Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2024 Volume 52 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2024 Volume 52 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Emerging role of sirtuins in non‑small cell lung cancer (Review)

  • Authors:
    • Min Zhou
    • Lin Wei
    • Renfu Lu
  • View Affiliations / Copyright

    Affiliations: Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 127
    |
    Published online on: July 30, 2024
       https://doi.org/10.3892/or.2024.8786
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Non‑small cell lung cancer (NSCLC) is a highly prevalent lung malignancy characterized by insidious onset, rapid progression and advanced stage at the time of diagnosis, making radical surgery impossible. Sirtuin (SIRT) is a histone deacetylase that relies on NAD+ for its function, regulating the aging process through modifications in protein activity and stability. It is intricately linked to various processes, including glycolipid metabolism, inflammation, lifespan regulation, tumor formation and stress response. An increasing number of studies indicate that SIRTs significantly contribute to the progression of NSCLC by regulating pathophysiological processes such as energy metabolism, autophagy and apoptosis in tumor cells through the deacetylation of histones or non‑histone proteins. The present review elaborates on the roles of different SIRTs and their mechanisms in NSCLC, while also summarizing novel therapeutic agents based on SIRTs. It aims to present new ideas and a theoretical basis for NSCLC treatment.
View Figures

Figure 1

View References

1 

North BJ and Verdin E: Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 5:2242004. View Article : Google Scholar : PubMed/NCBI

2 

Michan S and Sinclair D: Sirtuins in mammals: Insights into their biological function. Biochem J. 404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Rajabi N, Galleano I, Madsen AS and Olsen CA: Targeting sirtuins: Substrate specificity and inhibitor design. Prog Mol Biol Transl Sci. 154:25–69. 2018. View Article : Google Scholar : PubMed/NCBI

4 

North BJ, Marshall BL, Borra MT, Denu JM and Verdin E: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 11:437–444. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family in health and disease. Signal Transduct Target Ther. 7:4022022. View Article : Google Scholar : PubMed/NCBI

6 

Abe T, Ohga Y, Tabayashi N, Kobayashi S, Sakata S, Misawa H, Tsuji T, Kohzuki H, Suga H, Taniguchi S and Takaki M: Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am J Physiol Heart Circ Physiol. 282:H138–H148. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Chen Y, Zhou D, Feng Y, Li B, Cui Y, Chen G and Li N: Association of sirtuins (SIRT1-7) with lung and intestinal diseases. Mol Cell Biochem. 477:2539–2552. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Gong J, Wang H, Lou W, Wang G, Tao H, Wen H, Liu Y and Xie Q: Associations of sirtuins with clinicopathological parameters and prognosis in non-small cell lung cancer. Cancer Manag Res. 10:3341–3356. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Chen X, Hokka D, Maniwa Y, Ohbayashi C, Itoh T and Hayashi Y: Sirt1 is a tumor promoter in lung adenocarcinoma. Oncol Lett. 8:387–393. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Wang C, Yang W, Dong F, Guo Y, Tan J, Ruan S and Huang T: The prognostic role of Sirt1 expression in solid malignancies: A meta-analysis. Oncotarget. 8:66343–66351. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Li G and Zhong S: MicroRNA-217 inhibits the proliferation and invasion, and promotes apoptosis of non-small cell lung cancer cells by targeting sirtuin 1. Oncol Lett. 21:3862021. View Article : Google Scholar : PubMed/NCBI

12 

Ahmad SMS, Al-Mansoob M and Ouhtit A: SIRT1, a novel transcriptional downstream target of CD44, linking its deacetylase activity to tumor cell invasion/metastasis. Front Oncol. 12:10381212022. View Article : Google Scholar : PubMed/NCBI

13 

Xie M, Liu M and He CS: Sirt1 regulates endothelial Notch signaling in lung cancer. PLoS One. 7:e453312012. View Article : Google Scholar : PubMed/NCBI

14 

Sun J, Li G, Liu Y, Ma M, Song K, Li H, Zhu D, Tang X, Kong J and Yuan X: Targeting histone deacetylase SIRT1 selectively eradicates EGFR TKI-resistant cancer stem cells via regulation of mitochondrial oxidative phosphorylation in lung adenocarcinoma. Neoplasia. 22:33–46. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Han L, Liang XH, Chen LX, Bao SM and Yan ZQ: SIRT1 is highly expressed in brain metastasis tissues of non-small cell lung cancer (NSCLC) and in positive regulation of NSCLC cell migration. Int J Clin Exp Pathol. 11:2357–2365. 2013.PubMed/NCBI

16 

Yang F: The expression and mechanism of Sirt1 and Ampk in nonsmall cell lung cancer. J BUON. 23:106–110. 2018.PubMed/NCBI

17 

Hosseninia S, Ameli A, Aslani MR, Pourfarzi F and Ghobadi H: Serum levels of sirtuin-1 in patients with lung cancer and its association with karnofsky performance status. Acta Biomed. 92:e20210122021.PubMed/NCBI

18 

Costa-Machado LF, Martín-Hernández R, Sanchez-Luengo MÁ, Hess K, Vales-Villamarin C, Barradas M, Lynch C, de la Nava D, Diaz-Ruiz A, de Cabo R, et al: Sirt1 protects from K-Ras-driven lung carcinogenesis. EMBO Rep. 19:e438792018. View Article : Google Scholar : PubMed/NCBI

19 

Li X, Jiang Z, Li X and Zhang X: SIRT1 overexpression protects non-small cell lung cancer cells against osteopontin-induced epithelial-mesenchymal transition by suppressing Nf-kb signaling. Onco Targets Ther. 11:1157–1171. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Zhao Z, Zhang H, Zhang F, Ji Y, Peng Y, Wang F and Zhao L: Circular RNA sirtuin-1 restrains the malignant phenotype of non-small cell lung cancer cells via the microRNA-510-5p/Smad family member 7 axis. Acta Biochim Pol. 70:855–863. 2023.PubMed/NCBI

21 

Grbesa I, Pajares MJ, Martínez-Terroba E, Agorreta J, Mikecin AM, Larráyoz M, Idoate MA, Gall-Troselj K, Pio R and Montuenga LM: Expression of sirtuin 1 and 2 is associated with poor prognosis in non-small cell lung cancer patients. PLoS One. 10:e01246702015. View Article : Google Scholar : PubMed/NCBI

22 

Song X, Kong F, Zong Z, Ren M, Meng Q, Li Y and Sun Z: miR-124 and miR-142 enhance cisplatin sensitivity of non-small cell lung cancer cells through repressing autophagy via directly targeting SIRT1. RSC Adv. 9:5234–5243. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Yang X, Yu F, Huang G, Ni Y, Zhang T, Zou Z and Meng M: Exosomal miR-133a-3p promotes the growth and metastasis of lung cancer cells following incomplete microwave ablation. Int J Hyperthermia. 40:21900652023. View Article : Google Scholar : PubMed/NCBI

24 

Gu Y, Pais G, Becker V, Körbel C, Ampofo E, Ebert E, Hohneck J, Ludwig N, Meese E, Bohle RM, et al: Suppression of endothelial miR-22 mediates non-small cell lung cancer cell-induced angiogenesis. Mol Ther Nucleic Acids. 26:849–864. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Wei J, Meng G, Wu J, Wang Y, Zhang Q, Dong T, Bao J, Wang C and Zhang J: MicroRNA-326 impairs chemotherapy resistance in non small cell lung cancer by suppressing histone deacetylase SIRT1-mediated HIF1α and elevating VEGFA. Bioengineered. 13:5685–5699. 2022. View Article : Google Scholar : PubMed/NCBI

26 

Zhang Z, Nong L, Chen ML, Gu XL, Zhao WW, Liu MH and Cheng WW: Long noncoding RNA SNHG10 sponges miR-543 to upregulate tumor suppressive SIRT1 in nonsmall cell lung cancer. Cancer Biother Radiopharm. 35:771–775. 2020.PubMed/NCBI

27 

Yao Y, Hua Q, Zhou Y and Shen H: CircRNA has_circ_0001946 promotes cell growth in lung adenocarcinoma by regulating miR-135a-5p/SIRT1 axis and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 111:1367–1375. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Jiang W, Hou L, Wei J, Du Y, Zhao Y, Deng X and Lin X: Hsa-miR-217 inhibits the proliferation, migration, and invasion in non-small cell lung cancer cells via targeting SIRT1 and P53/KAI1 signaling. Balkan Med J. 37:208–214. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Cheng D, Zhao L, Xu Y, Ou R, Li G, Yang H and Li W: K-Ras promotes the non-small lung cancer cells survival by cooperating with sirtuin 1 and p27 under ROS stimulation. Tumour Biol. 36:7221–7232. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Mu N, Lei Y, Wang Y, Wang Y, Duan Q, Ma G, Liu X and Su L: Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells. Apoptosis. 24:798–811. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Yu H, Kim YM and Cho M: Cytoplasm-localized SIRT1 downregulation attenuates apoptosis and cell cycle arrest in cisplatin-resistant lung cancer A549 cells. J Cancer. 11:4495–4509. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Xu R, Luo X, Ye X, Li H, Liu H, Du Q and Zhai Q: SIRT1/PGC-1α/PPAR-γ correlate with hypoxia-induced chemoresistance in non-small cell lung cancer. Front Oncol. 11:6827622021. View Article : Google Scholar : PubMed/NCBI

33 

Zheng M, Hu C, Wu M and Chin YE: Emerging role of SIRT2 in non-small cell lung cancer. Oncol Lett. 22:7312021. View Article : Google Scholar : PubMed/NCBI

34 

Li Z, Xie QR, Chen Z, Lu S and Xia W: Regulation of SIRT2 levels for human non-small cell lung cancer therapy. Lung Cancer. 82:9–15. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Li Z, Huang J, Yuan H, Chen Z, Luo Q and Lu S: SIRT2 inhibits non-small cell lung cancer cell growth through impairing Skp2-mediated p27 degradation. Oncotarget. 7:18927–18939. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Xu W, Jiang K, Shen M, Qian Y and Peng Y: SIRT2 suppresses non-small cell lung cancer growth by targeting JMJD2A. Biol Chem. 396:929–936. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Gao CX, Chen B, Xie HK, Han CN and Luo J: Immunohistochemistry and clinical value of sirtuin 2 in non-metastasized non-small cell lung cancer. J Thorac Dis. 11:3973–3979. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Hoffmann G, Breitenbücher F, Schuler M and Ehrenhofer-Murray AE: A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem. 289:5208–5216. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Xu Y, Li F, Lv L, Li T, Zhou X, Deng CX, Guan KL, Lei QY and Xiong Y: Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res. 74:3630–3642. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Tang HX, Wang MY, Xiao W and Wen JW: SIRT2-reverses drug-resistance of HL-60/A through autophagy mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 27:409–414. 2019.(In Chinese). PubMed/NCBI

41 

Liu L, Yu L, Zeng C, Long H, Duan G, Yin G, Dai X and Lin Z: E3 ubiquitin ligase HRD1 promotes lung tumorigenesis by promoting sirtuin 2 ubiquitination and degradation. Mol Cell Biol. 40:e00257–19. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L and Zhu WG: Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 12:665–675. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Zhu H, Hu Y, Zeng C, Chang L, Ge F, Wang W, Yan F, Zhao Q, Cao J, Ying M, et al: The SIRT2-mediated deacetylation of AKR1C1 is required for suppressing its pro-metastasis function in non-small cell lung cancer. Theranostics. 10:2188–2200. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y and Lei QY: Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 51:506–518. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Jiang K, Shen M, Chen Y and Xu W: miR-150 promotes the proliferation and migration of non-small cell lung cancer cells by regulating the SIRT2/JMJD2A signaling pathway. Oncol Rep. 40:943–951. 2018.PubMed/NCBI

46 

Luo J, Bao YC, Ji XX, Chen B, Deng QF and Zhou SW: SPOP promotes SIRT2 degradation and suppresses non-small cell lung cancer cell growth. Biochem Biophys Res Commun. 483:880–884. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Head PE, Zhang H, Bastien AJ, Koyen AE, Withers AE, Daddacha WB, Cheng X and Yu DS: Sirtuin 2 mutations in human cancers impair its function in genome maintenance. J Biol Chem. 292:9919–9931. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Inoue K, Mallakin A and Frazier DP: Dmp1 and tumor suppression. Oncogene. 26:4329–4335. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Das C, Lucia MS, Hansen KC and Tyler JK: CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature. 459:113–117. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Serrano L, Martínez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N, Tong Q, Rabanal RM, et al: The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 27:639–653. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Jin YH, Kim YJ, Kim DW, Baek KH, Kang BY, Yeo CY and Lee KY: Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun. 368:690–695. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, Xu YH, Dong B, Xiong Y, Lei QY and Guan KL: Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 23:464–476. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Hamaidi I, Zhang L, Kim N, Wang MH, Iclozan C, Fang B, Liu M, Koomen JM, Berglund AE, Yoder SJ, et al: Sirt2 inhibition enhances metabolic fitness and effector functions of tumor-reactive T cells. Cell Metab. 32:420–436.e12. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Jing H, Hu J, He B, Negrón Abril YL, Stupinski J, Weiser K, Carbonaro M, Chiang YL, Southard T, Giannakakou P, et al: A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell. 29:6072016. View Article : Google Scholar : PubMed/NCBI

55 

Zhou Y, Cheng S, Chen S and Zhao Y: Prognostic and clinicopathological value of SIRT3 expression in various cancers: A systematic review and meta-analysis. Onco Targets Ther. 11:2157–2167. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Yang GC, Fu BC, Zhang DY, Sun L, Chen W, Bai L, Gao T, Lu HG, Wang ZY, Kong QQ, et al: The expression and related clinical significance of SIRT3 in non-small-cell lung cancer. Dis Markers. 2017:82419532017. View Article : Google Scholar : PubMed/NCBI

57 

Ahmed MA, O'Callaghan C, Chang ED, Jiang H and Vassilopoulos A: Context-dependent roles for SIRT2 and SIRT3 in tumor development upon calorie restriction or high fat diet. Front Oncol. 9:14622020. View Article : Google Scholar : PubMed/NCBI

58 

Cao K, Chen Y, Zhao S, Huang Y, Liu T, Liu H, Li B, Cui J, Cai J, Bai C, et al: Sirt3 promoted DNA damage repair and radioresistance through ATM-Chk2 in non-small cell lung cancer cells. J Cancer. 12:5464–5472. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Tao F, Gu C, Li N, Ying Y, Feng Y, Ni D, Zhang Q and Xiao Q: SIRT3 acts as a novel biomarker for the diagnosis of lung cancer: A retrospective study. Medicine (Baltimore). 100:e265802021. View Article : Google Scholar : PubMed/NCBI

60 

Xiao K, Jiang J, Wang W, Cao S, Zhu L, Zeng H, Ouyang R, Zhou R and Chen P: Sirt3 is a tumor suppressor in lung adenocarcinoma cells. Oncol Rep. 30:1323–1328. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Cao Y, Li P, Wang H, Li L and Li Q: SIRT3 promotion reduces resistance to cisplatin in lung cancer by modulating the FOXO3/CDT1 axis. Cancer Med. 10:1394–1404. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Geoghegan F, Buckland RJ, Rogers ET, Khalifa K, O'Connor EB, Rooney MF, Behnam-Motlagh P, Nilsson TK, Grankvist K and Porter RK: Bioenergetics of acquired cisplatin resistant H1299 non-small cell lung cancer and P31 mesothelioma cells. Oncotarget. 8:94711–94725. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Zhang J, Han L, Yu J, Li H and Li Q: miR-224 aggravates cancer-associated fibroblast-induced progression of non-small cell lung cancer by modulating a positive loop of the SIRT3/AMPK/mTOR/HIF-1α axis. Aging (Albany NY). 13:10431–10449. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Xiong H, Liu B, Liu XY, Xia ZK, Lu M, Hu CH and Liu P: circ_rac GTPase-activating protein 1 facilitates stemness and metastasis of non-small cell lung cancer via polypyrimidine tract-binding protein 1 recruitment to promote sirtuin-3-mediated replication timing regulatory factor 1 deacetylation. Lab Invest. 103:1000102023. View Article : Google Scholar : PubMed/NCBI

65 

Xiong Y, Wang L, Wang S, Wang M, Zhao J, Zhang Z, Li X, Jia L and Han Y: SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer. J Cancer Res Clin Oncol. 144:189–198. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Petronek MS, Bayanbold K, Amegble K, Tomanek-Chalkley AM, Allen BG, Spitz DR and Bailey CK: Evaluating the iron chelator function of sirtinol in non-small cell lung cancer. Front Oncol. 13:11857152023. View Article : Google Scholar : PubMed/NCBI

67 

Lagunas-Rangel FA: Role of SIRT5 in cancer. Friend or Foe? Biochimie. 209:131–141. 2023.PubMed/NCBI

68 

Xiangyun Y, Xiaomin N, Linping G, Yunhua X, Ziming L, Yongfeng Y, Zhiwei C and Shun L: Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget. 8:6984–6993. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Deng Z, Tu Q, Hu G and Xing M: Knockdown of circLRWD1 weakens DDP resistance via reduction of SIRT5 expression through releasing miR-507 in non-small cell lung cancer. Anticancer Drugs. 33:861–870. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Lu W, Zuo Y, Feng Y and Zhang M: SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol. 35:10699–10705. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Li Z, Yu DP, Wang N, Tao T, Luo W and Chen H: SIRT5 promotes non-small cell lung cancer progression by reducing FABP4 acetylation level. Neoplasma. 69:909–917. 2022. View Article : Google Scholar : PubMed/NCBI

72 

Wu J, Zheng C, Wang Y, Yang Z, Li C, Fang W, Jin Y, Hou K, Cheng Y, Qi J, et al: Correction: LncRNA APCDD1L-AS1 induces icotinib resistance by inhibition of EGFR autophagic degradation via the miR-1322/miR-1972/miR-324-3p-SIRT5 axis in lung adenocarcinoma. Biomark Res. 11:512023. View Article : Google Scholar : PubMed/NCBI

73 

Azuma Y, Yokobori T, Mogi A, Altan B, Yajima T, Kosaka T, Onozato R, Yamaki E, Asao T, Nishiyama M and Kuwano H: SIRT6 expression is associated with poor prognosis and chemosensitivity in patients with non-small cell lung cancer. J Surg Oncol. 112:231–237. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Bai L, Lin G, Sun L, Liu Y, Huang X, Cao C, Guo Y and Xie C: Upregulation of SIRT6 predicts poor prognosis and promotes metastasis of non-small cell lung cancer via the ERK1/2/MMP9 pathway. Oncotarget. 7:40377–40386. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Subramani P, Nagarajan N, Mariaraj S and Vilwanathan R: Knockdown of sirtuin6 positively regulates acetylation of DNMT1 to inhibit NOTCH signaling pathway in non-small cell lung cancer cell lines. Cell Signal. 105:1106292023. View Article : Google Scholar : PubMed/NCBI

76 

Krishnamoorthy V and Vilwanathan R: Silencing Sirtuin 6 induces cell cycle arrest and apoptosis in non-small cell lung cancer cell lines. Genomics. 112:3703–3712. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Kim EJ and Juhnn YS: Cyclic AMP signaling reduces sirtuin 6 expression in non-small cell lung cancer cells by promoting ubiquitin-proteasomal degradation via inhibition of the Raf-Mek-Erk (Raf/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase) pathway. J Biol Chem. 290:9604–9613. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Zhu B, Yan Y, Shao B, Tian L and Zhou W: Downregulation of SIRT6 is associated with poor prognosis in patients with non-small cell lung cancer. J Int Med Res. 46:1517–1527. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Wang J, Cai Y and Sheng Z: Experimental studies on the protective effects of the overexpression of lentivirus-mediated sirtuin 6 on radiation-induced lung injury. Adv Clin Exp Med. 29:873–877. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Wang J, Sheng Z and Cai Y: SIRT6 overexpression inhibits HIF1α expression and its impact on tumor angiogenesis in lung cancer. Int J Clin Exp Pathol. 11:2940–2947. 2018.PubMed/NCBI

81 

Fu L, Dong Q, He J, Wang X, Xing J, Wang E, Qiu X and Li Q: SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene. 36:2724–2736. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Jiang Y, Han Z, Wang Y and Hao W: Depletion of SIRT7 sensitizes human non-small cell lung cancer cells to gemcitabine therapy by inhibiting autophagy. Biochem Biophys Res Commun. 506:266–271. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S, et al: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell. 51:454–468. 2013. View Article : Google Scholar : PubMed/NCBI

84 

McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, et al: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY). 1:109–121. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Gonfloni S, Iannizzotto V, Maiani E, Bellusci G, Ciccone S and Diederich M: P53 and Sirt1: Routes of metabolism and genome stability. Biochem Pharmacol. 92:149–156. 2014. View Article : Google Scholar : PubMed/NCBI

86 

van Leeuwen I and Lain S: Sirtuins and p53. Adv Cancer Res. 102:171–195. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Zhang S, Yang Y, Huang S, Deng C, Zhou S, Yang J, Cao Y, Xu L, Yuan Y, Yang J, et al: SIRT1 inhibits gastric cancer proliferation and metastasis via STAT3/MMP-13 signaling. J Cell Physiol. 234:15395–15406. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Leng S, Huang W, Chen Y, Yang Y, Feng D, Liu W, Gao T, Ren Y, Huo M, Zhang J, et al: SIRT1 coordinates with the CRL4B complex to regulate pancreatic cancer stem cells to promote tumorigenesis. Cell Death Differ. 28:3329–3343. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Liarte S, Alonso-Romero JL and Nicolás FJ: SIRT1 and estrogen signaling cooperation for breast cancer onset and progression. Front Endocrinol (Lausanne). 9:5522018. View Article : Google Scholar : PubMed/NCBI

90 

Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, Fessel JP, Gamboa JL, Harrison DG and Dikalov SI: Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circ Res. 121:564–574. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Dikalov SI and Dikalova AE: Crosstalk between mitochondrial hyperacetylation and oxidative stress in vascular dysfunction and hypertension. Antioxid Redox Signal. 31:710–721. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Han Z, Liu L, Liu Y and Li S: Sirtuin SIRT6 suppresses cell proliferation through inhibition of Twist1 expression in non-small cell lung cancer. Int J Clin Exp Pathol. 7:4774–4781. 2014.PubMed/NCBI

93 

Xiong X, Tao R, DePinho RA and Dong XC: Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis. PLoS One. 8:e743402013. View Article : Google Scholar : PubMed/NCBI

94 

Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, et al: Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature. 423:545–550. 2003. View Article : Google Scholar : PubMed/NCBI

95 

Zhang P, Tu B, Wang H, Cao Z, Tang M, Zhang C, Gu B, Li Z, Wang L, Yang Y, et al: Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc Natl Acad Sci USA. 111:10684–10689. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Song MY, Wang J, Ka SO, Bae EJ and Park BH: Insulin secretion impairment in Sirt6 knockout pancreatic β cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway. Sci Rep. 6:303212016. View Article : Google Scholar : PubMed/NCBI

97 

Bajpe PK, Prahallad A, Horlings H, Nagtegaal I, Beijersbergen R and Bernards R: A chromatin modifier genetic screen identifies SIRT2 as a modulator of response to targeted therapies through the regulation of MEK kinase activity. Oncogene. 34:531–536. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Xu H, Li Y, Chen L, Wang Q, Zhang H, Lin Y, Li Q and Pang T: SIRT2 mediates multidrug resistance in acute myelogenous leukemia cells via ERK1/2 signaling pathway. Int J Oncol. 48:613–623. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Zhang M, Du W, Acklin S, Jin S and Xia F: SIRT2 protects peripheral neurons from cisplatin-induced injury by enhancing nucleotide excision repair. J Clin Invest. 130:2953–2965. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, Xiong Y, Guan KL and Lei QY: NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 124:5453–5465. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Wei R, He D and Zhang X: Role of SIRT2 in regulation of stemness of cancer stem-like cells in renal cell carcinoma. Cell Physiol Biochem. 49:2348–2357. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Fong Y, Lin YC, Wu CY, Wang HM, Lin LL, Chou HL, Teng YN, Yuan SS and Chiu CC: The antiproliferative and apoptotic effects of sirtinol, a sirtuin inhibitor on human lung cancer cells by modulating Akt/β-catenin-Foxo3a axis. ScientificWorldJournal. 2014:9370512014. View Article : Google Scholar : PubMed/NCBI

103 

Ma W, Zhao X, Wang K, Liu J and Huang G: Dichloroacetic acid (DCA) synergizes with the SIRT2 inhibitor Sirtinol and AGK2 to enhance anti-tumor efficacy in non-small cell lung cancer. Cancer Biol Ther. 19:835–846. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Zhang Y, Zhang Q, Zeng SX, Zhang Y, Mayo LD and Lu H: Inauhzin and Nutlin3 synergistically activate p53 and suppress tumor growth. Cancer Biol Ther. 13:915–924. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Akbaribazm M, Khazaei MR, Khazaei F and Khazaei M: Doxorubicin and Trifolium pratense L. (Red clover) extract synergistically inhibits brain and lung metastases in 4T1 tumor-bearing BALB/c mice. Food Sci Nutr. 8:5557–5570. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Shang JL, Ning SB, Chen YY, Chen TX and Zhang J: MDL-800, an allosteric activator of SIRT6, suppresses proliferation and enhances EGFR-TKIs therapy in non-small cell lung cancer. Acta Pharmacol Sin. 42:120–131. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Feng S, Li Y, Huang H, Huang H, Duan Y, Yuan Z, Zhu W, Mei Z, Luo L and Yan P: Isoorientin reverses lung cancer drug resistance by promoting ferroptosis via the SIRT6/Nrf2/GPX4 signaling pathway. Eur J Pharmacol. 954:1758532023. View Article : Google Scholar : PubMed/NCBI

108 

Fang C, Liu Y, Chen L, Luo Y, Cui Y, Zhang N, Liu P, Zhou M and Xie Y: α-Hederin inhibits the growth of lung cancer A549 cells in vitro and in vivo by decreasing SIRT6 dependent glycolysis. Pharm Biol. 59:11–20. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Dai PC, Liu DL, Zhang L, Ye J, Wang Q, Zhang HW, Lin XH and Lai GX: Astragaloside IV sensitizes non-small cell lung cancer cells to gefitinib potentially via regulation of SIRT6. Tumour Biol. 39:10104283176975552017. View Article : Google Scholar : PubMed/NCBI

110 

Iskandar AR, Liu C, Smith DE, Hu KQ, Choi SW, Ausman LM and Wang XD: β-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice. Cancer Prev Res (Phila). 6:309–320. 2013. View Article : Google Scholar : PubMed/NCBI

111 

You J, Cheng J, Yu B, Duan C and Peng J: Baicalin, a Chinese herbal medicine, inhibits the proliferation and migration of human non-small cell lung carcinoma (NSCLC) Cells, A549 and H1299, by activating the Sirt1/Ampk signaling pathway. Med Sci Monit. 24:2126–2133. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Chen X, Hao B, Li D, Reiter RJ, Bai Y, Abay B, Chen G, Lin S, Zheng T, Ren Y, et al: Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis. J Pineal Res. 71:e127552021. View Article : Google Scholar : PubMed/NCBI

113 

Li M, Hao B, Zhang M, Reiter RJ, Lin S, Zheng T, Chen X, Ren Y, Yue L, Abay B, et al: Melatonin enhances radiofrequency-induced NK antitumor immunity, causing cancer metabolism reprogramming and inhibition of multiple pulmonary tumor development. Signal Transduct Target Ther. 6:3302021. View Article : Google Scholar : PubMed/NCBI

114 

Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim HK, Shim YM and Kim DH: Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. J Cell Mol Med. 23:2872–2889. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Cha BK, Kim YS, Hwang KE, Cho KH, Oh SH, Kim BR, Jun HY, Yoon KH, Jeong ET and Kim HR: Celecoxib and sulindac inhibit TGF-β1-induced epithelial-mesenchymal transition and suppress lung cancer migration and invasion via downregulation of sirtuin 1. Oncotarget. 7:57213–57227. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Hwang KE, Kim YS, Hwang YR, Kwon SJ, Park DS, Cha BK, Kim BR, Yoon KH, Jeong ET and Kim HR: Pemetrexed induces apoptosis in malignant mesothelioma and lung cancer cells through activation of reactive oxygen species and inhibition of sirtuin 1. Oncol Rep. 33:2411–2419. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Lai TC, Lee YL, Lee WJ, Hung WY, Cheng GZ, Chen JQ, Hsiao M, Chien MH and Chang JH: Synergistic tumor inhibition via energy elimination by repurposing penfluridol and 2-deoxy-D-glucose in lung cancer. Cancers (Basel). 14:27502022. View Article : Google Scholar : PubMed/NCBI

118 

Slanovc J, Mikulčić M, Jahn N, Wizsy NGT, Sattler W, Malle E and Hrzenjak A: Prostaglandin 15d-PGJ2 inhibits proliferation of lung adenocarcinoma cells by inducing ROS production and activation of apoptosis via sirtuin-1. Biochim Biophys Acta Mol Basis Dis. 1870:1669242024. View Article : Google Scholar : PubMed/NCBI

119 

Tae H, Park EY, Dey P, Son JY, Lee S-Y, Jung JH, Saloni S, Kim M-H and Kim HS: Novel SIRT1 inhibitor 15-deoxy-Δ12,14-prostaglandin J2 and its derivatives exhibit anticancer activity through apoptotic or autophagic cell death pathways in SKOV3 cells. Int J Oncol. 53:2518–2530. 2018.PubMed/NCBI

120 

Hwang KE, Kim HJ, Song IS, Park C, Jung JW, Park DS, Oh SH, Kim YS and Kim HR: Salinomycin suppresses TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer. Int J Med Sci. 18:715–726. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou M, Wei L and Lu R: Emerging role of sirtuins in non‑small cell lung cancer (Review). Oncol Rep 52: 127, 2024.
APA
Zhou, M., Wei, L., & Lu, R. (2024). Emerging role of sirtuins in non‑small cell lung cancer (Review). Oncology Reports, 52, 127. https://doi.org/10.3892/or.2024.8786
MLA
Zhou, M., Wei, L., Lu, R."Emerging role of sirtuins in non‑small cell lung cancer (Review)". Oncology Reports 52.4 (2024): 127.
Chicago
Zhou, M., Wei, L., Lu, R."Emerging role of sirtuins in non‑small cell lung cancer (Review)". Oncology Reports 52, no. 4 (2024): 127. https://doi.org/10.3892/or.2024.8786
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou M, Wei L and Lu R: Emerging role of sirtuins in non‑small cell lung cancer (Review). Oncol Rep 52: 127, 2024.
APA
Zhou, M., Wei, L., & Lu, R. (2024). Emerging role of sirtuins in non‑small cell lung cancer (Review). Oncology Reports, 52, 127. https://doi.org/10.3892/or.2024.8786
MLA
Zhou, M., Wei, L., Lu, R."Emerging role of sirtuins in non‑small cell lung cancer (Review)". Oncology Reports 52.4 (2024): 127.
Chicago
Zhou, M., Wei, L., Lu, R."Emerging role of sirtuins in non‑small cell lung cancer (Review)". Oncology Reports 52, no. 4 (2024): 127. https://doi.org/10.3892/or.2024.8786
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team