Natural products targeting ferroptosis pathways in cancer therapy (Review)
- Authors:
- Xin Na
- Lin Li
- Dongmei Liu
- Jiaqi He
- Ling Zhang
- Yiping Zhou
-
Affiliations: School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Yunnan Cancer Hospital (Third Affiliated Hospital of Kunming Medical University), Kunming, Yunnan 650118, P.R. China, The First Clinical Medical College of Kunming Medical University, Kunming, Yunnan 650500, P.R. China - Published online on: July 23, 2024 https://doi.org/10.3892/or.2024.8782
- Article Number: 123
-
Copyright: © Na et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ge C, Zhang S, Mu H, Zheng S, Tan Z, Huang X, Xu C, Zou J, Zhu Y, Feng D and Aa J: Emerging mechanisms and disease implications of ferroptosis: Potential applications of natural products. Front Cell Dev Biol. 9:7749572022. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Jiang X and Gu W: Emerging mechanisms and disesase relevance of ferroptosis. Trends Cell Biol. 30:478–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, et al: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 172:409–422.e21. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li L, Sun S, Tan L, Wang Y, Wang L, Zhang Z and Zhang L: Polystyrene nanoparticles reduced ROS and inhibited ferroptosis by triggering lysosome stress and TFEB nucleus translocation in a size-dependent manner. Nano Lett. 19:7781–7792. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park E and Chung SW: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 10:8222019. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen ZN and Jiang X: Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 572:402–406. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Liu Y, Wu X and Chen Y: Artesunate induces ferroptosis by inhibiting the nuclear localization of SREBP2 in myeloma cells. Int J Med Sci. 20:1535–1550. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Gao L, Xie T, Li J, Zhai T and Xu Y: Identification and validation of a prognostic signature for prostate cancer based on ferroptosis-related genes. Front Oncol. 11:6233132021. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Hu X, Yao Y, Wu L, Sheng C, Chen K and Liu B: Characterization of two ferroptosis subtypes with distinct immune infiltration and gender difference in gastric cancer. Front Nutr. 8:7561932021. View Article : Google Scholar : PubMed/NCBI | |
Tang B, Zhu J, Li J, Fan K, Gao Y, Cheng S, Kong C, Zheng L, Wu F, Weng Q, et al: The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma. Cell Commun Signal. 18:1742020. View Article : Google Scholar : PubMed/NCBI | |
Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, et al: Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30:3411–3423.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yanatori I and Kishi F: DMT1 and iron transport. Free Radic Biol Med. 133:55–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mumbauer S, Pascual J, Kolotuev I and Hamaratoglu F: Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet. 15:e10083962019. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Monian P, Pan Q, Zhang W, Xiang J and Jiang X: Ferroptosis is an autophagic cell death process. Cell Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Li X, Zhang R, Liu S, Xiang Y, Zhang M, Chen X, Pan T, Yan L, Feng J, et al: Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics. 10:5107–5119. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Guo N, Yang T, Yan J, Wang W and Li X: The potential mechanisms by which artemisinin and its derivatives induce ferroptosis in the treatment of cancer. Oxid Med Cell Longev. 2022:14581432022. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, et al: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 547:453–457. 2017. View Article : Google Scholar : PubMed/NCBI | |
Conrad M and Pratt DA: The chemical basis of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, et al: Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem. 280:37423–37429. 2005. View Article : Google Scholar : PubMed/NCBI | |
Robert SM, Buckingham SC, Campbell SL, Robel S, Holt KT, Ogunrinu-Babarinde T, Warren PP, White DM, Reid MA, Eschbacher JM, et al: SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci Transl Med. 7:289ra862015. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nie Z, Chen M, Gao Y, Huang D, Cao H, Peng Y, Guo N, Wang F and Zhang S: Ferroptosis and tumor drug resistance: Current status and major challenges. Front Pharmacol. 13:8793172022. View Article : Google Scholar : PubMed/NCBI | |
Kuang F, Liu J, Xie Y, Tang D and Kang R: MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol. 28:765–775.e5. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stefely JA and Pagliarini DJ: Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem Sci. 42:824–843. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
Manogaran P, Beeraka NM, Paulraj RS, Sathiyachandran P and Thammaiappa M: Impediment of cancer by dietary plant-derived alkaloids through oxidative stress: Implications of PI3K/AKT pathway in apoptosis, autophagy, and ferroptosis. Curr Top Med Chem. 23:860–877. 2023. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L and Zhou J: Hippo pathway in intestinal diseases: Focusing on ferroptosis. Front Cell Dev Biol. 11:12916862023. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Zhong M, Liu Y, Xiong Y, Gao Z, Ma J, Zhuang G and Hong X: Application of natural products for inducing ferroptosis in tumor cells. Biotechnol Appl Biochem. 69:190–197. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Zeng GZ, Yin JL and Bian ZX: Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's lymphoma. Biochem Biophys Res Commun. 519:533–539. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang Z, Wang M, Cao X, Qi J, Wang D, Gong A and Zhu H: Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells. Drug Des Devel Ther. 13:2135–2144. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li ZJ, Dai HQ, Huang XW, Feng J, Deng JH, Wang ZX, Yang XM, Liu YJ, Wu Y, Chen PH, et al: Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin. 42:301–310. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roh JL, Kim EH, Jang H and Shin D: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11:254–262. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vakhrusheva O, Erb HHH, Bräunig V, Markowitsch SD, Schupp P, Baer PC, Slade KS, Thomas A, Tsaur I, Puhr M, et al: Artesunate inhibits the growth behavior of docetaxel-resistant prostate cancer cells. Front Oncol. 12:7892842022. View Article : Google Scholar : PubMed/NCBI | |
Ye RR, Chen BC, Lu JJ, Ma XR and Li RT: Phosphorescent rhenium(I) complexes conjugated with artesunate: Mitochondrial targeting and apoptosis-ferroptosis dual induction. J Inorg Biochem. 223:1115372021. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Xie L, Lv C, Song E, Zhu X and Song Y: Transferrin-targeted cascade nanoplatform for inhibiting transcription factor nuclear factor erythroid 2-related factor 2 and enhancing ferroptosis anticancer therapy. ACS Appl Mater Interfaces. 15:28879–28890. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang QF, Li YH, Huang ZJ, Jun M, Wang W, Chen XL and Wang GH: Artesunate carriers induced ferroptosis to overcome biological barriers for anti-cancer. Eur J Pharm Biopharm. 190:284–293. 2023. View Article : Google Scholar : PubMed/NCBI | |
Han N, Li LG, Peng XC, Ma QL, Yang ZY, Wang XY, Li J, Li QR, Yu TT, Xu HZ, et al: Ferroptosis triggered by dihydroartemisinin facilitates chlorin e6 induced photodynamic therapy against lung cancerthrough inhibiting GPX4 and enhancing ROS. Eur J Pharmacol. 919:1747972022. View Article : Google Scholar : PubMed/NCBI | |
Yi R, Wang H, Deng C, Wang X, Yao L, Niu W, Fei M and Zhaba W: Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition. Biosci Rep. 40:BSR201933142020. View Article : Google Scholar : PubMed/NCBI | |
Cui Z, Wang H, Li S, Qin T, Shi H, Ma J, Li L, Yu G, Jiang T and Li C: Dihydroartemisinin enhances the inhibitory effect of sorafenib on HepG2 cells by inducing ferroptosis and inhibiting energy metabolism. J Pharmacol Sci. 148:73–85. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Ai Z, Zhang Z, Dong R, Wang L, Jin S and Wei H: Dihydroartemisinin triggers ferroptosis in multidrug-resistant leukemia cells. DNA Cell Biol. 41:705–715. 2022. View Article : Google Scholar : PubMed/NCBI | |
Grignano E, Cantero-Aguilar L, Tuerdi Z, Chabane T, Vazquez R, Johnson N, Zerbit J, Decroocq J, Birsen R, Fontenay M, et al: Dihydroartemisinin-induced ferroptosis in acute myeloid leukemia: Links to iron metabolism and metallothionein. Cell Death Discov. 9:972023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen F, Zhou H, Huang L, Ye J, Liu X, Sheng W, Gao W, Yu H and Wang F: Redox dyshomeostasis with dual stimuli-activatable dihydroartemisinin nanoparticles to potentiate ferroptotic therapy of pancreatic cancer. Small Methods. 7:e22008882023. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Xiong L, Yan G, Du S, Liu J and Shi Y: Susceptibility of cervical cancer to dihydroartemisinin-induced ferritinophagy-dependent ferroptosis. Front Mol Biosci. 10:11560622023. View Article : Google Scholar : PubMed/NCBI | |
Lai X, Shi Y and Zhou M: Dihydroartemisinin enhances gefitinib cytotoxicity against lung adenocarcinoma cells by inducing ROS-dependent apoptosis and ferroptosis. Kaohsiung J Med Sci. 39:699–709. 2023. View Article : Google Scholar : PubMed/NCBI | |
Antoszczak M, Müller S, Cañeque T, Colombeau L, Dusetti N, Santofimia-Castaño P, Gaillet C, Puisieux A, Iovanna JL and Rodriguez R: Iron-sensitive prodrugs that trigger active ferroptosis in drug-tolerant pancreatic cancer cells. J Am Chem Soc. 144:11536–11545. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fan S, Yang Q, Song Q, Hong M, Liu X, Chen H, Wang J, Li C and Cheng S: Multi-pathway inducing ferroptosis by MnO2-based nanodrugs for targeted cancer therapy. Chem Commun (Camb). 58:6486–6489. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lin R, Zhang Z, Chen L, Zhou Y, Zou P, Feng C, Wang L and Liang G: Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett. 381:165–175. 2016. View Article : Google Scholar : PubMed/NCBI | |
Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, Ren X, An Y, Wu Y, Sun W, et al: DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 131:356–369. 2019. View Article : Google Scholar : PubMed/NCBI | |
Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, Zhou C, Jing Q, Yang C, Wang L, et al: DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis. 12:7052021. View Article : Google Scholar : PubMed/NCBI | |
Yang XX, Xu X, Wang MF, Xu HZ, Peng XC, Han N, Yu TT, Li LG, Li QR, Chen X, et al: A nanoreactor boosts chemodynamic therapy and ferroptosis for synergistic cancer therapy using molecular amplifier dihydroartemisinin. J Nanobiotechnology. 20:2302022. View Article : Google Scholar : PubMed/NCBI | |
Han W, Duan X, Ni K, Li Y, Chan C and Lin W: Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy. Biomaterials. 280:1213152022. View Article : Google Scholar : PubMed/NCBI | |
Lin YS, Shen YC, Wu CY, Tsai YY, Yang YH, Lin YY, Kuan FC, Lu CN, Chang GH, Tsai MS, et al: Danshen improves survival of patients with breast cancer and dihydroisotanshinone I induces ferroptosis and apoptosis of breast cancer cells. Front Pharmacol. 10:12262019. View Article : Google Scholar : PubMed/NCBI | |
Tan S, Hou X and Mei L: Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncol Lett. 20:1222020. View Article : Google Scholar : PubMed/NCBI | |
Guan Z, Chen J, Li X and Dong N: Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci Rep. 40:BSR202018072020. View Article : Google Scholar : PubMed/NCBI | |
Ni H, Ruan G, Sun C, Yang X, Miao Z, Li J, Chen Y, Qin H, Liu Y, Zheng L, et al: Tanshinone IIA inhibits gastric cancer cell stemness through inducing ferroptosis. Environ Toxicol. 37:192–200. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li W, Yang P, Zhou H, Zhang W and Ma L: Anticancer effects of cryptotanshinone against lung cancer cells through ferroptosis. Arab J Chem. 14:1031772021. View Article : Google Scholar | |
Wu CY, Yang YH, Lin YS, Chang GH, Tsai MS, Hsu CM, Yeh RA, Shu LH, Cheng YC and Liu HT: Dihydroisotanshinone I induced ferroptosis and apoptosis of lung cancer cells. Biomed Pharmacother. 139:1115852021. View Article : Google Scholar : PubMed/NCBI | |
Zheng K, Dong Y, Yang R, Liang Y, Wu H and He Z: Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacol Res. 168:1055802021. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Zhen C, Liu J and Shang P: PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells. Acta Pharmacol Sin. 41:1119–1132. 2020. View Article : Google Scholar : PubMed/NCBI | |
Iida Y, Okamoto-Κatsuyama M, Maruoka S, Mizumura K, Shimizu T, Shikano S, Hikichi M, Takahashi M, Tsuya K, Okamoto S, et al: Effective ferroptotic small-cell lung cancer cell death from SLC7A11 inhibition by sulforaphane. Oncol Lett. 21:712021. View Article : Google Scholar : PubMed/NCBI | |
Kasukabe T, Honma Y, Okabe-Kado J, Higuchi Y, Kato N and Kumakura S: Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells. Oncol Rep. 36:968–976. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qin Z, Ou S, Xu L, Sorensen K, Zhang Y, Hu DP, Yang Z, Hu WY, Chen F and Prins GS: Design and synthesis of isothiocyanate-containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH-deficient prostate cancer cells. Chem Biol Drug Des. 97:1059–1078. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang HM and Cheung PCK: Gallic acid triggers iron-dependent cell death with apoptotic, ferroptotic, and necroptotic features. Toxins (Basel). 11:4922019. View Article : Google Scholar : PubMed/NCBI | |
Khorsandi K, Kianmehr Z, Hosseinmardi Z and Hosseinzadeh R: Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 20:182020. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi Y, Kasukabe T and Kumakura S: Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol. 52:1011–1022. 2018.PubMed/NCBI | |
Wei G, Sun J, Hou Z, Luan W, Wang S, Cui S, Cheng M and Liu Y: Novel antitumor compound optimized from natural saponin Albiziabioside A induced caspase-dependent apoptosis and ferroptosis as a p53 activator through the mitochondrial pathway. Eur J Med Chem. 157:759–772. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Hu C, Han M, Yan L, Sun Y, Liu S, Xiang Y, Zhang M, Pan T, Chen X, et al: Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther. 5:512020. View Article : Google Scholar : PubMed/NCBI | |
Xiang Y, Chen X, Wang W, Zhai L, Sun X, Feng J, Duan T, Zhang M, Pan T, Yan L, et al: Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NRF2 inactivation. Front Pharmacol. 12:7755062021. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Jiang ZB, Shao L, Zhao ZM, Fan XX, Sui X, Yu LL, Wang XR, Zhang RN, Wang WJ, et al: β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol Res. 191:1067392023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li Y, Zhang J and Luo C: Isoliquiritin modulates ferroptosis via NF-κB signaling inhibition and alleviates doxorubicin resistance in breast cancer. Immunopharmacol Immunotoxicol. 45:443–454. 2023. View Article : Google Scholar : PubMed/NCBI | |
An S and Hu M: Quercetin promotes TFEB nuclear translocation and activates lysosomal degradation of ferritin to induce ferroptosis in breast cancer cells. Comput Intell Neurosci. 2022:52992182022. View Article : Google Scholar : PubMed/NCBI | |
Zeng YY, Luo YB, Ju XD, Wu Y, Shi H, Chen Y, Lu G, Shen HM, Lu GD and Zhou J: Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species-dependent ferroptosis. Br J Pharmacol. 178:1133–1148. 2021. View Article : Google Scholar | |
Kannan R, Kumar K, Sahal D, Kukreti S and Chauhan VS: Reaction of artemisinin with haemoglobin: Implications for antimalarial activity. Biochem J. 385:409–418. 2005. View Article : Google Scholar : PubMed/NCBI | |
Beekman A, Wierenga P, Woerdenbag H, Van Uden W, Pras N, Konings AW, el-Feraly FS, Galal AM and Wikström HV: Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: Cytotoxic action against bone marrow and tumour cells. Planta Med. 64:615–619. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zheng GQ: Cytotoxic Terpenoids and Flavonoids from Artemisia annua. Planta Med. 60:54–57. 1994. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Jiang W, Li B, Yao Q, Dong J, Cen Y, Pan X, Li J, Zheng J, Pang X and Zhou H: Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G2/M phase. Int Immunopharmacol. 11:2039–2046. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dell'Eva R, Pfeffer U, Vené R, Anfosso L, Forlani A, Albini A and Efferth T: Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol. 68:2359–2366. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rasheed SAK, Efferth T, Asangani IA and Allgayer H: First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer. 127:1475–1485. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Hou D, Liu Q, Wu T, Guo H, Zhang X, Zou Y, Liu Z, Liu J, Wei J, et al: Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51. Cancer Biol Ther. 16:1548–1556. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Pan W, Wang XP and Chen TS: Artesunate induces apoptosis via a Bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J Cell Physiol. 227:3778–3786. 2012. View Article : Google Scholar : PubMed/NCBI | |
Efferth T, Dunstan H, Sauerbrey A, Miyachi H and Chitambar CR: The anti-malarial artesunate is also active against cancer. Int J Oncol. 18:767–773. 2001.PubMed/NCBI | |
Disbrow GL, Baege AC, Kierpiec KA, Yuan H, Centeno JA, Thibodeaux CA, Hartmann D and Schlegel R: Dihydroartemisinin Is cytotoxic to papillomavirus-expressing epithelial cells in vitro and In vivo. Cancer Res. 65:10854–10861. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kelter G, Steinbach D, Konkimalla VB, Tahara T, Taketani S, Fiebig HH and Efferth T: Role of transferrin receptor and the ABC transporters ABCB6 and ABCB7 for resistance and differentiation of tumor cells towards artesunate. PLoS One. 2:e7982007. View Article : Google Scholar : PubMed/NCBI | |
Lai H, Nakase I, Lacoste E, Singh NP and Sasaki T: Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res. 29:3807–3810. 2009.PubMed/NCBI | |
Mercer AE, Maggs JL, Sun XM, Cohen GM, Chadwick J, O'Neill PM and Park BK: Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. J Biol Chem. 282:9372–9382. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eling N, Reuter L, Hazin J, Hamacher-Brady A and Brady NR: Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2:517–532. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yan G, Dawood M, Böckers M, Klauck SM, Fottner C, Weber MM and Efferth T: Multiple modes of cell death in neuroendocrine tumors induced by artesunate. Phytomedicine. 79:1533322020. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Peng S, Che F and Zhu X: Artesunate induces ferroptosis via modulation of p38 and ERK signaling pathway in glioblastoma cells. J Pharmacol Sci. 148:300–306. 2022. View Article : Google Scholar : PubMed/NCBI | |
Koike T, Takenaka M, Suzuki N, Ueda Y, Mori M, Hirayama T, Nagasawa H and Morishige KI: Intracellular ferritin heavy chain plays the key role in artesunate-induced ferroptosis in ovarian serous carcinoma cells. J Clin Biochem Nutr. 71:34–40. 2022. View Article : Google Scholar : PubMed/NCBI | |
Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin CS and Fleckenstein L: Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J. 10:2632011. View Article : Google Scholar : PubMed/NCBI | |
Valashedi MR, Nikoo A, Najafi-Ghalehlou N, Tomita K, Kuwahara Y, Sato T, Roushandeh AM and Roudkenar MH: Pharmacological targeting of ferroptosis in cancer treatment. Curr Cancer Drug Targets. 22:108–125. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Shi N, Zhang W, Zhang H, Song Y, Zhu W and Feng X: Supramolecular hybrids of carbon dots and dihydroartemisinin for enhanced anticancer activity and mechanism analysis. J Mater Chem B. 8:9777–9784. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shterman N, Kupfer B and Moroz C: Comparison of transferrin receptors, iron content and isoferritin profile in normal and malignant human breast cell lines. Pathobiology. 59:19–25. 1991. View Article : Google Scholar : PubMed/NCBI | |
Torti SV and Torti FM: Iron and cancer: More ore to be mined. Nat Rev Cancer. 13:342–355. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Tan KS, Wong WS and Shen HM: Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 289:33425–33441. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, et al: Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 16:1069–1079. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abrams RP, Carroll WL and Woerpel KA: Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem Biol. 11:1305–1312. 2016. View Article : Google Scholar : PubMed/NCBI | |
Efferth T and Oesch F: Oxidative stress response of tumor cells: Microarray-based comparison between artemisinins and anthracyclines. Biochem Pharmacol. 68:3–10. 2004. View Article : Google Scholar : PubMed/NCBI | |
Horwedel C, Tsogoeva SB, Wei S and Efferth T: Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells. J Med Chem. 53:4842–4848. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee YS, Lee DH, Choudry HA, Bartlett DL and Lee YJ: Ferroptosis-induced endoplasmic reticulum stress: Crosstalk between ferroptosis and apoptosis. Mol Cancer Res. 16:1073–1076. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, Janah R, Greten HJ and Efferth T: Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 22:1045–1054. 2015. View Article : Google Scholar : PubMed/NCBI | |
Amable L: Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 106:27–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Vakhrusheva O, Markowitsch SD, Slade KS, Tsaur I, Cinatl J Jr, Michaelis M, Efferth T, Haferkamp A and Juengel E: Artesunate impairs growth in cisplatin-resistant bladder cancer cells by cell cycle arrest, apoptosis and autophagy induction. Cells. 9:26432020. View Article : Google Scholar : PubMed/NCBI | |
Wong KH, Yang D, Chen S, He C and Chen M: Development of nanoscale drug delivery systems of dihydroartemisinin for cancer therapy: A review. Asian J Pharm Sci. 17:475–490. 2022. View Article : Google Scholar : PubMed/NCBI | |
Efferth T: From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 46:65–83. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C and Zhang F: Iron homeostasis and tumorigenesis: Molecular mechanisms and therapeutic opportunities. Protein Cell. 6:88–100. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Zha H, Han R, Cheng Y, Chen J, Yue L, Wang R and Zheng Y: Cyclodextrin-derived ROS-generating nanomedicine with pH-modulated degradability to enhance tumor ferroptosis therapy and chemotherapy. Small. 18:e22003302022. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Xu D, Chen W, Wu R, Wen Y, Liu A, Lin L, Lin X and Wang X: Fe-MnO2 nanosheets loading dihydroartemisinin for ferroptosis and immunotherapy. Biomed Pharmacother. 161:1144312023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Yang X, Xu H, Yu TT, Li QR, Hu J, Peng XC, Han N, Xu X, Chen NN, et al: A dihydroartemisinin-loaded nanoreactor motivates anti-cancer immunotherapy by synergy-induced ferroptosis to activate Cgas/STING for reprogramming of macrophage. Adv Healthc Mater. 12:e23015612023. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Li L, Tian H, Wang Z, Liu G, Duan X, Guo M, Liu J, Zhang W, Nice EC, et al: Drug repurposing-based brain-targeting self-assembly nanoplatform using enhanced ferroptosis against glioblastoma. Small. 19:e23030732023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Liu H, Li N, Li J, Wang M and Ren X: A (Traditional Chinese Medicine) TCM-inspired doxorubicin resistance reversing strategy: Preparation, characterization, and application of a co-loaded pH-sensitive liposome. AAPS PharmSciTech. 24:1812023. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Zheng J, Du M, Yang Y, Li X, Chen H and Gao Y: An iron-containing ferritin-based nanosensitizer for synergistic ferroptosis/sono-photodynamic cancer therapy. J Mater Chem B. 11:4958–4971. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Gao W and Huang L: Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Front Pharmacol. 10:2022019. View Article : Google Scholar : PubMed/NCBI | |
Pang H, Wu L, Tang Y, Zhou G, Qu C and Duan J: Chemical analysis of the herbal medicine salviae miltiorrhizae radix et Rhizoma (Danshen). Molecules. 21:512016. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Jin L, Deng H, Wu D, Shen QK, Quan ZS, Zhang CH and Guo HY: Research and development of natural product tanshinone I: Pharmacology, total synthesis, and structure modifications. Front Pharmacol. 13:9204112022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Huang T, Xu S, Che B, Yu Y, Zhang W and Tang K: Molecular mechanism of tanshinone against prostate cancer. Molecules. 27:55942022. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Morris-Natschke SL and Lee KH: Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep. 28:529–542. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Han B, Zhou Y, Ren J, Cao W, Patel G, Kai G and Zhang J: The anticancer properties of tanshinones and the pharmacological effects of their active ingredients. Front Pharmacol. 11:1932020. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Gao Y, Fan X, Liu X, Peng L and Ci X: Oridonin sensitizes cisplatin-induced apoptosis via AMPK/Akt/mTOR-dependent autophagosome accumulation in A549 cells. Front Oncol. 9:7692019. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Zhao J, Wang Y, Xu H, Wu Z, Hu Y, Jiang K, Shen P, Ma C, Guan Z, et al: In vivo inhibitory activity of andrographolide derivative ADN-9 against liver cancer and its mechanisms involved in inhibition of tumor angiogenesis. Toxicol Appl Pharmacol. 327:1–12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Wang X, Li Y and Tang B: Tanshinone IIA suppresses gastric cancer cell proliferation and migration by downregulation of FOXM1. Oncol Rep. 37:1394–1400. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wei R, Zhu X, Cai L, Jin W and Hu H: Tanshinone IIA induces apoptosis and inhibits the proliferation, migration, and invasion of the osteosarcoma MG-63 cell line in vitro. Anticancer Drugs. 23:212–219. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Zhou G, Hu S and Zhang L: Tanshinone IIA suppress the proliferation of HNE-1 nasopharyngeal carcinoma an in vitro study. Saudi J Biol Sci. 25:267–272. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu WL, Chang WL and Chen CF: Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med. 19:207–216. 1991. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Huang B and Gao C: Salvia miltiorrhiza extract dihydrotanshinone induces apoptosis and inhibits proliferation of glioma cells. Bosn J of Basic Med Sci. 17:235–240. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Hu K, Tang S, Xu LF and Luo YC: Anti-tumor activity of tanshinone IIA in combined with cyclophosphamide against Lewis mice with lung cancer. Asian Pac J Trop Med. 9:1084–1088. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lv C, Zeng HW, Wang JX, Yuan X, Zhang C, Fang T, Yang PM, Wu T, Zhou YD, Nagle DG and Zhang WD: The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG. Cell Death Dis. 9:1652018. View Article : Google Scholar : PubMed/NCBI | |
Ma K, Zhang C, Huang MY, Guo YX and Hu GQ: Crosstalk between beclin-1-dependent autophagy and caspase-dependent apoptosis induced by tanshinone IIA in human osteosarcoma MG-63 cells. Oncol Rep. 36:1807–1818. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qiu W, Sun B, He F and Zhang Y: MTA-induced notch activation enhances the proliferation of human dental pulp cells by inhibiting autophagic flux. Int Endod J. 50 (Suppl 2):e52–e62. 2017. View Article : Google Scholar : PubMed/NCBI | |
Su CC, Chien SY, Kuo SJ, Chen YL, Cheng CY and Chen DR: Tanshinone IIA inhibits human breast cancer MDA-MB-231 cells by decreasing LC3-II, Erb-B2 and NF-κBp65. Mol Med Rep. 5:1019–1022. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Li J, Meng W, Xing H and Yang Y: Tanshinone IIA inhibits acute promyelocytic leukemia cell proliferation and induces their apoptosis in vivo. Blood Cells Mol Dis. 56:46–52. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Guo S, Fang J, Peng B, Zhang Y and Cao T: Tanshinone IIA inhibits cell proliferation and tumor growth by downregulating STAT3 in human gastric cancer. Exp Ther Med. 16:2931–2937. 2018.PubMed/NCBI | |
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Radif Y, Ndiaye H, Kalantzi V, Jacobs R, Hall A, Minogue S and Waugh MG: The endogenous subcellular localisations of the long chain fatty acid-activating enzymes ACSL3 and ACSL4 in sarcoma and breast cancer cells. Mol Cell Biochem. 448:275–286. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Li X, Zhang X, Kang R and Tang D: Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mao W, Ding J, Li Y, Huang R and Wang B: Inhibition of cell survival and invasion by Tanshinone IIA via FTH1: A key therapeutic target and biomarker in head and neck squamous cell carcinoma. Exp Ther Med. 24:5212022. View Article : Google Scholar : PubMed/NCBI | |
Wang TX, Duan KL, Huang ZX, Xue ZA, Liang JY, Dang Y, Zhang A, Xiong Y, Ding C, Guan KL and Yuan HX: Tanshinone functions as a coenzyme that confers gain of function of NQO1 to suppress ferroptosis. Life Sci Alliance. 6:e2022016672022. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Han B, Li X, Sun C, Zhai Y, Li M, Jiang M, Zhang W, Liang Y and Kai G: Salvia miltiorrhiza in breast cancer treatment: A review of its phytochemistry, derivatives, nanoparticles, and potential mechanisms. Front Pharmacol. 13:8720852022. View Article : Google Scholar : PubMed/NCBI | |
Zhang YF, Zhang M, Huang XL, Fu YJ, Jiang YH, Bao LL, Maimaitiyiming Y, Zhang GJ, Wang QQ and Naranmandura H: The combination of arsenic and cryptotanshinone induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in breast cancer cells. Metallomics. 7:165–173. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Zheng L, Li S, Xie B, Cui B, Xia A, Lin Z and Zhou P: Cytotoxicity of tanshinone IIA combined with Taxol on drug-resist breast cancer cells MCF-7 through inhibition of Tau. Phytother Res. 32:667–671. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li K and Lai H: TanshinoneIIA enhances the chemosensitivity of breast cancer cells to doxorubicin through down-regulating the expression of MDR-related ABC transporters. Biomed Pharmacother. 96:371–377. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wu C, Fan C, Zhang P, Yu G and Li K: Tanshinone II A improves the chemosensitivity of breast cancer cells to doxorubicin by inhibiting β-catenin nuclear translocation. J Biochem Mol Toxicol. 35:e226202021. View Article : Google Scholar : PubMed/NCBI | |
Hu T, To KKW, Wang L, Zhang L, Lu L, Shen J, Chan RL, Li M, Yeung JH and Cho CH: Reversal of P-glycoprotein (P-gp) mediated multidrug resistance in colon cancer cells by cryptotanshinone and dihydrotanshinone of Salvia miltiorrhiza. Phytomedicine. 21:1264–1272. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu T, Wang L, Zhang L, Lu L, Shen J, Chan RL, Li M, Wu WK, To KK and Cho CH: Sensitivity of apoptosis-resistant colon cancer cells to tanshinones is mediated by autophagic cell death and p53-independent cytotoxicity. Phytomedicine. 22:536–544. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian HL, Yu T, Xu NN, Feng C, Zhou LY, Luo HW, Chang DC, Le XF and Luo KQ: A novel compound modified from tanshinone inhibits tumor growth in vivo via activation of the intrinsic apoptotic pathway. Cancer Lett. 297:18–30. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guerram M, Jiang ZZ, Yousef BA, Hamdi AM, Hassan HM, Yuan ZQ, Luo HW, Zhu X and Zhang LY: The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: Induction of cancer cell death by targeting apoptotic and metabolic signaling pathways. Oncotarget. 6:21865–21877. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Zheng K, Huang X, Li L and Mei W: Tanshinone-IIA-based analogues of imidazole alkaloid Act as potent inhibitors to block breast cancer invasion and metastasis in vivo. J Med Chem. 61:10488–10501. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Xie X, Hou X, Shen J, Shi J, Chen H, He Y, Wang Z and Feng N: Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. J Nanobiotechnology. 18:832020. View Article : Google Scholar : PubMed/NCBI | |
Ngo SNT and Williams DB: Protective effect of isothiocyanates from cruciferous vegetables on breast cancer: Epidemiological and preclinical perspectives. Anticancer Agents Med Chem. 21:1413–1430. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fimognari C, Turrini E, Ferruzzi L, Lenzi M and Hrelia P: Natural isothiocyanates: Genotoxic potential versus chemoprevention. Mutat Res. 750:107–131. 2012. View Article : Google Scholar : PubMed/NCBI | |
Palliyaguru DL, Yuan JM, Kensler TW and Fahey JW: Isothiocyanates: Translating the power of plants to people. Mol Nutr Food Res. 62:17009652018. View Article : Google Scholar | |
Greco G, Schnekenburger M, Catanzaro E, Turrini E, Ferrini F, Sestili P, Diederich M and Fimognari C: Discovery of sulforaphane as an inducer of ferroptosis in U-937 leukemia cells: Expanding its anticancer potential. Cancers (Basel). 14:762021. View Article : Google Scholar : PubMed/NCBI | |
Chen PY, Lin KC, Lin JP, Tang NY, Yang JS, Lu KW and Chung JG: Phenethyl isothiocyanate (PEITC) inhibits the growth of human oral squamous carcinoma HSC-3 Cells through G(0)/G(1) phase arrest and mitochondria-mediated apoptotic cell death. Evid Based Complement Alternat Med. 2012:7183202012. View Article : Google Scholar : PubMed/NCBI | |
Hwang ES and Lee HJ: Effects of phenylethyl isothiocyanate and its metabolite on cell-cycle arrest and apoptosis in LNCaP human prostate cancer cells. Int J Food Sci Nutr. 61:324–336. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Zhen C, Liu J and Shang P: β-Phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway. Oxid Med Cell Longev. 2020:50219832020. View Article : Google Scholar : PubMed/NCBI | |
Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H and Gerhäuser C: Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res. 599:76–87. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu CL, Huang AC, Yang JS, Liao CL, Lu HF, Chou ST, Ma CY, Hsia TC, Ko YC and Chung JG: Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and nitric oxide (NO) in human osteogenic sarcoma U-2 OS cells. J Orthop Res. 29:1199–1209. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A and Panayiotidis MI: The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents. Antioxidants (Basel). 8:1062019. View Article : Google Scholar : PubMed/NCBI | |
Subramanian AP, John AA, Vellayappan MV, Balaji A, Jaganathan SK, Supriyanto E and Yusof M: Gallic acid: Prospects and molecular mechanisms of its anticancer activity. RSC Adv. 5:35608–35621. 2015. View Article : Google Scholar | |
You BR and Park WH: Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol In Vitro. 24:1356–1362. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu KC, Ho HC, Huang AC, Ji BC, Lin HY, Chueh FS, Yang JS, Lu CC, Chiang JH, Meng M and Chung JG: Gallic acid provokes DNA damage and suppresses DNA repair gene expression in human prostate cancer PC-3 cells. Environ Toxicol. 28:579–587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Subramanian V, Venkatesan B, Tumala A and Vellaichamy E: Topical application of Gallic acid suppresses the 7,12-DMBA/Croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food Chem Toxicol. 66:44–55. 2014. View Article : Google Scholar : PubMed/NCBI | |
Teng CLJ, Han SM, Wu WC, Hsueh CM, Tsai JR, Hwang WL and Hsu SL: Mechanistic aspects of lauryl gallate-induced differentiation and apoptosis in human acute myeloid leukemia cells. Food Chem Toxicol. 71:197–206. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim NS, Jeong SI, Hwang BS, Lee YE, Kang SH, Lee HC and Oh CH: Gallic acid inhibits cell viability and induces apoptosis in human monocytic cell line U937. J Med Food. 14:240–246. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao B and Hu M: Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol Lett. 6:1749–1755. 2013. View Article : Google Scholar : PubMed/NCBI | |
Asano J, Chiba K, Tada M and Yoshii T: Cytotoxic xanthones from Garcinia hanburyi. Phytochemistry. 41:815–820. 1996. View Article : Google Scholar : PubMed/NCBI | |
Su J, Xu T, Jiang G, Hou M, Liang M, Cheng H and Li Q: Gambogenic acid triggers apoptosis in human nasopharyngeal carcinoma CNE-2Z cells by activating volume-sensitive outwardly rectifying chloride channel. Fitoterapia. 133:150–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mei W, Dong C, Hui C, Bin L, Fenggen Y, Jingjing S, Cheng P, Meiling S, Yawen H, Xiaoshan W, et al: Gambogenic acid kills lung cancer cells through aberrant autophagy. PLoS One. 9:e836042014. View Article : Google Scholar : PubMed/NCBI | |
Yan F, Wang M, Chen H, Su J, Wang X, Wang F, Xia L and Li Q: Gambogenic acid mediated apoptosis through the mitochondrial oxidative stress and inactivation of Akt signaling pathway in human nasopharyngeal carcinoma CNE-1 cells. Eur J Pharmacol. 652:23–32. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Li S, Wang Y, Cheng H, Su J and Li Q: Gambogenic acid induces ferroptosis in melanoma cells undergoing epithelial-to-mesenchymal transition. Toxicol Appl Pharmacol. 401:1151102020. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Cheng H, Wu H, Liu C, Li S, Li B, Su J, Luo S and Li Q: Gambogenic acid antagonizes the expression and effects of long non-coding RNA NEAT1 and triggers autophagy and ferroptosis in melanoma. Biomed Pharmacother. 154:1136362022. View Article : Google Scholar : PubMed/NCBI | |
Dhillon H, Mamidi S, McClean P and Reindl KM: Transcriptome analysis of piperlongumine-treated human pancreatic cancer cells reveals involvement of oxidative stress and endoplasmic reticulum stress pathways. J Med Food. 19:578–585. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin HO, Park JA, Kim HA, Chang YH, Hong YJ, Park IC and Lee JK: Piperlongumine downregulates the expression of HER family in breast cancer cells. Biochem Biophys Res Commun. 486:1083–1089. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alpay M, Yurdakok-Dikmen B, Kismali G and Sel T: Antileukemic effects of piperlongumine and alpha lipoic acid combination on Jurkat, MEC1 and NB4 cells in vitro. J Can Res Ther. 12:556–560. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei G, Wang S, Cui S, Guo J, Liu Y, Liu Y and Cheng M: Synthesis and evaluation of the anticancer activity of albiziabioside A and its analogues as apoptosis inducers against human melanoma cells. Org Biomol Chem. 12:5928–5935. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei G, Sun J, Luan W, Hou Z, Wang S, Cui S, Cheng M and Liu Y: Natural product albiziabioside A conjugated with pyruvate dehydrogenase kinase inhibitor dichloroacetate to induce apoptosis-ferroptosis-M2-TAMs polarization for combined cancer therapy. J Med Chem. 62:8760–8772. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang T, Sun W, Wang Z, Zuo D, Zhou Z, Li S, Xu J, Yin F, Hua Y and Cai Z: Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 7:e22472016. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Zhou X, Li J, Yao XC, Liu WL, Kang FH, Zou ZX, Xu KP, Xu PS and Tan GS: Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorg Chem. 109:1047442021. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Hu C, Han M, Liu C, Sun X, Yu K, Gu H and Zhang J: Solasonine inhibits pancreatic cancer progression with involvement of ferroptosis induction. Front Oncol. 12:8347292022. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Shi C, Li T, Wu Y, Hu C and Huang G: Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomed Pharmacother. 129:1102822020. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Khan H, Ullah H, Hassan STS, Šmejkal K, Efferth T, Mahomoodally MF, Xu S, Habtemariam S, Filosa R, et al: MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol Res. 147:1043462019. View Article : Google Scholar : PubMed/NCBI |