|
1
|
North BJ and Verdin E: Sirtuins:
Sir2-related NAD-dependent protein deacetylases. Genome Biol.
5:2242004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Michan S and Sinclair D: Sirtuins in
mammals: Insights into their biological function. Biochem J.
404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Rajabi N, Galleano I, Madsen AS and Olsen
CA: Targeting sirtuins: Substrate specificity and inhibitor design.
Prog Mol Biol Transl Sci. 154:25–69. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
North BJ, Marshall BL, Borra MT, Denu JM
and Verdin E: The human Sir2 ortholog, SIRT2, is an NAD+-dependent
tubulin deacetylase. Mol Cell. 11:437–444. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL,
Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family
in health and disease. Signal Transduct Target Ther. 7:4022022.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Abe T, Ohga Y, Tabayashi N, Kobayashi S,
Sakata S, Misawa H, Tsuji T, Kohzuki H, Suga H, Taniguchi S and
Takaki M: Left ventricular diastolic dysfunction in type 2 diabetes
mellitus model rats. Am J Physiol Heart Circ Physiol.
282:H138–H148. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chen Y, Zhou D, Feng Y, Li B, Cui Y, Chen
G and Li N: Association of sirtuins (SIRT1-7) with lung and
intestinal diseases. Mol Cell Biochem. 477:2539–2552. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gong J, Wang H, Lou W, Wang G, Tao H, Wen
H, Liu Y and Xie Q: Associations of sirtuins with
clinicopathological parameters and prognosis in non-small cell lung
cancer. Cancer Manag Res. 10:3341–3356. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen X, Hokka D, Maniwa Y, Ohbayashi C,
Itoh T and Hayashi Y: Sirt1 is a tumor promoter in lung
adenocarcinoma. Oncol Lett. 8:387–393. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang C, Yang W, Dong F, Guo Y, Tan J, Ruan
S and Huang T: The prognostic role of Sirt1 expression in solid
malignancies: A meta-analysis. Oncotarget. 8:66343–66351. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li G and Zhong S: MicroRNA-217 inhibits
the proliferation and invasion, and promotes apoptosis of non-small
cell lung cancer cells by targeting sirtuin 1. Oncol Lett.
21:3862021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ahmad SMS, Al-Mansoob M and Ouhtit A:
SIRT1, a novel transcriptional downstream target of CD44, linking
its deacetylase activity to tumor cell invasion/metastasis. Front
Oncol. 12:10381212022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Xie M, Liu M and He CS: Sirt1 regulates
endothelial Notch signaling in lung cancer. PLoS One. 7:e453312012.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sun J, Li G, Liu Y, Ma M, Song K, Li H,
Zhu D, Tang X, Kong J and Yuan X: Targeting histone deacetylase
SIRT1 selectively eradicates EGFR TKI-resistant cancer stem cells
via regulation of mitochondrial oxidative phosphorylation in lung
adenocarcinoma. Neoplasia. 22:33–46. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Han L, Liang XH, Chen LX, Bao SM and Yan
ZQ: SIRT1 is highly expressed in brain metastasis tissues of
non-small cell lung cancer (NSCLC) and in positive regulation of
NSCLC cell migration. Int J Clin Exp Pathol. 11:2357–2365.
2013.PubMed/NCBI
|
|
16
|
Yang F: The expression and mechanism of
Sirt1 and Ampk in nonsmall cell lung cancer. J BUON. 23:106–110.
2018.PubMed/NCBI
|
|
17
|
Hosseninia S, Ameli A, Aslani MR,
Pourfarzi F and Ghobadi H: Serum levels of sirtuin-1 in patients
with lung cancer and its association with karnofsky performance
status. Acta Biomed. 92:e20210122021.PubMed/NCBI
|
|
18
|
Costa-Machado LF, Martín-Hernández R,
Sanchez-Luengo MÁ, Hess K, Vales-Villamarin C, Barradas M, Lynch C,
de la Nava D, Diaz-Ruiz A, de Cabo R, et al: Sirt1 protects from
K-Ras-driven lung carcinogenesis. EMBO Rep. 19:e438792018.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li X, Jiang Z, Li X and Zhang X: SIRT1
overexpression protects non-small cell lung cancer cells against
osteopontin-induced epithelial-mesenchymal transition by
suppressing Nf-kb signaling. Onco Targets Ther. 11:1157–1171. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhao Z, Zhang H, Zhang F, Ji Y, Peng Y,
Wang F and Zhao L: Circular RNA sirtuin-1 restrains the malignant
phenotype of non-small cell lung cancer cells via the
microRNA-510-5p/Smad family member 7 axis. Acta Biochim Pol.
70:855–863. 2023.PubMed/NCBI
|
|
21
|
Grbesa I, Pajares MJ, Martínez-Terroba E,
Agorreta J, Mikecin AM, Larráyoz M, Idoate MA, Gall-Troselj K, Pio
R and Montuenga LM: Expression of sirtuin 1 and 2 is associated
with poor prognosis in non-small cell lung cancer patients. PLoS
One. 10:e01246702015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Song X, Kong F, Zong Z, Ren M, Meng Q, Li
Y and Sun Z: miR-124 and miR-142 enhance cisplatin sensitivity of
non-small cell lung cancer cells through repressing autophagy via
directly targeting SIRT1. RSC Adv. 9:5234–5243. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yang X, Yu F, Huang G, Ni Y, Zhang T, Zou
Z and Meng M: Exosomal miR-133a-3p promotes the growth and
metastasis of lung cancer cells following incomplete microwave
ablation. Int J Hyperthermia. 40:21900652023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gu Y, Pais G, Becker V, Körbel C, Ampofo
E, Ebert E, Hohneck J, Ludwig N, Meese E, Bohle RM, et al:
Suppression of endothelial miR-22 mediates non-small cell lung
cancer cell-induced angiogenesis. Mol Ther Nucleic Acids.
26:849–864. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wei J, Meng G, Wu J, Wang Y, Zhang Q, Dong
T, Bao J, Wang C and Zhang J: MicroRNA-326 impairs chemotherapy
resistance in non small cell lung cancer by suppressing histone
deacetylase SIRT1-mediated HIF1α and elevating VEGFA.
Bioengineered. 13:5685–5699. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang Z, Nong L, Chen ML, Gu XL, Zhao WW,
Liu MH and Cheng WW: Long noncoding RNA SNHG10 sponges miR-543 to
upregulate tumor suppressive SIRT1 in nonsmall cell lung cancer.
Cancer Biother Radiopharm. 35:771–775. 2020.PubMed/NCBI
|
|
27
|
Yao Y, Hua Q, Zhou Y and Shen H: CircRNA
has_circ_0001946 promotes cell growth in lung adenocarcinoma by
regulating miR-135a-5p/SIRT1 axis and activating Wnt/β-catenin
signaling pathway. Biomed Pharmacother. 111:1367–1375. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jiang W, Hou L, Wei J, Du Y, Zhao Y, Deng
X and Lin X: Hsa-miR-217 inhibits the proliferation, migration, and
invasion in non-small cell lung cancer cells via targeting SIRT1
and P53/KAI1 signaling. Balkan Med J. 37:208–214. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cheng D, Zhao L, Xu Y, Ou R, Li G, Yang H
and Li W: K-Ras promotes the non-small lung cancer cells survival
by cooperating with sirtuin 1 and p27 under ROS stimulation. Tumour
Biol. 36:7221–7232. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mu N, Lei Y, Wang Y, Wang Y, Duan Q, Ma G,
Liu X and Su L: Inhibition of SIRT1/2 upregulates HSPA5 acetylation
and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in
human lung cancer cells. Apoptosis. 24:798–811. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yu H, Kim YM and Cho M:
Cytoplasm-localized SIRT1 downregulation attenuates apoptosis and
cell cycle arrest in cisplatin-resistant lung cancer A549 cells. J
Cancer. 11:4495–4509. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu R, Luo X, Ye X, Li H, Liu H, Du Q and
Zhai Q: SIRT1/PGC-1α/PPAR-γ correlate with hypoxia-induced
chemoresistance in non-small cell lung cancer. Front Oncol.
11:6827622021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zheng M, Hu C, Wu M and Chin YE: Emerging
role of SIRT2 in non-small cell lung cancer. Oncol Lett.
22:7312021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li Z, Xie QR, Chen Z, Lu S and Xia W:
Regulation of SIRT2 levels for human non-small cell lung cancer
therapy. Lung Cancer. 82:9–15. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li Z, Huang J, Yuan H, Chen Z, Luo Q and
Lu S: SIRT2 inhibits non-small cell lung cancer cell growth through
impairing Skp2-mediated p27 degradation. Oncotarget. 7:18927–18939.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Xu W, Jiang K, Shen M, Qian Y and Peng Y:
SIRT2 suppresses non-small cell lung cancer growth by targeting
JMJD2A. Biol Chem. 396:929–936. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gao CX, Chen B, Xie HK, Han CN and Luo J:
Immunohistochemistry and clinical value of sirtuin 2 in
non-metastasized non-small cell lung cancer. J Thorac Dis.
11:3973–3979. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hoffmann G, Breitenbücher F, Schuler M and
Ehrenhofer-Murray AE: A novel sirtuin 2 (SIRT2) inhibitor with
p53-dependent pro-apoptotic activity in non-small cell lung cancer.
J Biol Chem. 289:5208–5216. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xu Y, Li F, Lv L, Li T, Zhou X, Deng CX,
Guan KL, Lei QY and Xiong Y: Oxidative stress activates SIRT2 to
deacetylate and stimulate phosphoglycerate mutase. Cancer Res.
74:3630–3642. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tang HX, Wang MY, Xiao W and Wen JW:
SIRT2-reverses drug-resistance of HL-60/A through autophagy
mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 27:409–414. 2019.(In
Chinese). PubMed/NCBI
|
|
41
|
Liu L, Yu L, Zeng C, Long H, Duan G, Yin
G, Dai X and Lin Z: E3 ubiquitin ligase HRD1 promotes lung
tumorigenesis by promoting sirtuin 2 ubiquitination and
degradation. Mol Cell Biol. 40:e00257–19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhao Y, Yang J, Liao W, Liu X, Zhang H,
Wang S, Wang D, Feng J, Yu L and Zhu WG: Cytosolic FoxO1 is
essential for the induction of autophagy and tumour suppressor
activity. Nat Cell Biol. 12:665–675. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhu H, Hu Y, Zeng C, Chang L, Ge F, Wang
W, Yan F, Zhao Q, Cao J, Ying M, et al: The SIRT2-mediated
deacetylation of AKR1C1 is required for suppressing its
pro-metastasis function in non-small cell lung cancer.
Theranostics. 10:2188–2200. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lin R, Tao R, Gao X, Li T, Zhou X, Guan
KL, Xiong Y and Lei QY: Acetylation stabilizes ATP-citrate lyase to
promote lipid biosynthesis and tumor growth. Mol Cell. 51:506–518.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jiang K, Shen M, Chen Y and Xu W: miR-150
promotes the proliferation and migration of non-small cell lung
cancer cells by regulating the SIRT2/JMJD2A signaling pathway.
Oncol Rep. 40:943–951. 2018.PubMed/NCBI
|
|
46
|
Luo J, Bao YC, Ji XX, Chen B, Deng QF and
Zhou SW: SPOP promotes SIRT2 degradation and suppresses non-small
cell lung cancer cell growth. Biochem Biophys Res Commun.
483:880–884. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Head PE, Zhang H, Bastien AJ, Koyen AE,
Withers AE, Daddacha WB, Cheng X and Yu DS: Sirtuin 2 mutations in
human cancers impair its function in genome maintenance. J Biol
Chem. 292:9919–9931. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Inoue K, Mallakin A and Frazier DP: Dmp1
and tumor suppression. Oncogene. 26:4329–4335. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Das C, Lucia MS, Hansen KC and Tyler JK:
CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature.
459:113–117. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Serrano L, Martínez-Redondo P,
Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB,
Kane-Goldsmith N, Tong Q, Rabanal RM, et al: The tumor suppressor
SirT2 regulates cell cycle progression and genome stability by
modulating the mitotic deposition of H4K20 methylation. Genes Dev.
27:639–653. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jin YH, Kim YJ, Kim DW, Baek KH, Kang BY,
Yeo CY and Lee KY: Sirt2 interacts with 14-3-3 beta/gamma and
down-regulates the activity of p53. Biochem Biophys Res Commun.
368:690–695. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang
P, Xu YH, Dong B, Xiong Y, Lei QY and Guan KL: Lysine-5 acetylation
negatively regulates lactate dehydrogenase A and is decreased in
pancreatic cancer. Cancer Cell. 23:464–476. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hamaidi I, Zhang L, Kim N, Wang MH,
Iclozan C, Fang B, Liu M, Koomen JM, Berglund AE, Yoder SJ, et al:
Sirt2 inhibition enhances metabolic fitness and effector functions
of tumor-reactive T cells. Cell Metab. 32:420–436.e12. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jing H, Hu J, He B, Negrón Abril YL,
Stupinski J, Weiser K, Carbonaro M, Chiang YL, Southard T,
Giannakakou P, et al: A SIRT2-selective inhibitor promotes c-Myc
oncoprotein degradation and exhibits broad anticancer activity.
Cancer Cell. 29:6072016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhou Y, Cheng S, Chen S and Zhao Y:
Prognostic and clinicopathological value of SIRT3 expression in
various cancers: A systematic review and meta-analysis. Onco
Targets Ther. 11:2157–2167. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang GC, Fu BC, Zhang DY, Sun L, Chen W,
Bai L, Gao T, Lu HG, Wang ZY, Kong QQ, et al: The expression and
related clinical significance of SIRT3 in non-small-cell lung
cancer. Dis Markers. 2017:82419532017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ahmed MA, O'Callaghan C, Chang ED, Jiang H
and Vassilopoulos A: Context-dependent roles for SIRT2 and SIRT3 in
tumor development upon calorie restriction or high fat diet. Front
Oncol. 9:14622020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cao K, Chen Y, Zhao S, Huang Y, Liu T, Liu
H, Li B, Cui J, Cai J, Bai C, et al: Sirt3 promoted DNA damage
repair and radioresistance through ATM-Chk2 in non-small cell lung
cancer cells. J Cancer. 12:5464–5472. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tao F, Gu C, Li N, Ying Y, Feng Y, Ni D,
Zhang Q and Xiao Q: SIRT3 acts as a novel biomarker for the
diagnosis of lung cancer: A retrospective study. Medicine
(Baltimore). 100:e265802021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xiao K, Jiang J, Wang W, Cao S, Zhu L,
Zeng H, Ouyang R, Zhou R and Chen P: Sirt3 is a tumor suppressor in
lung adenocarcinoma cells. Oncol Rep. 30:1323–1328. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cao Y, Li P, Wang H, Li L and Li Q: SIRT3
promotion reduces resistance to cisplatin in lung cancer by
modulating the FOXO3/CDT1 axis. Cancer Med. 10:1394–1404. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Geoghegan F, Buckland RJ, Rogers ET,
Khalifa K, O'Connor EB, Rooney MF, Behnam-Motlagh P, Nilsson TK,
Grankvist K and Porter RK: Bioenergetics of acquired cisplatin
resistant H1299 non-small cell lung cancer and P31 mesothelioma
cells. Oncotarget. 8:94711–94725. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang J, Han L, Yu J, Li H and Li Q:
miR-224 aggravates cancer-associated fibroblast-induced progression
of non-small cell lung cancer by modulating a positive loop of the
SIRT3/AMPK/mTOR/HIF-1α axis. Aging (Albany NY). 13:10431–10449.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xiong H, Liu B, Liu XY, Xia ZK, Lu M, Hu
CH and Liu P: circ_rac GTPase-activating protein 1 facilitates
stemness and metastasis of non-small cell lung cancer via
polypyrimidine tract-binding protein 1 recruitment to promote
sirtuin-3-mediated replication timing regulatory factor 1
deacetylation. Lab Invest. 103:1000102023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xiong Y, Wang L, Wang S, Wang M, Zhao J,
Zhang Z, Li X, Jia L and Han Y: SIRT3 deacetylates and promotes
degradation of P53 in PTEN-defective non-small cell lung cancer. J
Cancer Res Clin Oncol. 144:189–198. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Petronek MS, Bayanbold K, Amegble K,
Tomanek-Chalkley AM, Allen BG, Spitz DR and Bailey CK: Evaluating
the iron chelator function of sirtinol in non-small cell lung
cancer. Front Oncol. 13:11857152023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lagunas-Rangel FA: Role of SIRT5 in
cancer. Friend or Foe? Biochimie. 209:131–141. 2023.PubMed/NCBI
|
|
68
|
Xiangyun Y, Xiaomin N, Linping G, Yunhua
X, Ziming L, Yongfeng Y, Zhiwei C and Shun L: Desuccinylation of
pyruvate kinase M2 by SIRT5 contributes to antioxidant response and
tumor growth. Oncotarget. 8:6984–6993. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Deng Z, Tu Q, Hu G and Xing M: Knockdown
of circLRWD1 weakens DDP resistance via reduction of SIRT5
expression through releasing miR-507 in non-small cell lung cancer.
Anticancer Drugs. 33:861–870. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lu W, Zuo Y, Feng Y and Zhang M: SIRT5
facilitates cancer cell growth and drug resistance in non-small
cell lung cancer. Tumour Biol. 35:10699–10705. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li Z, Yu DP, Wang N, Tao T, Luo W and Chen
H: SIRT5 promotes non-small cell lung cancer progression by
reducing FABP4 acetylation level. Neoplasma. 69:909–917. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wu J, Zheng C, Wang Y, Yang Z, Li C, Fang
W, Jin Y, Hou K, Cheng Y, Qi J, et al: Correction: LncRNA
APCDD1L-AS1 induces icotinib resistance by inhibition of EGFR
autophagic degradation via the miR-1322/miR-1972/miR-324-3p-SIRT5
axis in lung adenocarcinoma. Biomark Res. 11:512023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Azuma Y, Yokobori T, Mogi A, Altan B,
Yajima T, Kosaka T, Onozato R, Yamaki E, Asao T, Nishiyama M and
Kuwano H: SIRT6 expression is associated with poor prognosis and
chemosensitivity in patients with non-small cell lung cancer. J
Surg Oncol. 112:231–237. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bai L, Lin G, Sun L, Liu Y, Huang X, Cao
C, Guo Y and Xie C: Upregulation of SIRT6 predicts poor prognosis
and promotes metastasis of non-small cell lung cancer via the
ERK1/2/MMP9 pathway. Oncotarget. 7:40377–40386. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Subramani P, Nagarajan N, Mariaraj S and
Vilwanathan R: Knockdown of sirtuin6 positively regulates
acetylation of DNMT1 to inhibit NOTCH signaling pathway in
non-small cell lung cancer cell lines. Cell Signal. 105:1106292023.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Krishnamoorthy V and Vilwanathan R:
Silencing Sirtuin 6 induces cell cycle arrest and apoptosis in
non-small cell lung cancer cell lines. Genomics. 112:3703–3712.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kim EJ and Juhnn YS: Cyclic AMP signaling
reduces sirtuin 6 expression in non-small cell lung cancer cells by
promoting ubiquitin-proteasomal degradation via inhibition of the
Raf-Mek-Erk (Raf/mitogen-activated extracellular signal-regulated
kinase/extracellular signal-regulated kinase) pathway. J Biol Chem.
290:9604–9613. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhu B, Yan Y, Shao B, Tian L and Zhou W:
Downregulation of SIRT6 is associated with poor prognosis in
patients with non-small cell lung cancer. J Int Med Res.
46:1517–1527. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang J, Cai Y and Sheng Z: Experimental
studies on the protective effects of the overexpression of
lentivirus-mediated sirtuin 6 on radiation-induced lung injury. Adv
Clin Exp Med. 29:873–877. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang J, Sheng Z and Cai Y: SIRT6
overexpression inhibits HIF1α expression and its impact on tumor
angiogenesis in lung cancer. Int J Clin Exp Pathol. 11:2940–2947.
2018.PubMed/NCBI
|
|
81
|
Fu L, Dong Q, He J, Wang X, Xing J, Wang
E, Qiu X and Li Q: SIRT4 inhibits malignancy progression of NSCLCs,
through mitochondrial dynamics mediated by the ERK-Drp1 pathway.
Oncogene. 36:2724–2736. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jiang Y, Han Z, Wang Y and Hao W:
Depletion of SIRT7 sensitizes human non-small cell lung cancer
cells to gemcitabine therapy by inhibiting autophagy. Biochem
Biophys Res Commun. 506:266–271. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Toiber D, Erdel F, Bouazoune K, Silberman
DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor
B, Giacosa S, et al: SIRT6 recruits SNF2H to DNA break sites,
preventing genomic instability through chromatin remodeling. Mol
Cell. 51:454–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
McCord RA, Michishita E, Hong T, Berber E,
Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, et
al: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for
DNA double-strand break repair. Aging (Albany NY). 1:109–121. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gonfloni S, Iannizzotto V, Maiani E,
Bellusci G, Ciccone S and Diederich M: P53 and Sirt1: Routes of
metabolism and genome stability. Biochem Pharmacol. 92:149–156.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
van Leeuwen I and Lain S: Sirtuins and
p53. Adv Cancer Res. 102:171–195. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang S, Yang Y, Huang S, Deng C, Zhou S,
Yang J, Cao Y, Xu L, Yuan Y, Yang J, et al: SIRT1 inhibits gastric
cancer proliferation and metastasis via STAT3/MMP-13 signaling. J
Cell Physiol. 234:15395–15406. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Leng S, Huang W, Chen Y, Yang Y, Feng D,
Liu W, Gao T, Ren Y, Huo M, Zhang J, et al: SIRT1 coordinates with
the CRL4B complex to regulate pancreatic cancer stem cells to
promote tumorigenesis. Cell Death Differ. 28:3329–3343. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liarte S, Alonso-Romero JL and Nicolás FJ:
SIRT1 and estrogen signaling cooperation for breast cancer onset
and progression. Front Endocrinol (Lausanne). 9:5522018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Dikalova AE, Itani HA, Nazarewicz RR,
McMaster WG, Flynn CR, Uzhachenko R, Fessel JP, Gamboa JL, Harrison
DG and Dikalov SI: Sirt3 impairment and SOD2 hyperacetylation in
vascular oxidative stress and hypertension. Circ Res. 121:564–574.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dikalov SI and Dikalova AE: Crosstalk
between mitochondrial hyperacetylation and oxidative stress in
vascular dysfunction and hypertension. Antioxid Redox Signal.
31:710–721. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Han Z, Liu L, Liu Y and Li S: Sirtuin
SIRT6 suppresses cell proliferation through inhibition of Twist1
expression in non-small cell lung cancer. Int J Clin Exp Pathol.
7:4774–4781. 2014.PubMed/NCBI
|
|
93
|
Xiong X, Tao R, DePinho RA and Dong XC:
Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts
on glucose metabolism through downregulation of gluconeogenesis and
upregulation of glycolysis. PLoS One. 8:e743402013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ohtake F, Takeyama K, Matsumoto T,
Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J,
Chambon P, et al: Modulation of oestrogen receptor signalling by
association with the activated dioxin receptor. Nature.
423:545–550. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang P, Tu B, Wang H, Cao Z, Tang M,
Zhang C, Gu B, Li Z, Wang L, Yang Y, et al: Tumor suppressor p53
cooperates with SIRT6 to regulate gluconeogenesis by promoting
FoxO1 nuclear exclusion. Proc Natl Acad Sci USA. 111:10684–10689.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Song MY, Wang J, Ka SO, Bae EJ and Park
BH: Insulin secretion impairment in Sirt6 knockout pancreatic β
cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway.
Sci Rep. 6:303212016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bajpe PK, Prahallad A, Horlings H,
Nagtegaal I, Beijersbergen R and Bernards R: A chromatin modifier
genetic screen identifies SIRT2 as a modulator of response to
targeted therapies through the regulation of MEK kinase activity.
Oncogene. 34:531–536. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xu H, Li Y, Chen L, Wang Q, Zhang H, Lin
Y, Li Q and Pang T: SIRT2 mediates multidrug resistance in acute
myelogenous leukemia cells via ERK1/2 signaling pathway. Int J
Oncol. 48:613–623. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang M, Du W, Acklin S, Jin S and Xia F:
SIRT2 protects peripheral neurons from cisplatin-induced injury by
enhancing nucleotide excision repair. J Clin Invest. 130:2953–2965.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun
YP, Xiong Y, Guan KL and Lei QY: NOTCH-induced aldehyde
dehydrogenase 1A1 deacetylation promotes breast cancer stem cells.
J Clin Invest. 124:5453–5465. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wei R, He D and Zhang X: Role of SIRT2 in
regulation of stemness of cancer stem-like cells in renal cell
carcinoma. Cell Physiol Biochem. 49:2348–2357. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fong Y, Lin YC, Wu CY, Wang HM, Lin LL,
Chou HL, Teng YN, Yuan SS and Chiu CC: The antiproliferative and
apoptotic effects of sirtinol, a sirtuin inhibitor on human lung
cancer cells by modulating Akt/β-catenin-Foxo3a axis.
ScientificWorldJournal. 2014:9370512014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ma W, Zhao X, Wang K, Liu J and Huang G:
Dichloroacetic acid (DCA) synergizes with the SIRT2 inhibitor
Sirtinol and AGK2 to enhance anti-tumor efficacy in non-small cell
lung cancer. Cancer Biol Ther. 19:835–846. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang Y, Zhang Q, Zeng SX, Zhang Y, Mayo
LD and Lu H: Inauhzin and Nutlin3 synergistically activate p53 and
suppress tumor growth. Cancer Biol Ther. 13:915–924. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Akbaribazm M, Khazaei MR, Khazaei F and
Khazaei M: Doxorubicin and Trifolium pratense L. (Red clover)
extract synergistically inhibits brain and lung metastases in 4T1
tumor-bearing BALB/c mice. Food Sci Nutr. 8:5557–5570. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Shang JL, Ning SB, Chen YY, Chen TX and
Zhang J: MDL-800, an allosteric activator of SIRT6, suppresses
proliferation and enhances EGFR-TKIs therapy in non-small cell lung
cancer. Acta Pharmacol Sin. 42:120–131. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Feng S, Li Y, Huang H, Huang H, Duan Y,
Yuan Z, Zhu W, Mei Z, Luo L and Yan P: Isoorientin reverses lung
cancer drug resistance by promoting ferroptosis via the
SIRT6/Nrf2/GPX4 signaling pathway. Eur J Pharmacol. 954:1758532023.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Fang C, Liu Y, Chen L, Luo Y, Cui Y, Zhang
N, Liu P, Zhou M and Xie Y: α-Hederin inhibits the growth of lung
cancer A549 cells in vitro and in vivo by decreasing SIRT6
dependent glycolysis. Pharm Biol. 59:11–20. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Dai PC, Liu DL, Zhang L, Ye J, Wang Q,
Zhang HW, Lin XH and Lai GX: Astragaloside IV sensitizes non-small
cell lung cancer cells to gefitinib potentially via regulation of
SIRT6. Tumour Biol. 39:10104283176975552017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Iskandar AR, Liu C, Smith DE, Hu KQ, Choi
SW, Ausman LM and Wang XD: β-cryptoxanthin restores
nicotine-reduced lung SIRT1 to normal levels and inhibits
nicotine-promoted lung tumorigenesis and emphysema in A/J mice.
Cancer Prev Res (Phila). 6:309–320. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
You J, Cheng J, Yu B, Duan C and Peng J:
Baicalin, a Chinese herbal medicine, inhibits the proliferation and
migration of human non-small cell lung carcinoma (NSCLC) Cells,
A549 and H1299, by activating the Sirt1/Ampk signaling pathway. Med
Sci Monit. 24:2126–2133. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chen X, Hao B, Li D, Reiter RJ, Bai Y,
Abay B, Chen G, Lin S, Zheng T, Ren Y, et al: Melatonin inhibits
lung cancer development by reversing the Warburg effect via
stimulating the SIRT3/PDH axis. J Pineal Res. 71:e127552021.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Li M, Hao B, Zhang M, Reiter RJ, Lin S,
Zheng T, Chen X, Ren Y, Yue L, Abay B, et al: Melatonin enhances
radiofrequency-induced NK antitumor immunity, causing cancer
metabolism reprogramming and inhibition of multiple pulmonary tumor
development. Signal Transduct Target Ther. 6:3302021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim
HK, Shim YM and Kim DH: Metformin and tenovin-6 synergistically
induces apoptosis through LKB1-independent SIRT1 down-regulation in
non-small cell lung cancer cells. J Cell Mol Med. 23:2872–2889.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Cha BK, Kim YS, Hwang KE, Cho KH, Oh SH,
Kim BR, Jun HY, Yoon KH, Jeong ET and Kim HR: Celecoxib and
sulindac inhibit TGF-β1-induced epithelial-mesenchymal transition
and suppress lung cancer migration and invasion via downregulation
of sirtuin 1. Oncotarget. 7:57213–57227. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hwang KE, Kim YS, Hwang YR, Kwon SJ, Park
DS, Cha BK, Kim BR, Yoon KH, Jeong ET and Kim HR: Pemetrexed
induces apoptosis in malignant mesothelioma and lung cancer cells
through activation of reactive oxygen species and inhibition of
sirtuin 1. Oncol Rep. 33:2411–2419. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lai TC, Lee YL, Lee WJ, Hung WY, Cheng GZ,
Chen JQ, Hsiao M, Chien MH and Chang JH: Synergistic tumor
inhibition via energy elimination by repurposing penfluridol and
2-deoxy-D-glucose in lung cancer. Cancers (Basel). 14:27502022.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Slanovc J, Mikulčić M, Jahn N, Wizsy NGT,
Sattler W, Malle E and Hrzenjak A: Prostaglandin
15d-PGJ2 inhibits proliferation of lung adenocarcinoma
cells by inducing ROS production and activation of apoptosis via
sirtuin-1. Biochim Biophys Acta Mol Basis Dis. 1870:1669242024.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Tae H, Park EY, Dey P, Son JY, Lee S-Y,
Jung JH, Saloni S, Kim M-H and Kim HS: Novel SIRT1 inhibitor
15-deoxy-Δ12,14-prostaglandin J2 and its derivatives exhibit
anticancer activity through apoptotic or autophagic cell death
pathways in SKOV3 cells. Int J Oncol. 53:2518–2530. 2018.PubMed/NCBI
|
|
120
|
Hwang KE, Kim HJ, Song IS, Park C, Jung
JW, Park DS, Oh SH, Kim YS and Kim HR: Salinomycin suppresses
TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the
AMPK/SIRT1 pathway in non-small cell lung cancer. Int J Med Sci.
18:715–726. 2021. View Article : Google Scholar : PubMed/NCBI
|