|
1
|
Bergengren O, Pekala KR, Matsoukas K,
Fainberg J, Mungovan SF, Bratt O, Bray F, Brawley O, Luckenbaugh
AN, Mucci L, et al: 2022 Update on prostate cancer epidemiology and
risk factors-a systematic review. Eur Urol. 84:191–206. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhang W, Cao G, Wu F, Wang Y, Liu Z, Hu H
and Xu K: Global burden of prostate cancer and association with
socioeconomic status, 1990-2019: A systematic analysis from the
global burden of disease study. J Epidemiol Glob Health.
13:407–421. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
World Health Organization (WHO), .
Prostate cancer statistics. WHO; Geneva: 2024
|
|
4
|
Heinlein CA and Chang C: Androgen receptor
in prostate cancer. Endocr Rev. 25:276–308. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Seikkula H, Boström PJ, Seppä K,
Pitkäniemi J, Malila N and Kaipia A: Survival and mortality of
elderly men with localized prostate cancer managed with primary
androgen deprivation therapy or by primary observation. BMC Urol.
20:252020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kokorovic A, So AI, Serag H, French C,
Hamilton RJ, Izard JP, Nayak JG, Pouliot F, Saad F, Shayegan B, et
al: Canadian urological association guideline on androgen
deprivation therapy: Adverse events and management strategies. Can
Urol Assoc J. 15:E307–E322. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vellky JE and Ricke WA: Development and
prevalence of castration-resistant prostate cancer subtypes.
Neoplasia. 22:566–575. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kirby M, Hirst C and Crawford ED:
Characterising the castration-resistant prostate cancer population:
A systematic review. Int J Clin Pract. 65:1180–1192. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Scher HI, Fizazi K, Saad F, Taplin ME,
Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et
al: Increased survival with enzalutamide in prostate cancer after
chemotherapy. N Engl J Med. 367:1187–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
de Bono JS, Logothetis CJ, Molina A,
Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F,
et al: Abiraterone and increased survival in metastatic prostate
cancer. N Engl J Med. 364:1995–2005. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nevedomskaya E, Baumgart SJ and Haendler
B: Recent advances in prostate cancer treatment and drug discovery.
Int J Mol Sci. 19:13592018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mateo J, Smith A, Ong M and de Bono JS:
Novel drugs targeting the androgen receptor pathway in prostate
cancer. Cancer Metastasis Rev. 33:567–579. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Crona DJ, Milowsky MI and Whang YE:
Androgen receptor targeting drugs in castration-resistant prostate
cancer and mechanisms of resistance. Clin Pharmacol Ther.
98:582–589. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Abida W, Cyrta J, Heller G, Prandi D,
Armenia J, Coleman I, Cieslik M, Benelli M, Robinson D, Van Allen
EM, et al: Genomic correlates of clinical outcome in advanced
prostate cancer. Proc Natl Acad Sci USA. 116:11428–11436. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Arora VK, Schenkein E, Murali R, Subudhi
SK, Wongvipat J, Balbas MD, Shah N, Cai L, Efstathiou E, Logothetis
C, et al: Glucocorticoid receptor confers resistance to
antiandrogens by bypassing androgen receptor blockade. Cell.
155:1309–1322. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Antonarakis ES, Lu C, Wang H, Luber B,
Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, et
al: AR-V7 and resistance to enzalutamide and abiraterone in
prostate cancer. N Engl J Med. 371:1028–1038. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cato L, de Tribolet-Hardy J, Lee I,
Rottenberg JT, Coleman I, Melchers D, Houtman R, Xiao T, Li W, Uo
T, et al: ARv7 represses tumor-suppressor genes in
castration-resistant prostate cancer. Cancer Cell. 35:401–413.e6.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Joseph JD, Lu N, Qian J, Sensintaffar J,
Shao G, Brigham D, Moon M, Maneval EC, Chen I, Darimont B and Hager
JH: A clinically relevant androgen receptor mutation confers
resistance to second-generation antiandrogens enzalutamide and
ARN-509. Cancer Discov. 3:1020–1029. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Einstein DJ, Arai S and Balk SP: Targeting
the androgen receptor and overcoming resistance in prostate cancer.
Curr Opin Oncol. 31:175–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Takeda DY, Spisák S, Seo JH, Bell C,
O'Connor E, Korthauer K, Ribli D, Csabai I, Solymosi N, Szállási Z,
et al: A somatically acquired enhancer of the androgen receptor is
a noncoding driver in advanced prostate cancer. Cell.
174:422–432.e13. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Quigley DA, Dang HX, Zhao SG, Lloyd P,
Aggarwal R, Alumkal JJ, Foye A, Kothari V, Perry MD, Bailey AM, et
al: Genomic hallmarks and structural variation in metastatic
prostate cancer. Cell. 175:8892018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Viswanathan SR, Ha G, Hoff AM, Wala JA,
Carrot-Zhang J, Whelan CW, Haradhvala NJ, Freeman SS, Reed SC,
Rhoades J, et al: Structural alterations driving castration-
resistant prostate cancer revealed by linked-read genome
sequencing. Cell. 174:433–447.e19. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bluemn EG, Coleman IM, Lucas JM, Coleman
RT, Hernandez-Lopez S, Tharakan R, Bianchi-Frias D, Dumpit RF,
Kaipainen A, Corella AN, et al: Androgen receptor
pathway-independent prostate cancer is sustained through FGF
signaling. Cancer Cell. 32:474–489.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li Q, Deng Q, Chao HP, Liu X, Lu Y, Lin K,
Liu B, Tang GW, Zhang D, Tracz A, et al: Linking prostate cancer
cell AR heterogeneity to distinct castration and enzalutamide
responses. Nat Commun. 9:36002018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
He Y, Wei T, Ye Z, Orme JJ, Lin D, Sheng
H, Fazli L, Jeffrey Karnes R, Jimenez R, Wang L, et al: A
noncanonical AR addiction drives enzalutamide resistance in
prostate cancer. Nat Commun. 12:15212021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Davies A, Nouruzi S, Ganguli D, Namekawa
T, Thaper D, Linder S, Karaoğlanoğlu F, Omur ME, Kim S, Kobelev M,
et al: An androgen receptor switch underlies lineage infidelity in
treatment-resistant prostate cancer. Nat Cell Biol. 23:1023–1034.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Moilanen AM, Riikonen R, Oksala R, Ravanti
L, Aho E, Wohlfahrt G, Nykänen PS, Törmäkangas OP, Palvimo JJ and
Kallio PJ: Discovery of ODM-201, a new-generation androgen receptor
inhibitor targeting resistance mechanisms to androgen
signaling-directed prostate cancer therapies. Sci Rep. 5:120072015.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bishop JL, Thaper D, Vahid S, Davies A,
Ketola K, Kuruma H, Jama R, Nip KM, Angeles A, Johnson F, et al:
The master neural transcription factor BRN2 Is an androgen
receptor-suppressed driver of neuroendocrine differentiation in
prostate cancer. Cancer Discov. 7:54–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yeh S, Kang HY, Miyamoto H, Nishimura K,
Chang HC, Ting HJ, Rahman M, Lin HK, Fujimoto N, Hu YC, et al:
Differential induction of androgen receptor transactivation by
different androgen receptor coactivators in human prostate cancer
DU145 cells. Endocrine. 11:195–202. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Dobin A, Davis CA, Schlesinger F, Drenkow
J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras TR: STAR:
Ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Trapnell C, Roberts A, Goff L, Pertea G,
Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L:
Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and cufflinks. Nat Protoc. 7:562–578. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen Z, Lan X, Thomas-Ahner JM, Wu D, Liu
X, Ye Z, Wang L, Sunkel B, Grenade C, Chen J, et al: Agonist and
antagonist switch DNA motifs recognized by human androgen receptor
in prostate cancer. EMBO J. 34:502–516. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bittencourt SA: FastQC: A quality control
tool for high throughput sequence data. Babraham Bioinformatics.
2010.
|
|
36
|
Li H and Durbin R: Fast and accurate short
read alignment with Burrows-Wheeler transform. Bioinformatics.
25:1754–1760. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li H, Handsaker B, Wysoker A, Fennell T,
Ruan J, Homer N, Marth G, Abecasis G and Durbin R; 1000 Genome
Project Data Processing Subgroup, : The sequence alignment/map
format and SAMtools. Bioinformatics. 25:2078–2079. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang Y, Liu T, Meyer CA, Eeckhoute J,
Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W and
Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol.
9:R1372008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ramirez F, Ryan DP, Grüning B, Bhardwaj V,
Kilpert F, Richter AS, Heyne S, Dündar F and Manke T: deepTools2: A
next generation web server for deep-sequencing data analysis.
Nucleic Acids Res. 44:W160–W165. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Quinlan AR and Hall IM: BEDTools: A
flexible suite of utilities for comparing genomic features.
Bioinformatics. 26:841–842. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Reimand J, Arak T, Adler P, Kolberg L,
Reisberg S, Peterson H and Vilo J: g:Profiler-a web server for
functional interpretation of gene lists (2016 update). Nucleic
Acids Res. 44:W83–W89. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Maffey AH, Ishibashi T, He C, Wang X,
White AR, Hendy SC, Nelson CC, Rennie PS and Ausió J: Probasin
promoter assembles into a strongly positioned nucleosome that
permits androgen receptor binding. Mol Cell Endocrinol. 268:10–19.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Namekawa T, Ikeda K, Horie-Inoue K and
Inoue S: Application of prostate cancer models for preclinical
study: Advantages and limitations of cell lines, patient-derived
xenografts, and three-dimensional culture of patient-derived cells.
Cells. 8:742019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Borgmann H, Lallous N, Ozistanbullu D,
Beraldi E, Paul N, Dalal K, Fazli L, Haferkamp A, Lejeune P,
Cherkasov A and Gleave ME: Moving towards precision urologic
oncology: Targeting enzalutamide-resistant prostate cancer and
mutated forms of the androgen receptor using the novel inhibitor
darolutamide (ODM-201). Eur Urol. 73:4–8. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Waltering KK, Urbanucci A and Visakorpi T:
Androgen receptor (AR) aberrations in castration-resistant prostate
cancer. Mol Cell Endocrinol. 360:38–43. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy
DA, Doshi S, Yuan J, Kovats SG, Kim S, Cooke VG, et al: An F876L
mutation in androgen receptor confers genetic and phenotypic
resistance to MDV3100 (enzalutamide). Cancer Discov. 3:1030–1043.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liu H, Wang L, Tian J, Li J and Liu H:
Molecular dynamics studies on the enzalutamide resistance
mechanisms induced by androgen receptor mutations. J Cell Biochem.
118:2792–2801. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Veldscholte J, Ris-Stalpers C, Kuiper GG,
Jenster G, Berrevoets C, Claassen E, van Rooij HC, Trapman J,
Brinkmann AO and Mulder E: A mutation in the ligand binding domain
of the androgen receptor of human LNCaP cells affects steroid
binding characteristics and response to anti-androgens. Biochem
Biophys Res Commun. 173:534–540. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dai C, Heemers H and Sharifi N: Androgen
signaling in prostate cancer. Cold Spring Harb Perspect Med.
7:a0304522017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Eder IE, Culig Z, Putz T, Nessler-Menardi
C, Bartsch G and Klocker H: Molecular biology of the androgen
receptor: From molecular understanding to the clinic. Eur Urol.
40:241–251. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Smith DF and Toft DO: Minireview: The
intersection of steroid receptors with molecular chaperones:
Observations and questions. Mol Endocrinol. 22:2229–2240. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Verrijdt G, Haelens A and Claessens F:
Selective DNA recognition by the androgen receptor as a mechanism
for hormone-specific regulation of gene expression. Mol Genet
Metab. 78:175–185. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhao J, Zhao Y, Wang L, Zhang J, Karnes
RJ, Kohli M, Wang G and Huang H: Alterations of androgen
receptor-regulated enhancer RNAs (eRNAs) contribute to enzalutamide
resistance in castration-resistant prostate cancer. Oncotarget.
7:38551–38565. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li K, Guo Y, Yang X, Zhang Z, Zhang C and
Xu Y: ELF5-mediated AR activation regulates prostate cancer
progression. Sci Rep. 7:427592017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Rodriguez-Vida A, Galazi M, Rudman S,
Chowdhury S and Sternberg CN: Enzalutamide for the treatment of
metastatic castration-resistant prostate cancer. Drug Des Devel
Ther. 9:3325–3339. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ryan CJ, Smith MR, de Bono JS, Molina A,
Logothetis CJ, de Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng
S, et al: Abiraterone in metastatic prostate cancer without
previous chemotherapy. N Engl J Med. 368:138–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Fizazi K, Scher HI, Molina A, Logothetis
CJ, Chi KN, Jones RJ, Staffurth JN, North S, Vogelzang NJ, Saad F,
et al: Abiraterone acetate for treatment of metastatic
castration-resistant prostate cancer: Final overall survival
analysis of the COU-AA-301 randomised, double-blind,
placebo-controlled phase 3 study. Lancet Oncol. 13:983–992. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mostaghel EA, Marck BT, Plymate SR,
Vessella RL, Balk S, Matsumoto AM, Nelson PS and Montgomery RB:
Resistance to CYP17A1 inhibition with abiraterone in
castration-resistant prostate cancer: Induction of steroidogenesis
and androgen receptor splice variants. Clin Cancer Res.
17:5913–5925. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Locke JA, Guns ES, Lubik AA, Adomat HH,
Hendy SC, Wood CA, Ettinger SL, Gleave ME and Nelson CC: Androgen
levels increase by intratumoral de novo steroidogenesis during
progression of castration-resistant prostate cancer. Cancer Res.
68:6407–6415. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Montgomery RB, Mostaghel EA, Vessella R,
Hess DL, Kalhorn TF, Higano CS, True LD and Nelson PS: Maintenance
of intratumoral androgens in metastatic prostate cancer: A
mechanism for castration-resistant tumor growth. Cancer Res.
68:4447–4454. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lallous N, Dalal K, Cherkasov A and Rennie
PS: Targeting alternative sites on the androgen receptor to treat
castration-resistant prostate cancer. Int J Mol Sci.
14:12496–12519. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nouruzi S, Ganguli D, Tabrizian N, Kobelev
M, Sivak O, Namekawa T, Thaper D, Baca SC, Freedman ML, Aguda A, et
al: ASCL1 activates neuronal stem cell-like lineage programming
through remodeling of the chromatin landscape in prostate cancer.
Nat Commun. 13:22822022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tabrizian N, Nouruzi S, Cui CJ, Kobelev M,
Namekawa T, Lodhia I, Talal A, Sivak O, Ganguli D and Zoubeidi A:
ASCL1 is activated downstream of the ROR2/CREB signaling pathway to
support lineage plasticity in prostate cancer. Cell Rep.
42:1129372023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Beltran H, Hruszkewycz A, Scher HI,
Hildesheim J, Isaacs J, Yu EY, Kelly K, Lin D, Dicker A, Arnold J,
et al: The role of lineage plasticity in prostate cancer therapy
resistance. Clin Cancer Res. 25:6916–6924. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Beltran H, Prandi D, Mosquera JM, Benelli
M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV,
Varambally S, et al: Divergent clonal evolution of
castration-resistant neuroendocrine prostate cancer. Nat Med.
22:298–305. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Aggarwal R, Huang J, Alumkal JJ, Zhang L,
Feng FY, Thomas GV, Weinstein AS, Friedl V, Zhang C, Witte ON, et
al: Clinical and genomic characterization of treatment-emergent
small-cell neuroendocrine prostate cancer: A multi-institutional
prospective study. J Clin Oncol. 36:2492–2503. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Linder S, Hoogstraat M, Stelloo S,
Eickhoff N, Schuurman K, de Barros H, Alkemade M, Bekers EM,
Severson TM, Sanders J, et al: Drug-induced epigenomic plasticity
reprograms circadian rhythm regulation to drive prostate cancer
toward androgen independence. Cancer Discov. 12:2074–2097. 2022.
View Article : Google Scholar : PubMed/NCBI
|