effect against non-small cell lung cancer. Autophagy.
15:391–406. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chen ZK, Chen DZ, Cai C, Jin LL, Xu J, Tu
YL, Huang XZ, Xu JL, Chen MZ, Xue FB, et al: BMSCs attenuate
hepatic fibrosis in autoimmune hepatitis through regulation of
LMO7-AP1-TGFβ signaling pathway. Eur Rev Med Pharmacol Sci.
25:1600–1611. 2021.PubMed/NCBI
|
|
57
|
Lim JW, Kim H and Kim KH: Cell
adhesion-related gene expression by Helicobacter pylori in
gastric epithelial AGS cells. Int J Biochem Cell Biol.
35:1284–1296. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Y, Liu Q, Cui M, Wang M, Hua S, Gao
J and Liao Q: Comprehensive analysis of expression, prognostic
value, and immune infiltration for ubiquitination-related FBXOs in
pancreatic ductal adenocarcinoma. Front Immunol. 12:7744352022.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Stefansson K, Oda H, Öfverman C, Lundin E,
Hedman H and Lindquist D: LRIG1-2 and LMO7 immunoreactivity in
vulvar squamous cell carcinoma: Association with prognosis in
relation to HPV-DNA and p16INK4a status. Oncol Rep. 42:142–150.
2019.PubMed/NCBI
|
|
60
|
Zheng H, Li BH, Liu C, Jia L and Liu FT:
Comprehensive analysis of lncRNA-mediated ceRNA crosstalk and
identification of prognostic biomarkers in Wilms' tumor. Biomed Res
Int. 2020:49516922020.PubMed/NCBI
|
|
61
|
A J, Zhang B, Zhang Z, Hu H and Dong JT:
Novel gene signatures predictive of patient recurrence-free
survival and castration resistance in prostate cancer. Cancers
(Basel). 13:9172021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mao X, Chen Y, Lu X, Jin S, Jiang P, Deng
Z, Zhu X, Cai Q, Wu C and Kang S: Tissue resident memory T cells
are enriched and dysfunctional in effusion of patients with
malignant tumor. J Cancer. 14:1223–1231. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Huang A and Zhou W: Mn-based cGAS-STING
activation for tumor therapy. Chin J Cancer Res. 35:19–43. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Feng S, Song G, Liu L, Liu W, Liang G and
Song Z: Allergen-specific immunotherapy induces monocyte-derived
dendritic cells but attenuates their maturation and cytokine
production in the lesional skin of an atopic dermatitis mouse
model. J Dermatol. 49:1310–1319. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Guo Z, Wang YJ, He BS and Zhou J:
Linc00312 single nucleotide polymorphism as biomarker for
chemoradiotherapy induced hematotoxicity in nasopharyngeal
carcinoma patients. Dis Markers. 2022:67078212022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang X, Yang T, Shi S, Xu C, Wang F, Dai
D, Guan G, Zhang Y, Wang S, Wang J, et al: Heterogeneity-induced
NGF-NGFR communication inefficiency promotes mitotic spindle
disorganization in exhausted T cells through PREX1 suppression to
impair the anti-tumor immunotherapy with PD-1 mAb in hepatocellular
carcinoma. Cancer Med. 13:e67362024. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fu S, Duan L, Zhong Y and Zeng Y:
Comparison of surgical excision followed by adjuvant radiotherapy
and laser combined with steroids for the treatment of keloids: A
systematic review and meta-analysis. Int Wound J. 21:e144492023.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lee B, Lee S, Lee Y, Park Y and Shim J:
Emerin represses STAT3 signaling through nuclear membrane-based
spatial control. Int J Mol Sci. 22:66692021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wu KY, Xie H, Zhang ZL, Li ZX, Shi L, Zhou
W, Zeng J, Tian Z, Zhang Y, Ding YB and Shen WG: Emerin knockdown
induces the migration and invasion of hepatocellular carcinoma
cells by up-regulating the cytoplasmic p21. Neoplasma. 69:59–70.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Awotoye W, Mossey PA, Hetmanski JB, Gowans
LJJ, Eshete MA, Adeyemo WL, Alade A, Zeng E, Adamson O, James O, et
al: Damaging mutations in AFDN contribute to risk of nonsyndromic
cleft lip with or without cleft palate. Cleft Palate Craniofac J.
61:697–705. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Berg HE, Greipp PT, Baughn LB, Falcon CP,
Jackson CC and Peterson JF: Detection of a cryptic KMT2A/AFDN gene
fusion [ins(6;11)(q27;q23q23)] in a pediatric patient with newly
diagnosed acute myeloid leukemia. Lab Med. 53:e95–e99. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bill M, Mrózek K, Kohlschmidt J, Eisfeld
AK, Walker CJ, Nicolet D, Papaioannou D, Blachly JS, Orwick S,
Carroll AJ, et al: Mutational landscape and clinical outcome of
patients with de novo acute myeloid leukemia and rearrangements
involving 11q23/KMT2A. Proc Natl Acad Sci USA. 117:26340–26346.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chen Q, Zhou XW, Zhang AJ and He K: ACTN1
supports tumor growth by inhibiting Hippo signaling in
hepatocellular carcinoma. J Exp Clin Cancer Res. 40:232021.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang R, Gao Y and Zhang H: ACTN1 interacts
with ITGA5 to promote cell proliferation, invasion and
epithelial-mesenchymal transformation in head and neck squamous
cell carcinoma. Iran J Basic Med Sci. 26:200–207. 2023.PubMed/NCBI
|
|
77
|
Chen Q, Wang H, Li Z, Li F, Liang L, Zou
Y, Shen H, Li J, Xia Y, Cheng Z, et al: Circular RNA ACTN4 promotes
intrahepatic cholangiocarcinoma progression by recruiting YBX1 to
initiate FZD7 transcription. J Hepatol. 76:135–147. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tentler D, Lomert E, Novitskaya K and
Barlev NA: Role of ACTN4 in tumorigenesis, metastasis, and EMT.
Cells. 8:14272019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Singla A, Chen Q, Suzuki K, Song J,
Fedoseienko A, Wijers M, Lopez A, Billadeau DD, van de Sluis B and
Burstein E: Regulation of murine copper homeostasis by members of
the COMMD protein family. Dis Model Mech. 14:dmm0459632021.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Iwuchukwu I, Nguyen D, Beavers M, Tran V,
Sulaiman W, Fannin E, Lasseigne L, Ramsay E, Wilson J and Bazan NG:
MicroRNA regulatory network as biomarkers of late seizure in
patients with spontaneous intracerebral hemorrhage. Mol Neurobiol.
57:2346–2357. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Neveu B, Richer C, Cassart P, Caron M,
Jimenez-Cortes C, St-Onge P, Fuchs C, Garnier N, Gobeil S and
Sinnett D: Identification of new ETV6 modulators through a
high-throughput functional screening. iScience. 25:1038582022.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
da Silva AN, Ibelli AMG, Savoldi IR,
Cantão ME, Zanella EL, Marques MG, da Silva MVGB, de Peixoto JO,
Ledur MC, Lopes JS, et al: Whole-exome sequencing indicated new
candidate genes associated with unilateral cryptorchidism in pigs.
Sex Dev. 17:56–66. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Barcelo J and Sanz-Moreno V: NECTIN1 is a
melanoma metastasis suppressor gene. Nat Genet. 54:1776–1777. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ablain J, Al Mahi A, Rothschild H, Prasad
M, Aires S, Yang S, Dokukin ME, Xu S, Dang M, Sokolov I, et al:
Loss of NECTIN1 triggers melanoma dissemination upon local IGF1
depletion. Nat Genet. 54:1839–1852. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ho DW, Tsui YM, Chan LK, Sze KM, Zhang X,
Cheu JW, Chiu YT, Lee JM, Chan AC, Cheung ET, et al: Single-cell
RNA sequencing shows the immunosuppressive landscape and tumor
heterogeneity of HBV-associated hepatocellular carcinoma. Nat
Commun. 12:36842021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang S, Jiang C, Su Y, Gui J, Yue Z, Jian
B, He S and Ma X: Nectin2 influences cell apoptosis by regulating
ANXA2 expression in neuroblastoma. Acta Biochim Biophys Sin
(Shanghai). 55:356–366. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bhave S, Guyer RA, Picard N, Omer M, Hotta
R and Goldstein AM: Ednrb−/− mice with hirschsprung
disease are missing Gad2-expressing enteric neurons in the
ganglionated small intestine. Front Cell Dev Biol. 10:9172432022.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zheng Z, Gao M, Tang C, Huang L, Gong Y,
Liu Y and Wang J: E. coli JM83 damages the mucosal barrier
in Ednrb knockout mice to promote the development of
Hirschsprung-associated enterocolitis via activation of
TLR4/p-p38/NF-κB signaling. Mol Med Rep. 25:1682022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Geng B, Wang X, Park KH, Lee KE, Kim J,
Chen P, Zhou X, Tan T, Yang C, Zou X, et al: UCHL1 protects against
ischemic heart injury via activating HIF-1α signal pathway. Redox
Biol. 52:1022952022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mondal M, Conole D, Nautiyal J and Tate
EW: UCHL1 as a novel target in breast cancer: Emerging insights
from cell and chemical biology. Br J Cancer. 126:24–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tang J, Yang Q, Mao C, Xiao D, Liu S, Xiao
L, Zhou L, Wu G and Tao Y: The deubiquitinating enzyme UCHL3
promotes anaplastic thyroid cancer progression and metastasis
through Hippo signaling pathway. Cell Death Differ. 30:1247–1259.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
He R, Zhou Y, Liu J, Zhang X, Zhao X, An
L, Li Z and Cheng F: UCHL3 plays an important role in the
occurrence and development of melanoma. Oncol Lett. 22:7562021.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Thompson LL, Rutherford KA, Lepage CC and
McManus KJ: Aberrant SKP1 expression: Diverse mechanisms impacting
genome and chromosome stability. Front Cell Dev Biol.
10:8595822022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Biryukov M, Dmitrieva A, Vavilova V,
Ustyantsev K, Bazarova E, Sukhikh I, Berezikov E and Blinov A:
Mlig-SKP1 gene is required for spermatogenesis in the flatworm
macrostomum lignano. Int J Mol Sci. 23:151102022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Engeland K: Cell cycle regulation:
p53-p21-RB signaling. Cell Death Differ. 29:946–960. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Salaroglio IC, Belisario DC, Bironzo P,
Ananthanarayanan P, Ricci L, Digiovanni S, Fontana S, Napoli F,
Sandri A, Facolmatà C, et al: SKP2 drives the sensitivity to
neddylation inhibitors and cisplatin in malignant pleural
mesothelioma. J Exp Clin Cancer Res. 41:752022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Surka C, Jin L, Mbong N, Lu CC, Jang IS,
Rychak E, Mendy D, Clayton T, Tindall E, Hsu C, et al: CC-90009, a
novel cereblon E3 ligase modulator, targets acute myeloid leukemia
blasts and leukemia stem cells. Blood. 137:661–677. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jia L and Sun Y: RBX1/ROC1-SCF E3
ubiquitin ligase is required for mouse embryogenesis and cancer
cell survival. Cell Div. 4:162009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Bays JL and DeMali KA: Vinculin in
cell-cell and cell-matrix adhesions. Cell Mol Life Sci.
74:2999–3009. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shih YT, Wei SY, Chen JH, Wang WL, Wu HY,
Wang MC, Lin CY, Lee PL, Lin CY, Chiang HC, et al: Vinculin
phosphorylation impairs vascular endothelial junctions promoting
atherosclerosis. Eur Heart J. 44:304–318. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yang W, Li J, Zhang M, Yu H, Zhuang Y,
Zhao L, Ren L, Gong J, Bi H, Zeng L, et al: Elevated expression of
the rhythm gene NFIL3 promotes the progression of TNBC by
activating NF-κB signaling through suppression of NFKBIA
transcription. J Exp Clin Cancer Res. 41:672022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Sarkozy C, Hung SS, Chavez EA, Duns G,
Takata K, Chong LC, Aoki T, Jiang A, Miyata-Takata T, Telenius A,
et al: Mutational landscape of gray zone lymphoma. Blood.
137:1765–1776. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Qie S: The E3 ubiquitin ligase fbxo4
functions as a tumor suppressor: Its biological importance and
therapeutic perspectives. Cancers (Basel). 14:21332022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mucha B, Qie S, Bajpai S, Tarallo V, Diehl
JN, Tedeschi F, Zhou G, Gao Z, Flashner S, Klein-Szanto AJ, et al:
Tumor suppressor mediated ubiquitylation of hnRNPK is a barrier to
oncogenic translation. Nat Commun. 13:66142022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang L, Piao Y, Zhang D, Feng W, Wang C,
Cui X, Ren Q, Zhu X and Zheng G: Fbxw11 impairs the repopulation
capacity of hematopoietic stem/progenitor cells. Stem Cell Res
Ther. 13:2452022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chen C, Zhou H, Zhang X, Liu Z and Ma X:
Association of FBXW11 levels with tumor development and prognosis
in chondrosarcoma. Cancer Biomark. 35:429–437. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zou C, Chen Y, Smith RM, Snavely C, Li J,
Coon TA, Chen BB, Zhao Y and Mallampalli RK: SCF(Fbxw15) mediates
histone acetyltransferase binding to origin recognition complex
(HBO1) ubiquitin-proteasomal degradation to regulate cell
proliferation. J Biol Chem. 288:6306–6316. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
De La Chesnaye E, Méndez JP, López-Romero
R, De Los Angeles Romero-Tlalolini M, Vergara MD, Salcedo M and
Ojeda SR: FBXW12, a novel F box protein-encoding gene, is deleted
or methylated in some cases of epithelial ovarian cancer. Int J
Clin Exp Pathol. 8:10192–10203. 2015.PubMed/NCBI
|
|
109
|
Zhang J, Gan Y, Li H, Yin J, He X, Lin L,
Xu S, Fang Z, Kim BW, Gao L, et al: Inhibition of the CDK2 and
cyclin A complex leads to autophagic degradation of CDK2 in cancer
cells. Nat Commun. 13:28352022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Arora M, Moser J, Hoffman TE, Watts LP,
Min M, Musteanu M, Rong Y, Ill CR, Nangia V, Schneider J, et al:
Rapid adaptation to CDK2 inhibition exposes intrinsic cell-cycle
plasticity. Cell. 186:2628–2643.e21. 2023. View Article : Google Scholar : PubMed/NCBI
|