Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2024 Volume 52 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 52 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Natural products targeting ferroptosis pathways in cancer therapy (Review)

  • Authors:
    • Xin Na
    • Lin Li
    • Dongmei Liu
    • Jiaqi He
    • Ling Zhang
    • Yiping Zhou
  • View Affiliations / Copyright

    Affiliations: School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Yunnan Cancer Hospital (Third Affiliated Hospital of Kunming Medical University), Kunming, Yunnan 650118, P.R. China, The First Clinical Medical College of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
    Copyright: © Na et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 123
    |
    Published online on: July 23, 2024
       https://doi.org/10.3892/or.2024.8782
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ferroptosis inducers (FIN) have a key role in cancer therapy and provide novel and innovative treatment strategies. Although many researchers have performed FIN screening of synthetic compounds, studies on the identification of FIN from natural products are limited, particularly in the field of drug development and combination therapy. In this review, this gap was addressed by comprehensively summarizing recent studies on ferroptosis. The causes of ferroptosis were categorized into driving and defensive factors, elucidating key pathways and targets. Next, through summarizing research on natural products that induce ferroptosis, the study elaborated in detail on the natural products that have FIN functions. Their discovery and development were also described and insight for clinical drug development was provided. In addition, the mechanisms of action were analyzed and potential combination therapies, resistance reversal and structural enhancements were presented. By highlighting the potential of natural products in inducing ferroptosis for cancer treatment, this review may serve as a reference for utilizing these compounds against cancer. It not only showed the significance of natural products but may also promote further investigation into their therapeutic effects, thus encouraging research in this field.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Ge C, Zhang S, Mu H, Zheng S, Tan Z, Huang X, Xu C, Zou J, Zhu Y, Feng D and Aa J: Emerging mechanisms and disease implications of ferroptosis: Potential applications of natural products. Front Cell Dev Biol. 9:7749572022. View Article : Google Scholar : PubMed/NCBI

2 

Stockwell BR, Jiang X and Gu W: Emerging mechanisms and disesase relevance of ferroptosis. Trends Cell Biol. 30:478–490. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, et al: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 172:409–422.e21. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Li L, Sun S, Tan L, Wang Y, Wang L, Zhang Z and Zhang L: Polystyrene nanoparticles reduced ROS and inhibited ferroptosis by triggering lysosome stress and TFEB nucleus translocation in a size-dependent manner. Nano Lett. 19:7781–7792. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Park E and Chung SW: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 10:8222019. View Article : Google Scholar : PubMed/NCBI

12 

Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen ZN and Jiang X: Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 572:402–406. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Liang L, Liu Y, Wu X and Chen Y: Artesunate induces ferroptosis by inhibiting the nuclear localization of SREBP2 in myeloma cells. Int J Med Sci. 20:1535–1550. 2023. View Article : Google Scholar : PubMed/NCBI

14 

Liu H, Gao L, Xie T, Li J, Zhai T and Xu Y: Identification and validation of a prognostic signature for prostate cancer based on ferroptosis-related genes. Front Oncol. 11:6233132021. View Article : Google Scholar : PubMed/NCBI

15 

Ma J, Hu X, Yao Y, Wu L, Sheng C, Chen K and Liu B: Characterization of two ferroptosis subtypes with distinct immune infiltration and gender difference in gastric cancer. Front Nutr. 8:7561932021. View Article : Google Scholar : PubMed/NCBI

16 

Tang B, Zhu J, Li J, Fan K, Gao Y, Cheng S, Kong C, Zheng L, Wu F, Weng Q, et al: The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma. Cell Commun Signal. 18:1742020. View Article : Google Scholar : PubMed/NCBI

17 

Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, et al: Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30:3411–3423.e7. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Yanatori I and Kishi F: DMT1 and iron transport. Free Radic Biol Med. 133:55–63. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Mumbauer S, Pascual J, Kolotuev I and Hamaratoglu F: Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet. 15:e10083962019. View Article : Google Scholar : PubMed/NCBI

21 

Gao M, Monian P, Pan Q, Zhang W, Xiang J and Jiang X: Ferroptosis is an autophagic cell death process. Cell Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI

23 

Chen P, Li X, Zhang R, Liu S, Xiang Y, Zhang M, Chen X, Pan T, Yan L, Feng J, et al: Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics. 10:5107–5119. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Hu Y, Guo N, Yang T, Yan J, Wang W and Li X: The potential mechanisms by which artemisinin and its derivatives induce ferroptosis in the treatment of cancer. Oxid Med Cell Longev. 2022:14581432022. View Article : Google Scholar : PubMed/NCBI

26 

Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, et al: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 547:453–457. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Conrad M and Pratt DA: The chemical basis of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, et al: Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem. 280:37423–37429. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Robert SM, Buckingham SC, Campbell SL, Robel S, Holt KT, Ogunrinu-Babarinde T, Warren PP, White DM, Reid MA, Eschbacher JM, et al: SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci Transl Med. 7:289ra862015. View Article : Google Scholar : PubMed/NCBI

32 

Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Nie Z, Chen M, Gao Y, Huang D, Cao H, Peng Y, Guo N, Wang F and Zhang S: Ferroptosis and tumor drug resistance: Current status and major challenges. Front Pharmacol. 13:8793172022. View Article : Google Scholar : PubMed/NCBI

34 

Kuang F, Liu J, Xie Y, Tang D and Kang R: MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol. 28:765–775.e5. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Stefely JA and Pagliarini DJ: Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem Sci. 42:824–843. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI

40 

Manogaran P, Beeraka NM, Paulraj RS, Sathiyachandran P and Thammaiappa M: Impediment of cancer by dietary plant-derived alkaloids through oxidative stress: Implications of PI3K/AKT pathway in apoptosis, autophagy, and ferroptosis. Curr Top Med Chem. 23:860–877. 2023. View Article : Google Scholar : PubMed/NCBI

41 

Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L and Zhou J: Hippo pathway in intestinal diseases: Focusing on ferroptosis. Front Cell Dev Biol. 11:12916862023. View Article : Google Scholar : PubMed/NCBI

42 

Wu Z, Zhong M, Liu Y, Xiong Y, Gao Z, Ma J, Zhuang G and Hong X: Application of natural products for inducing ferroptosis in tumor cells. Biotechnol Appl Biochem. 69:190–197. 2022. View Article : Google Scholar : PubMed/NCBI

43 

Wang N, Zeng GZ, Yin JL and Bian ZX: Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's lymphoma. Biochem Biophys Res Commun. 519:533–539. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Wang K, Zhang Z, Wang M, Cao X, Qi J, Wang D, Gong A and Zhu H: Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells. Drug Des Devel Ther. 13:2135–2144. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Li ZJ, Dai HQ, Huang XW, Feng J, Deng JH, Wang ZX, Yang XM, Liu YJ, Wu Y, Chen PH, et al: Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin. 42:301–310. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Roh JL, Kim EH, Jang H and Shin D: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11:254–262. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Vakhrusheva O, Erb HHH, Bräunig V, Markowitsch SD, Schupp P, Baer PC, Slade KS, Thomas A, Tsaur I, Puhr M, et al: Artesunate inhibits the growth behavior of docetaxel-resistant prostate cancer cells. Front Oncol. 12:7892842022. View Article : Google Scholar : PubMed/NCBI

48 

Ye RR, Chen BC, Lu JJ, Ma XR and Li RT: Phosphorescent rhenium(I) complexes conjugated with artesunate: Mitochondrial targeting and apoptosis-ferroptosis dual induction. J Inorg Biochem. 223:1115372021. View Article : Google Scholar : PubMed/NCBI

49 

Chen W, Xie L, Lv C, Song E, Zhu X and Song Y: Transferrin-targeted cascade nanoplatform for inhibiting transcription factor nuclear factor erythroid 2-related factor 2 and enhancing ferroptosis anticancer therapy. ACS Appl Mater Interfaces. 15:28879–28890. 2023. View Article : Google Scholar : PubMed/NCBI

50 

Huang QF, Li YH, Huang ZJ, Jun M, Wang W, Chen XL and Wang GH: Artesunate carriers induced ferroptosis to overcome biological barriers for anti-cancer. Eur J Pharm Biopharm. 190:284–293. 2023. View Article : Google Scholar : PubMed/NCBI

51 

Han N, Li LG, Peng XC, Ma QL, Yang ZY, Wang XY, Li J, Li QR, Yu TT, Xu HZ, et al: Ferroptosis triggered by dihydroartemisinin facilitates chlorin e6 induced photodynamic therapy against lung cancerthrough inhibiting GPX4 and enhancing ROS. Eur J Pharmacol. 919:1747972022. View Article : Google Scholar : PubMed/NCBI

52 

Yi R, Wang H, Deng C, Wang X, Yao L, Niu W, Fei M and Zhaba W: Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition. Biosci Rep. 40:BSR201933142020. View Article : Google Scholar : PubMed/NCBI

53 

Cui Z, Wang H, Li S, Qin T, Shi H, Ma J, Li L, Yu G, Jiang T and Li C: Dihydroartemisinin enhances the inhibitory effect of sorafenib on HepG2 cells by inducing ferroptosis and inhibiting energy metabolism. J Pharmacol Sci. 148:73–85. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Zhang X, Ai Z, Zhang Z, Dong R, Wang L, Jin S and Wei H: Dihydroartemisinin triggers ferroptosis in multidrug-resistant leukemia cells. DNA Cell Biol. 41:705–715. 2022. View Article : Google Scholar : PubMed/NCBI

55 

Grignano E, Cantero-Aguilar L, Tuerdi Z, Chabane T, Vazquez R, Johnson N, Zerbit J, Decroocq J, Birsen R, Fontenay M, et al: Dihydroartemisinin-induced ferroptosis in acute myeloid leukemia: Links to iron metabolism and metallothionein. Cell Death Discov. 9:972023. View Article : Google Scholar : PubMed/NCBI

56 

Wang Y, Chen F, Zhou H, Huang L, Ye J, Liu X, Sheng W, Gao W, Yu H and Wang F: Redox dyshomeostasis with dual stimuli-activatable dihydroartemisinin nanoparticles to potentiate ferroptotic therapy of pancreatic cancer. Small Methods. 7:e22008882023. View Article : Google Scholar : PubMed/NCBI

57 

Shi H, Xiong L, Yan G, Du S, Liu J and Shi Y: Susceptibility of cervical cancer to dihydroartemisinin-induced ferritinophagy-dependent ferroptosis. Front Mol Biosci. 10:11560622023. View Article : Google Scholar : PubMed/NCBI

58 

Lai X, Shi Y and Zhou M: Dihydroartemisinin enhances gefitinib cytotoxicity against lung adenocarcinoma cells by inducing ROS-dependent apoptosis and ferroptosis. Kaohsiung J Med Sci. 39:699–709. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Antoszczak M, Müller S, Cañeque T, Colombeau L, Dusetti N, Santofimia-Castaño P, Gaillet C, Puisieux A, Iovanna JL and Rodriguez R: Iron-sensitive prodrugs that trigger active ferroptosis in drug-tolerant pancreatic cancer cells. J Am Chem Soc. 144:11536–11545. 2022. View Article : Google Scholar : PubMed/NCBI

60 

Fan S, Yang Q, Song Q, Hong M, Liu X, Chen H, Wang J, Li C and Cheng S: Multi-pathway inducing ferroptosis by MnO2-based nanodrugs for targeted cancer therapy. Chem Commun (Camb). 58:6486–6489. 2022. View Article : Google Scholar : PubMed/NCBI

61 

Lin R, Zhang Z, Chen L, Zhou Y, Zou P, Feng C, Wang L and Liang G: Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett. 381:165–175. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, Ren X, An Y, Wu Y, Sun W, et al: DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 131:356–369. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, Zhou C, Jing Q, Yang C, Wang L, et al: DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis. 12:7052021. View Article : Google Scholar : PubMed/NCBI

64 

Yang XX, Xu X, Wang MF, Xu HZ, Peng XC, Han N, Yu TT, Li LG, Li QR, Chen X, et al: A nanoreactor boosts chemodynamic therapy and ferroptosis for synergistic cancer therapy using molecular amplifier dihydroartemisinin. J Nanobiotechnology. 20:2302022. View Article : Google Scholar : PubMed/NCBI

65 

Han W, Duan X, Ni K, Li Y, Chan C and Lin W: Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy. Biomaterials. 280:1213152022. View Article : Google Scholar : PubMed/NCBI

66 

Lin YS, Shen YC, Wu CY, Tsai YY, Yang YH, Lin YY, Kuan FC, Lu CN, Chang GH, Tsai MS, et al: Danshen improves survival of patients with breast cancer and dihydroisotanshinone I induces ferroptosis and apoptosis of breast cancer cells. Front Pharmacol. 10:12262019. View Article : Google Scholar : PubMed/NCBI

67 

Tan S, Hou X and Mei L: Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncol Lett. 20:1222020. View Article : Google Scholar : PubMed/NCBI

68 

Guan Z, Chen J, Li X and Dong N: Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci Rep. 40:BSR202018072020. View Article : Google Scholar : PubMed/NCBI

69 

Ni H, Ruan G, Sun C, Yang X, Miao Z, Li J, Chen Y, Qin H, Liu Y, Zheng L, et al: Tanshinone IIA inhibits gastric cancer cell stemness through inducing ferroptosis. Environ Toxicol. 37:192–200. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Li X, Li W, Yang P, Zhou H, Zhang W and Ma L: Anticancer effects of cryptotanshinone against lung cancer cells through ferroptosis. Arab J Chem. 14:1031772021. View Article : Google Scholar

71 

Wu CY, Yang YH, Lin YS, Chang GH, Tsai MS, Hsu CM, Yeh RA, Shu LH, Cheng YC and Liu HT: Dihydroisotanshinone I induced ferroptosis and apoptosis of lung cancer cells. Biomed Pharmacother. 139:1115852021. View Article : Google Scholar : PubMed/NCBI

72 

Zheng K, Dong Y, Yang R, Liang Y, Wu H and He Z: Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacol Res. 168:1055802021. View Article : Google Scholar : PubMed/NCBI

73 

Lv H, Zhen C, Liu J and Shang P: PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells. Acta Pharmacol Sin. 41:1119–1132. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Iida Y, Okamoto-Κatsuyama M, Maruoka S, Mizumura K, Shimizu T, Shikano S, Hikichi M, Takahashi M, Tsuya K, Okamoto S, et al: Effective ferroptotic small-cell lung cancer cell death from SLC7A11 inhibition by sulforaphane. Oncol Lett. 21:712021. View Article : Google Scholar : PubMed/NCBI

75 

Kasukabe T, Honma Y, Okabe-Kado J, Higuchi Y, Kato N and Kumakura S: Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells. Oncol Rep. 36:968–976. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Qin Z, Ou S, Xu L, Sorensen K, Zhang Y, Hu DP, Yang Z, Hu WY, Chen F and Prins GS: Design and synthesis of isothiocyanate-containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH-deficient prostate cancer cells. Chem Biol Drug Des. 97:1059–1078. 2021. View Article : Google Scholar : PubMed/NCBI

77 

Tang HM and Cheung PCK: Gallic acid triggers iron-dependent cell death with apoptotic, ferroptotic, and necroptotic features. Toxins (Basel). 11:4922019. View Article : Google Scholar : PubMed/NCBI

78 

Khorsandi K, Kianmehr Z, Hosseinmardi Z and Hosseinzadeh R: Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 20:182020. View Article : Google Scholar : PubMed/NCBI

79 

Yamaguchi Y, Kasukabe T and Kumakura S: Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol. 52:1011–1022. 2018.PubMed/NCBI

80 

Wei G, Sun J, Hou Z, Luan W, Wang S, Cui S, Cheng M and Liu Y: Novel antitumor compound optimized from natural saponin Albiziabioside A induced caspase-dependent apoptosis and ferroptosis as a p53 activator through the mitochondrial pathway. Eur J Med Chem. 157:759–772. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Liang X, Hu C, Han M, Yan L, Sun Y, Liu S, Xiang Y, Zhang M, Pan T, Chen X, et al: Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther. 5:512020. View Article : Google Scholar : PubMed/NCBI

82 

Xiang Y, Chen X, Wang W, Zhai L, Sun X, Feng J, Duan T, Zhang M, Pan T, Yan L, et al: Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NRF2 inactivation. Front Pharmacol. 12:7755062021. View Article : Google Scholar : PubMed/NCBI

83 

Xu C, Jiang ZB, Shao L, Zhao ZM, Fan XX, Sui X, Yu LL, Wang XR, Zhang RN, Wang WJ, et al: β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol Res. 191:1067392023. View Article : Google Scholar : PubMed/NCBI

84 

Wang J, Li Y, Zhang J and Luo C: Isoliquiritin modulates ferroptosis via NF-κB signaling inhibition and alleviates doxorubicin resistance in breast cancer. Immunopharmacol Immunotoxicol. 45:443–454. 2023. View Article : Google Scholar : PubMed/NCBI

85 

An S and Hu M: Quercetin promotes TFEB nuclear translocation and activates lysosomal degradation of ferritin to induce ferroptosis in breast cancer cells. Comput Intell Neurosci. 2022:52992182022. View Article : Google Scholar : PubMed/NCBI

86 

Zeng YY, Luo YB, Ju XD, Wu Y, Shi H, Chen Y, Lu G, Shen HM, Lu GD and Zhou J: Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species-dependent ferroptosis. Br J Pharmacol. 178:1133–1148. 2021. View Article : Google Scholar

87 

Kannan R, Kumar K, Sahal D, Kukreti S and Chauhan VS: Reaction of artemisinin with haemoglobin: Implications for antimalarial activity. Biochem J. 385:409–418. 2005. View Article : Google Scholar : PubMed/NCBI

88 

Beekman A, Wierenga P, Woerdenbag H, Van Uden W, Pras N, Konings AW, el-Feraly FS, Galal AM and Wikström HV: Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: Cytotoxic action against bone marrow and tumour cells. Planta Med. 64:615–619. 1998. View Article : Google Scholar : PubMed/NCBI

89 

Zheng GQ: Cytotoxic Terpenoids and Flavonoids from Artemisia annua. Planta Med. 60:54–57. 1994. View Article : Google Scholar : PubMed/NCBI

90 

Zhao Y, Jiang W, Li B, Yao Q, Dong J, Cen Y, Pan X, Li J, Zheng J, Pang X and Zhou H: Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G2/M phase. Int Immunopharmacol. 11:2039–2046. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Dell'Eva R, Pfeffer U, Vené R, Anfosso L, Forlani A, Albini A and Efferth T: Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol. 68:2359–2366. 2004. View Article : Google Scholar : PubMed/NCBI

92 

Rasheed SAK, Efferth T, Asangani IA and Allgayer H: First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer. 127:1475–1485. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Wang B, Hou D, Liu Q, Wu T, Guo H, Zhang X, Zou Y, Liu Z, Liu J, Wei J, et al: Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51. Cancer Biol Ther. 16:1548–1556. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Zhou C, Pan W, Wang XP and Chen TS: Artesunate induces apoptosis via a Bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J Cell Physiol. 227:3778–3786. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Efferth T, Dunstan H, Sauerbrey A, Miyachi H and Chitambar CR: The anti-malarial artesunate is also active against cancer. Int J Oncol. 18:767–773. 2001.PubMed/NCBI

96 

Disbrow GL, Baege AC, Kierpiec KA, Yuan H, Centeno JA, Thibodeaux CA, Hartmann D and Schlegel R: Dihydroartemisinin Is cytotoxic to papillomavirus-expressing epithelial cells in vitro and In vivo. Cancer Res. 65:10854–10861. 2005. View Article : Google Scholar : PubMed/NCBI

97 

Kelter G, Steinbach D, Konkimalla VB, Tahara T, Taketani S, Fiebig HH and Efferth T: Role of transferrin receptor and the ABC transporters ABCB6 and ABCB7 for resistance and differentiation of tumor cells towards artesunate. PLoS One. 2:e7982007. View Article : Google Scholar : PubMed/NCBI

98 

Lai H, Nakase I, Lacoste E, Singh NP and Sasaki T: Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res. 29:3807–3810. 2009.PubMed/NCBI

99 

Mercer AE, Maggs JL, Sun XM, Cohen GM, Chadwick J, O'Neill PM and Park BK: Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. J Biol Chem. 282:9372–9382. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Eling N, Reuter L, Hazin J, Hamacher-Brady A and Brady NR: Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2:517–532. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Yan G, Dawood M, Böckers M, Klauck SM, Fottner C, Weber MM and Efferth T: Multiple modes of cell death in neuroendocrine tumors induced by artesunate. Phytomedicine. 79:1533322020. View Article : Google Scholar : PubMed/NCBI

102 

Song Q, Peng S, Che F and Zhu X: Artesunate induces ferroptosis via modulation of p38 and ERK signaling pathway in glioblastoma cells. J Pharmacol Sci. 148:300–306. 2022. View Article : Google Scholar : PubMed/NCBI

103 

Koike T, Takenaka M, Suzuki N, Ueda Y, Mori M, Hirayama T, Nagasawa H and Morishige KI: Intracellular ferritin heavy chain plays the key role in artesunate-induced ferroptosis in ovarian serous carcinoma cells. J Clin Biochem Nutr. 71:34–40. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin CS and Fleckenstein L: Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J. 10:2632011. View Article : Google Scholar : PubMed/NCBI

105 

Valashedi MR, Nikoo A, Najafi-Ghalehlou N, Tomita K, Kuwahara Y, Sato T, Roushandeh AM and Roudkenar MH: Pharmacological targeting of ferroptosis in cancer treatment. Curr Cancer Drug Targets. 22:108–125. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Li Y, Shi N, Zhang W, Zhang H, Song Y, Zhu W and Feng X: Supramolecular hybrids of carbon dots and dihydroartemisinin for enhanced anticancer activity and mechanism analysis. J Mater Chem B. 8:9777–9784. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Shterman N, Kupfer B and Moroz C: Comparison of transferrin receptors, iron content and isoferritin profile in normal and malignant human breast cell lines. Pathobiology. 59:19–25. 1991. View Article : Google Scholar : PubMed/NCBI

108 

Torti SV and Torti FM: Iron and cancer: More ore to be mined. Nat Rev Cancer. 13:342–355. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Tan KS, Wong WS and Shen HM: Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 289:33425–33441. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, et al: Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 16:1069–1079. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Abrams RP, Carroll WL and Woerpel KA: Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem Biol. 11:1305–1312. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Efferth T and Oesch F: Oxidative stress response of tumor cells: Microarray-based comparison between artemisinins and anthracyclines. Biochem Pharmacol. 68:3–10. 2004. View Article : Google Scholar : PubMed/NCBI

115 

Horwedel C, Tsogoeva SB, Wei S and Efferth T: Cytotoxicity of artesunic acid homo- and heterodimer molecules toward sensitive and multidrug-resistant CCRF-CEM leukemia cells. J Med Chem. 53:4842–4848. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Lee YS, Lee DH, Choudry HA, Bartlett DL and Lee YJ: Ferroptosis-induced endoplasmic reticulum stress: Crosstalk between ferroptosis and apoptosis. Mol Cancer Res. 16:1073–1076. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, Janah R, Greten HJ and Efferth T: Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 22:1045–1054. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Amable L: Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 106:27–36. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Zhao F, Vakhrusheva O, Markowitsch SD, Slade KS, Tsaur I, Cinatl J Jr, Michaelis M, Efferth T, Haferkamp A and Juengel E: Artesunate impairs growth in cisplatin-resistant bladder cancer cells by cell cycle arrest, apoptosis and autophagy induction. Cells. 9:26432020. View Article : Google Scholar : PubMed/NCBI

120 

Wong KH, Yang D, Chen S, He C and Chen M: Development of nanoscale drug delivery systems of dihydroartemisinin for cancer therapy: A review. Asian J Pharm Sci. 17:475–490. 2022. View Article : Google Scholar : PubMed/NCBI

121 

Efferth T: From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 46:65–83. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Zhang C and Zhang F: Iron homeostasis and tumorigenesis: Molecular mechanisms and therapeutic opportunities. Protein Cell. 6:88–100. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Xu M, Zha H, Han R, Cheng Y, Chen J, Yue L, Wang R and Zheng Y: Cyclodextrin-derived ROS-generating nanomedicine with pH-modulated degradability to enhance tumor ferroptosis therapy and chemotherapy. Small. 18:e22003302022. View Article : Google Scholar : PubMed/NCBI

124 

Huang D, Xu D, Chen W, Wu R, Wen Y, Liu A, Lin L, Lin X and Wang X: Fe-MnO2 nanosheets loading dihydroartemisinin for ferroptosis and immunotherapy. Biomed Pharmacother. 161:1144312023. View Article : Google Scholar : PubMed/NCBI

125 

Li L, Yang X, Xu H, Yu TT, Li QR, Hu J, Peng XC, Han N, Xu X, Chen NN, et al: A dihydroartemisinin-loaded nanoreactor motivates anti-cancer immunotherapy by synergy-induced ferroptosis to activate Cgas/STING for reprogramming of macrophage. Adv Healthc Mater. 12:e23015612023. View Article : Google Scholar : PubMed/NCBI

126 

Liang J, Li L, Tian H, Wang Z, Liu G, Duan X, Guo M, Liu J, Zhang W, Nice EC, et al: Drug repurposing-based brain-targeting self-assembly nanoplatform using enhanced ferroptosis against glioblastoma. Small. 19:e23030732023. View Article : Google Scholar : PubMed/NCBI

127 

Zhang X, Liu H, Li N, Li J, Wang M and Ren X: A (Traditional Chinese Medicine) TCM-inspired doxorubicin resistance reversing strategy: Preparation, characterization, and application of a co-loaded pH-sensitive liposome. AAPS PharmSciTech. 24:1812023. View Article : Google Scholar : PubMed/NCBI

128 

Zheng Y, Zheng J, Du M, Yang Y, Li X, Chen H and Gao Y: An iron-containing ferritin-based nanosensitizer for synergistic ferroptosis/sono-photodynamic cancer therapy. J Mater Chem B. 11:4958–4971. 2023. View Article : Google Scholar : PubMed/NCBI

129 

Jiang Z, Gao W and Huang L: Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Front Pharmacol. 10:2022019. View Article : Google Scholar : PubMed/NCBI

130 

Pang H, Wu L, Tang Y, Zhou G, Qu C and Duan J: Chemical analysis of the herbal medicine salviae miltiorrhizae radix et Rhizoma (Danshen). Molecules. 21:512016. View Article : Google Scholar : PubMed/NCBI

131 

Huang X, Jin L, Deng H, Wu D, Shen QK, Quan ZS, Zhang CH and Guo HY: Research and development of natural product tanshinone I: Pharmacology, total synthesis, and structure modifications. Front Pharmacol. 13:9204112022. View Article : Google Scholar : PubMed/NCBI

132 

Li W, Huang T, Xu S, Che B, Yu Y, Zhang W and Tang K: Molecular mechanism of tanshinone against prostate cancer. Molecules. 27:55942022. View Article : Google Scholar : PubMed/NCBI

133 

Dong Y, Morris-Natschke SL and Lee KH: Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep. 28:529–542. 2011. View Article : Google Scholar : PubMed/NCBI

134 

Fu L, Han B, Zhou Y, Ren J, Cao W, Patel G, Kai G and Zhang J: The anticancer properties of tanshinones and the pharmacological effects of their active ingredients. Front Pharmacol. 11:1932020. View Article : Google Scholar : PubMed/NCBI

135 

Yang H, Gao Y, Fan X, Liu X, Peng L and Ci X: Oridonin sensitizes cisplatin-induced apoptosis via AMPK/Akt/mTOR-dependent autophagosome accumulation in A549 cells. Front Oncol. 9:7692019. View Article : Google Scholar : PubMed/NCBI

136 

Yang W, Zhao J, Wang Y, Xu H, Wu Z, Hu Y, Jiang K, Shen P, Ma C, Guan Z, et al: In vivo inhibitory activity of andrographolide derivative ADN-9 against liver cancer and its mechanisms involved in inhibition of tumor angiogenesis. Toxicol Appl Pharmacol. 327:1–12. 2017. View Article : Google Scholar : PubMed/NCBI

137 

Yu J, Wang X, Li Y and Tang B: Tanshinone IIA suppresses gastric cancer cell proliferation and migration by downregulation of FOXM1. Oncol Rep. 37:1394–1400. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Zhang Y, Wei R, Zhu X, Cai L, Jin W and Hu H: Tanshinone IIA induces apoptosis and inhibits the proliferation, migration, and invasion of the osteosarcoma MG-63 cell line in vitro. Anticancer Drugs. 23:212–219. 2012. View Article : Google Scholar : PubMed/NCBI

139 

Zhou M, Zhou G, Hu S and Zhang L: Tanshinone IIA suppress the proliferation of HNE-1 nasopharyngeal carcinoma an in vitro study. Saudi J Biol Sci. 25:267–272. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Wu WL, Chang WL and Chen CF: Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med. 19:207–216. 1991. View Article : Google Scholar : PubMed/NCBI

141 

Cao Y, Huang B and Gao C: Salvia miltiorrhiza extract dihydrotanshinone induces apoptosis and inhibits proliferation of glioma cells. Bosn J of Basic Med Sci. 17:235–240. 2017. View Article : Google Scholar : PubMed/NCBI

142 

Li Q, Hu K, Tang S, Xu LF and Luo YC: Anti-tumor activity of tanshinone IIA in combined with cyclophosphamide against Lewis mice with lung cancer. Asian Pac J Trop Med. 9:1084–1088. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Lv C, Zeng HW, Wang JX, Yuan X, Zhang C, Fang T, Yang PM, Wu T, Zhou YD, Nagle DG and Zhang WD: The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG. Cell Death Dis. 9:1652018. View Article : Google Scholar : PubMed/NCBI

144 

Ma K, Zhang C, Huang MY, Guo YX and Hu GQ: Crosstalk between beclin-1-dependent autophagy and caspase-dependent apoptosis induced by tanshinone IIA in human osteosarcoma MG-63 cells. Oncol Rep. 36:1807–1818. 2016. View Article : Google Scholar : PubMed/NCBI

145 

Qiu W, Sun B, He F and Zhang Y: MTA-induced notch activation enhances the proliferation of human dental pulp cells by inhibiting autophagic flux. Int Endod J. 50 (Suppl 2):e52–e62. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Su CC, Chien SY, Kuo SJ, Chen YL, Cheng CY and Chen DR: Tanshinone IIA inhibits human breast cancer MDA-MB-231 cells by decreasing LC3-II, Erb-B2 and NF-κBp65. Mol Med Rep. 5:1019–1022. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Zhang K, Li J, Meng W, Xing H and Yang Y: Tanshinone IIA inhibits acute promyelocytic leukemia cell proliferation and induces their apoptosis in vivo. Blood Cells Mol Dis. 56:46–52. 2016. View Article : Google Scholar : PubMed/NCBI

148 

Zhang Y, Guo S, Fang J, Peng B, Zhang Y and Cao T: Tanshinone IIA inhibits cell proliferation and tumor growth by downregulating STAT3 in human gastric cancer. Exp Ther Med. 16:2931–2937. 2018.PubMed/NCBI

149 

Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI

150 

Radif Y, Ndiaye H, Kalantzi V, Jacobs R, Hall A, Minogue S and Waugh MG: The endogenous subcellular localisations of the long chain fatty acid-activating enzymes ACSL3 and ACSL4 in sarcoma and breast cancer cells. Mol Cell Biochem. 448:275–286. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Yuan H, Li X, Zhang X, Kang R and Tang D: Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Mao W, Ding J, Li Y, Huang R and Wang B: Inhibition of cell survival and invasion by Tanshinone IIA via FTH1: A key therapeutic target and biomarker in head and neck squamous cell carcinoma. Exp Ther Med. 24:5212022. View Article : Google Scholar : PubMed/NCBI

153 

Wang TX, Duan KL, Huang ZX, Xue ZA, Liang JY, Dang Y, Zhang A, Xiong Y, Ding C, Guan KL and Yuan HX: Tanshinone functions as a coenzyme that confers gain of function of NQO1 to suppress ferroptosis. Life Sci Alliance. 6:e2022016672022. View Article : Google Scholar : PubMed/NCBI

154 

Zhao H, Han B, Li X, Sun C, Zhai Y, Li M, Jiang M, Zhang W, Liang Y and Kai G: Salvia miltiorrhiza in breast cancer treatment: A review of its phytochemistry, derivatives, nanoparticles, and potential mechanisms. Front Pharmacol. 13:8720852022. View Article : Google Scholar : PubMed/NCBI

155 

Zhang YF, Zhang M, Huang XL, Fu YJ, Jiang YH, Bao LL, Maimaitiyiming Y, Zhang GJ, Wang QQ and Naranmandura H: The combination of arsenic and cryptotanshinone induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in breast cancer cells. Metallomics. 7:165–173. 2015. View Article : Google Scholar : PubMed/NCBI

156 

Lin H, Zheng L, Li S, Xie B, Cui B, Xia A, Lin Z and Zhou P: Cytotoxicity of tanshinone IIA combined with Taxol on drug-resist breast cancer cells MCF-7 through inhibition of Tau. Phytother Res. 32:667–671. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Li K and Lai H: TanshinoneIIA enhances the chemosensitivity of breast cancer cells to doxorubicin through down-regulating the expression of MDR-related ABC transporters. Biomed Pharmacother. 96:371–377. 2017. View Article : Google Scholar : PubMed/NCBI

158 

Li S, Wu C, Fan C, Zhang P, Yu G and Li K: Tanshinone II A improves the chemosensitivity of breast cancer cells to doxorubicin by inhibiting β-catenin nuclear translocation. J Biochem Mol Toxicol. 35:e226202021. View Article : Google Scholar : PubMed/NCBI

159 

Hu T, To KKW, Wang L, Zhang L, Lu L, Shen J, Chan RL, Li M, Yeung JH and Cho CH: Reversal of P-glycoprotein (P-gp) mediated multidrug resistance in colon cancer cells by cryptotanshinone and dihydrotanshinone of Salvia miltiorrhiza. Phytomedicine. 21:1264–1272. 2014. View Article : Google Scholar : PubMed/NCBI

160 

Hu T, Wang L, Zhang L, Lu L, Shen J, Chan RL, Li M, Wu WK, To KK and Cho CH: Sensitivity of apoptosis-resistant colon cancer cells to tanshinones is mediated by autophagic cell death and p53-independent cytotoxicity. Phytomedicine. 22:536–544. 2015. View Article : Google Scholar : PubMed/NCBI

161 

Tian HL, Yu T, Xu NN, Feng C, Zhou LY, Luo HW, Chang DC, Le XF and Luo KQ: A novel compound modified from tanshinone inhibits tumor growth in vivo via activation of the intrinsic apoptotic pathway. Cancer Lett. 297:18–30. 2010. View Article : Google Scholar : PubMed/NCBI

162 

Guerram M, Jiang ZZ, Yousef BA, Hamdi AM, Hassan HM, Yuan ZQ, Luo HW, Zhu X and Zhang LY: The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: Induction of cancer cell death by targeting apoptotic and metabolic signaling pathways. Oncotarget. 6:21865–21877. 2015. View Article : Google Scholar : PubMed/NCBI

163 

Wu Q, Zheng K, Huang X, Li L and Mei W: Tanshinone-IIA-based analogues of imidazole alkaloid Act as potent inhibitors to block breast cancer invasion and metastasis in vivo. J Med Chem. 61:10488–10501. 2018. View Article : Google Scholar : PubMed/NCBI

164 

Liu Y, Xie X, Hou X, Shen J, Shi J, Chen H, He Y, Wang Z and Feng N: Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. J Nanobiotechnology. 18:832020. View Article : Google Scholar : PubMed/NCBI

165 

Ngo SNT and Williams DB: Protective effect of isothiocyanates from cruciferous vegetables on breast cancer: Epidemiological and preclinical perspectives. Anticancer Agents Med Chem. 21:1413–1430. 2021. View Article : Google Scholar : PubMed/NCBI

166 

Fimognari C, Turrini E, Ferruzzi L, Lenzi M and Hrelia P: Natural isothiocyanates: Genotoxic potential versus chemoprevention. Mutat Res. 750:107–131. 2012. View Article : Google Scholar : PubMed/NCBI

167 

Palliyaguru DL, Yuan JM, Kensler TW and Fahey JW: Isothiocyanates: Translating the power of plants to people. Mol Nutr Food Res. 62:17009652018. View Article : Google Scholar

168 

Greco G, Schnekenburger M, Catanzaro E, Turrini E, Ferrini F, Sestili P, Diederich M and Fimognari C: Discovery of sulforaphane as an inducer of ferroptosis in U-937 leukemia cells: Expanding its anticancer potential. Cancers (Basel). 14:762021. View Article : Google Scholar : PubMed/NCBI

169 

Chen PY, Lin KC, Lin JP, Tang NY, Yang JS, Lu KW and Chung JG: Phenethyl isothiocyanate (PEITC) inhibits the growth of human oral squamous carcinoma HSC-3 Cells through G(0)/G(1) phase arrest and mitochondria-mediated apoptotic cell death. Evid Based Complement Alternat Med. 2012:7183202012. View Article : Google Scholar : PubMed/NCBI

170 

Hwang ES and Lee HJ: Effects of phenylethyl isothiocyanate and its metabolite on cell-cycle arrest and apoptosis in LNCaP human prostate cancer cells. Int J Food Sci Nutr. 61:324–336. 2010. View Article : Google Scholar : PubMed/NCBI

171 

Lv H, Zhen C, Liu J and Shang P: β-Phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway. Oxid Med Cell Longev. 2020:50219832020. View Article : Google Scholar : PubMed/NCBI

172 

Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H and Gerhäuser C: Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res. 599:76–87. 2006. View Article : Google Scholar : PubMed/NCBI

173 

Wu CL, Huang AC, Yang JS, Liao CL, Lu HF, Chou ST, Ma CY, Hsia TC, Ko YC and Chung JG: Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and nitric oxide (NO) in human osteogenic sarcoma U-2 OS cells. J Orthop Res. 29:1199–1209. 2011. View Article : Google Scholar : PubMed/NCBI

174 

Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A and Panayiotidis MI: The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents. Antioxidants (Basel). 8:1062019. View Article : Google Scholar : PubMed/NCBI

175 

Subramanian AP, John AA, Vellayappan MV, Balaji A, Jaganathan SK, Supriyanto E and Yusof M: Gallic acid: Prospects and molecular mechanisms of its anticancer activity. RSC Adv. 5:35608–35621. 2015. View Article : Google Scholar

176 

You BR and Park WH: Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol In Vitro. 24:1356–1362. 2010. View Article : Google Scholar : PubMed/NCBI

177 

Liu KC, Ho HC, Huang AC, Ji BC, Lin HY, Chueh FS, Yang JS, Lu CC, Chiang JH, Meng M and Chung JG: Gallic acid provokes DNA damage and suppresses DNA repair gene expression in human prostate cancer PC-3 cells. Environ Toxicol. 28:579–587. 2013. View Article : Google Scholar : PubMed/NCBI

178 

Subramanian V, Venkatesan B, Tumala A and Vellaichamy E: Topical application of Gallic acid suppresses the 7,12-DMBA/Croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food Chem Toxicol. 66:44–55. 2014. View Article : Google Scholar : PubMed/NCBI

179 

Teng CLJ, Han SM, Wu WC, Hsueh CM, Tsai JR, Hwang WL and Hsu SL: Mechanistic aspects of lauryl gallate-induced differentiation and apoptosis in human acute myeloid leukemia cells. Food Chem Toxicol. 71:197–206. 2014. View Article : Google Scholar : PubMed/NCBI

180 

Kim NS, Jeong SI, Hwang BS, Lee YE, Kang SH, Lee HC and Oh CH: Gallic acid inhibits cell viability and induces apoptosis in human monocytic cell line U937. J Med Food. 14:240–246. 2011. View Article : Google Scholar : PubMed/NCBI

181 

Zhao B and Hu M: Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol Lett. 6:1749–1755. 2013. View Article : Google Scholar : PubMed/NCBI

182 

Asano J, Chiba K, Tada M and Yoshii T: Cytotoxic xanthones from Garcinia hanburyi. Phytochemistry. 41:815–820. 1996. View Article : Google Scholar : PubMed/NCBI

183 

Su J, Xu T, Jiang G, Hou M, Liang M, Cheng H and Li Q: Gambogenic acid triggers apoptosis in human nasopharyngeal carcinoma CNE-2Z cells by activating volume-sensitive outwardly rectifying chloride channel. Fitoterapia. 133:150–158. 2019. View Article : Google Scholar : PubMed/NCBI

184 

Mei W, Dong C, Hui C, Bin L, Fenggen Y, Jingjing S, Cheng P, Meiling S, Yawen H, Xiaoshan W, et al: Gambogenic acid kills lung cancer cells through aberrant autophagy. PLoS One. 9:e836042014. View Article : Google Scholar : PubMed/NCBI

185 

Yan F, Wang M, Chen H, Su J, Wang X, Wang F, Xia L and Li Q: Gambogenic acid mediated apoptosis through the mitochondrial oxidative stress and inactivation of Akt signaling pathway in human nasopharyngeal carcinoma CNE-1 cells. Eur J Pharmacol. 652:23–32. 2011. View Article : Google Scholar : PubMed/NCBI

186 

Wang M, Li S, Wang Y, Cheng H, Su J and Li Q: Gambogenic acid induces ferroptosis in melanoma cells undergoing epithelial-to-mesenchymal transition. Toxicol Appl Pharmacol. 401:1151102020. View Article : Google Scholar : PubMed/NCBI

187 

Wang M, Cheng H, Wu H, Liu C, Li S, Li B, Su J, Luo S and Li Q: Gambogenic acid antagonizes the expression and effects of long non-coding RNA NEAT1 and triggers autophagy and ferroptosis in melanoma. Biomed Pharmacother. 154:1136362022. View Article : Google Scholar : PubMed/NCBI

188 

Dhillon H, Mamidi S, McClean P and Reindl KM: Transcriptome analysis of piperlongumine-treated human pancreatic cancer cells reveals involvement of oxidative stress and endoplasmic reticulum stress pathways. J Med Food. 19:578–585. 2016. View Article : Google Scholar : PubMed/NCBI

189 

Jin HO, Park JA, Kim HA, Chang YH, Hong YJ, Park IC and Lee JK: Piperlongumine downregulates the expression of HER family in breast cancer cells. Biochem Biophys Res Commun. 486:1083–1089. 2017. View Article : Google Scholar : PubMed/NCBI

190 

Alpay M, Yurdakok-Dikmen B, Kismali G and Sel T: Antileukemic effects of piperlongumine and alpha lipoic acid combination on Jurkat, MEC1 and NB4 cells in vitro. J Can Res Ther. 12:556–560. 2016. View Article : Google Scholar : PubMed/NCBI

191 

Wei G, Wang S, Cui S, Guo J, Liu Y, Liu Y and Cheng M: Synthesis and evaluation of the anticancer activity of albiziabioside A and its analogues as apoptosis inducers against human melanoma cells. Org Biomol Chem. 12:5928–5935. 2014. View Article : Google Scholar : PubMed/NCBI

192 

Wei G, Sun J, Luan W, Hou Z, Wang S, Cui S, Cheng M and Liu Y: Natural product albiziabioside A conjugated with pyruvate dehydrogenase kinase inhibitor dichloroacetate to induce apoptosis-ferroptosis-M2-TAMs polarization for combined cancer therapy. J Med Chem. 62:8760–8772. 2019. View Article : Google Scholar : PubMed/NCBI

193 

Wang H, Zhang T, Sun W, Wang Z, Zuo D, Zhou Z, Li S, Xu J, Yin F, Hua Y and Cai Z: Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 7:e22472016. View Article : Google Scholar : PubMed/NCBI

194 

Xie Y, Zhou X, Li J, Yao XC, Liu WL, Kang FH, Zou ZX, Xu KP, Xu PS and Tan GS: Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorg Chem. 109:1047442021. View Article : Google Scholar : PubMed/NCBI

195 

Liang X, Hu C, Han M, Liu C, Sun X, Yu K, Gu H and Zhang J: Solasonine inhibits pancreatic cancer progression with involvement of ferroptosis induction. Front Oncol. 12:8347292022. View Article : Google Scholar : PubMed/NCBI

196 

Jin M, Shi C, Li T, Wu Y, Hu C and Huang G: Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomed Pharmacother. 129:1102822020. View Article : Google Scholar : PubMed/NCBI

197 

Kim DH, Khan H, Ullah H, Hassan STS, Šmejkal K, Efferth T, Mahomoodally MF, Xu S, Habtemariam S, Filosa R, et al: MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol Res. 147:1043462019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Na X, Li L, Liu D, He J, Zhang L and Zhou Y: Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncol Rep 52: 123, 2024.
APA
Na, X., Li, L., Liu, D., He, J., Zhang, L., & Zhou, Y. (2024). Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncology Reports, 52, 123. https://doi.org/10.3892/or.2024.8782
MLA
Na, X., Li, L., Liu, D., He, J., Zhang, L., Zhou, Y."Natural products targeting ferroptosis pathways in cancer therapy (Review)". Oncology Reports 52.3 (2024): 123.
Chicago
Na, X., Li, L., Liu, D., He, J., Zhang, L., Zhou, Y."Natural products targeting ferroptosis pathways in cancer therapy (Review)". Oncology Reports 52, no. 3 (2024): 123. https://doi.org/10.3892/or.2024.8782
Copy and paste a formatted citation
x
Spandidos Publications style
Na X, Li L, Liu D, He J, Zhang L and Zhou Y: Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncol Rep 52: 123, 2024.
APA
Na, X., Li, L., Liu, D., He, J., Zhang, L., & Zhou, Y. (2024). Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncology Reports, 52, 123. https://doi.org/10.3892/or.2024.8782
MLA
Na, X., Li, L., Liu, D., He, J., Zhang, L., Zhou, Y."Natural products targeting ferroptosis pathways in cancer therapy (Review)". Oncology Reports 52.3 (2024): 123.
Chicago
Na, X., Li, L., Liu, D., He, J., Zhang, L., Zhou, Y."Natural products targeting ferroptosis pathways in cancer therapy (Review)". Oncology Reports 52, no. 3 (2024): 123. https://doi.org/10.3892/or.2024.8782
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team