A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review)
- Authors:
- Shuhao Huang
- Zihao Qin
- Feiyang Wang
- Yiping Kang
- Biqiong Ren
-
Affiliations: Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China - Published online on: August 14, 2024 https://doi.org/10.3892/or.2024.8796
- Article Number: 137
-
Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, Wang Y, Xiong F, Guo C, Li Y, et al: Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer. 18:292019. View Article : Google Scholar : PubMed/NCBI | |
Tan G, Spillane KM and Maher J: The role and regulation of the NKG2D/NKG2D ligand system in cancer. Biology (Basel). 12:10792023.PubMed/NCBI | |
Ullrich E, Koch J, Cerwenka A and Steinle A: New prospects on the NKG2D/NKG2DL system for oncology. Oncoimmunology. 2:e260972013. View Article : Google Scholar : PubMed/NCBI | |
Raulet DH: Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 3:781–790. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zingoni A, Molfetta R, Fionda C, Soriani A, Paolini R, Cippitelli M, Cerboni C and Santoni A: NKG2D and its ligands: ‘One for all, all for one’. Front Immunol. 9:4762018. View Article : Google Scholar : PubMed/NCBI | |
Tchacrome I, Zhu Q, Saleh MA and Zou Y: Diseases association with the polymorphic major histocompatibility complex class I related chain a: MICA gene. Transpl Immunol. 75:1016652022. View Article : Google Scholar : PubMed/NCBI | |
Maurer S, Zhong X, Prada BD, Mascarenhas J and de Andrade LF: The latest breakthroughs in immunotherapy for acute myeloid leukemia, with a special focus on NKG2D ligands. Int J Mol Sci. 23:159072022. View Article : Google Scholar : PubMed/NCBI | |
Campos-Silva C, López-Borrego S, Felgueres MJ, Esteso G and Vales-Gomez M: NKG2D ligands in liquid biopsy: The importance of soluble and vesicle-bound proteins for immune modulation. Crit Rev Immunol. 42:21–40. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lanier LL: NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 3:575–582. 2015. View Article : Google Scholar : PubMed/NCBI | |
Touboul R, Zaravinos A and Bonavida B: Defective natural killer cells in melanoma: Role of NKG2D in pathogenesis and immunotherapy. Crit Rev Immunol. 41:45–76. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jones AB, Rocco A, Lamb LS, Friedman GK and Hjelmeland AB: Regulation of NKG2D stress ligands and its relevance in cancer progression. Cancers (Basel). 14:23392022. View Article : Google Scholar : PubMed/NCBI | |
Groh V, Bahram S, Bauer S, Herman A, Beauchamp M and Spies T: Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA. 93:12445–12450. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M and Chalupny NJ: ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 14:123–133. 2001. View Article : Google Scholar : PubMed/NCBI | |
Groh V, Steinle A, Bauer S and Spies T: Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science. 279:1737–1740. 1998. View Article : Google Scholar : PubMed/NCBI | |
Venkataraman GM, Suciu D, Groh V, Boss JM and Spies T: Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D. J Immunol. 178:961–969. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K and Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 73:39–85. 2004. View Article : Google Scholar : PubMed/NCBI | |
Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG and Cerwenka A: Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res. 71:5998–6009. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Simon M, Seluanov A and Gorbunova V: DNA damage and repair in age-related inflammation. Nat Rev Immunol. 23:75–89. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Lavender H, Soilleux EJ and O'Callaghan CA: NF-κB regulates MICA gene transcription in endothelial cell through a genetically inhibitable control site. J Biol Chem. 287:4299–4310. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schrambach S, Ardizzone M, Leymarie V, Sibilia J and Bahram S: In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS One. 2:e5182007. View Article : Google Scholar : PubMed/NCBI | |
Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, Mandelboim M and Mandelboim O: Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol. 9:1065–1073. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yadav D, Ngolab J, Lim RSH, Krishnamurthy S and Bui JD: Cutting edge: Down-regulation of MHC class I-related chain A on tumor cells by IFN-gamma-induced microRNA. J Immunol. 182:39–43. 2009. View Article : Google Scholar : PubMed/NCBI | |
Heinemann A, Zhao F, Pechlivanis S, Eberle J, Steinle A, Diederichs S, Schadendorf D and Paschen A: Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res. 72:460–471. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kato N, Tanaka J, Sugita J, Toubai T, Miura Y, Ibata M, Syono Y, Ota S, Kondo T, Asaka M and Imamura M: Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia. 21:2103–2108. 2007. View Article : Google Scholar : PubMed/NCBI | |
Morimoto Y, Yamashita N, Daimon T, Hirose H, Yamano S, Haratake N, Ishikawa S, Bhattacharya A, Fushimi A, Ahmad R, et al: MUC1-C is a master regulator of MICA/B NKG2D ligand and exosome secretion in human cancer cells. J Immunother Cancer. 11:e0062382023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Rao A, Sette P, Deibert C, Pomerantz A, Kim WJ, Kohanbash G, Chang Y, Park Y, Engh J, et al: IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro Oncol. 18:1402–1412. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tsukerman P, Stern-Ginossar N, Gur C, Glasner A, Nachmani D, Bauman Y, Yamin R, Vitenshtein A, Stanietsky N, Bar-Mag T, et al: MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res. 72:5463–5472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Codo P, Weller M, Meister G, Szabo E, Steinle A, Wolter M, Reifenberger G and Roth P: MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget. 5:7651–7662. 2014. View Article : Google Scholar : PubMed/NCBI | |
Breunig C, Pahl J, Küblbeck M, Miller M, Antonelli D, Erdem N, Wirth C, Will R, Bott A, Cerwenka A and Wiemann S: MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis. 8:e29732017. View Article : Google Scholar : PubMed/NCBI | |
Eagle RA, Flack G, Warford A, Martínez-Borra J, Jafferji I, Traherne JA, Ohashi M, Boyle LH, Barrow AD, Caillat-Zucman S, et al: Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G. PLoS One. 4:e45032009. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Messina L, Reyburn HT and Valés-Gómez M: A short half-life of ULBP1 at the cell surface due to internalization and proteosomal degradation. Immunol Cell Biol. 94:479–485. 2016. View Article : Google Scholar : PubMed/NCBI | |
Agüera-González S, Boutet P, Reyburn HT and Valés-Gómez M: Brief residence at the plasma membrane of the MHC class I-related chain B is due to clathrin-mediated cholesterol-dependent endocytosis and shedding. J Immunol. 182:4800–4808. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gomis-Rüth FX: Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol. 24:157–202. 2003. View Article : Google Scholar : PubMed/NCBI | |
Edwards DR, Handsley MM and Pennington CJ: The ADAM metalloproteinases. Mol Aspects Med. 29:258–289. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cui N, Hu M and Khalil RA: Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 147:1–73. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH, Strong RK, Groh V and Spies T: Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature. 447:482–486. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lundgren AD, Singh P, Goodlett DR, Plymate SR and Wu JD: An six-amino acid motif in the alpha3 domain of MICA is the cancer therapeutic target to inhibit shedding. Biochem Biophys Res Commun. 387:476–481. 2009. View Article : Google Scholar : PubMed/NCBI | |
Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, Ludwig A, Stevanovic S, Rammensee HG and Steinle A: Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 68:6368–6376. 2008. View Article : Google Scholar : PubMed/NCBI | |
Waldhauer I and Steinle A: Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res. 66:2520–2526. 2006. View Article : Google Scholar : PubMed/NCBI | |
Boutet P, Agüera-González S, Atkinson S, Pennington CJ, Edwards DR, Murphy G, Reyburn HT and Valés-Gómez M: Cutting edge: The metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J Immunol. 182:49–53. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Messina L, Ashiru O, Boutet P, Agüera-González S, Skepper JN, Reyburn HT and Valés-Gómez M: Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol Chem. 285:8543–8551. 2010. View Article : Google Scholar : PubMed/NCBI | |
Raneros AB, Minguela A, Rodriguez RM, Colado E, Bernal T, Anguita E, Mogorron AV, Gil AC, Vidal-Castiñeira JR, Márquez-Kisinousky L, et al: Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition. Oncotarget. 8:31959–31976. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brown DA: Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda). 21:430–439. 2006.PubMed/NCBI | |
de Gassart A, Geminard C, Fevrier B, Raposo G and Vidal M: Lipid raft-associated protein sorting in exosomes. Blood. 102:4336–4344. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ashiru O, Boutet P, Fernández-Messina L, Agüera-González S, Skepper JN, Valés-Gómez M and Reyburn HT: Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 70:481–489. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hedlund M, Nagaeva O, Kargl D, Baranov V and Mincheva-Nilsson L: Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One. 6:e168992011. View Article : Google Scholar : PubMed/NCBI | |
Agüera-González S, Gross CC, Fernández-Messina L, Ashiru O, Esteso G, Hang HC, Reyburn HT, Long EO and Valés-Gómez M: Palmitoylation of MICA, a ligand for NKG2D, mediates its recruitment to membrane microdomains and promotes its shedding. Eur J Immunol. 41:3667–3676. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eleme K, Taner SB, Onfelt B, Collinson LM, McCann FE, Chalupny NJ, Cosman D, Hopkins C, Magee AI and Davis DM: Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J Exp Med. 199:1005–1010. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bacon L, Eagle RA, Meyer M, Easom N, Young NT and Trowsdale J: Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol. 173:1078–1084. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Xi X, Hao Z, Li W, Kong Y, Cui L, Ma C, Ba D and He W: RAET1E2, a soluble isoform of the UL16-binding protein RAET1E produced by tumor cells, inhibits NKG2D-mediated NK cytotoxicity. J Biol Chem. 282:18922–18928. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zingoni A, Vulpis E, Cecere F, Amendola MG, Fuerst D, Saribekyan T, Achour A, Sandalova T, Nardone I, Peri A, et al: MICA-129 dimorphism and soluble MICA are associated with the progression of multiple myeloma. Front Immunol. 9:9262018. View Article : Google Scholar : PubMed/NCBI | |
Toledo-Stuardo K, Ribeiro CH, Canals A, Morales M, Gárate V, Rodríguez-Siza J, Tello S, Bustamante M, Armisen R, Matthies DJ, et al: Major histocompatibility complex class I-related chain A (MICA) allelic variants associate with susceptibility and prognosis of gastric cancer. Front Immunol. 12:6455282021. View Article : Google Scholar : PubMed/NCBI | |
Ashiru O, López-Cobo S, Fernández-Messina L, Pontes-Quero S, Pandolfi R, Reyburn HT and Valés-Gómez M: A GPI anchor explains the unique biological features of the common NKG2D-ligand allele MICA*008. Biochem J. 454:295–302. 2013. View Article : Google Scholar : PubMed/NCBI | |
López-Cobo S, Campos-Silva C and Valés-Gómez M: Glycosyl-phosphatidyl-inositol (GPI)-anchors and metalloproteases: Their roles in the regulation of exosome composition and NKG2D-mediated immune recognition. Front Cell Dev Biol. 4:972016. View Article : Google Scholar : PubMed/NCBI | |
Isernhagen A, Schilling D, Monecke S, Shah P, Elsner L, Walter L, Multhoff G and Dressel R: The MICA-129Met/Val dimorphism affects plasma membrane expression and shedding of the NKG2D ligand MICA. Immunogenetics. 68:109–123. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, Otsuka M, Tateishi R, Omata M, Nakagawa H, et al: Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 43:455–458. 2011. View Article : Google Scholar : PubMed/NCBI | |
Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR and Graham CH: Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res. 71:7433–7441. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ou ZL, Luo Z, Wei W, Liang S, Gao TL and Lu YB: Hypoxia-induced shedding of MICA and HIF1A-mediated immune escape of pancreatic cancer cells from NK cells: Role of circ_0000977/miR-153 axis. RNA Biol. 16:1592–1603. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, et al: Cellular senescence: Defining a path forward. Cell. 179:813–827. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Hu R, Xi B, Nie D, Xu H and Liu A: Mechanisms of senescence-related NKG2D ligands release and immune escape induced by chemotherapy in neuroblastoma cells. Front Cell Dev Biol. 10:8294042022. View Article : Google Scholar : PubMed/NCBI | |
Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A and Hayashi N: Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 51:1264–1273. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ziani L, Safta-Saadoun TB, Gourbeix J, Cavalcanti A, Robert C, Favre G, Chouaib S and Thiery J: Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget. 8:19780–19794. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maurer S, Kropp KN, Klein G, Steinle A, Haen SP, Walz JS, Hinterleitner C, Märklin M, Kopp HG and Salih HR: Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. Oncoimmunology. 7:e13648272017. View Article : Google Scholar : PubMed/NCBI | |
Zocchi MR, Catellani S, Canevali P, Tavella S, Garuti A, Villaggio B, Zunino A, Gobbi M, Fraternali-Orcioni G, Kunkl A, et al: High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas. Blood. 119:1479–1489. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vandooren J, Van den Steen PE and Opdenakker G: Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade. Crit Rev Biochem Mol Biol. 48:222–272. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kohga K, Tatsumi T, Tsunematsu H, Aono S, Shimizu S, Kodama T, Hikita H, Yamamoto M, Oze T, Aketa H, et al: Interleukin-1β enhances the production of soluble MICA in human hepatocellular carcinoma. Cancer Immunol Immunother. 61:1425–1432. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Jiang F, Zheng X, Katakowski M, Buller B, To SS and Chopp M: TGF-β1 promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol Rep. 25:1329–1335. 2011.PubMed/NCBI | |
Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A, Weller M and Friese MA: TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain. 129:2416–2425. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Guo L, Xing Z, Shi L, Liang H, Li A, Kuang C, Tao B and Yang Q: IDO1 can impair NK cells function against non-small cell lung cancer by downregulation of NKG2D ligand via ADAM10. Pharmacol Res. 177:1061322022. View Article : Google Scholar : PubMed/NCBI | |
Del Toro-Arreola S, Arreygue-Garcia N, Aguilar-Lemarroy A, Cid-Arregui A, Jimenez-Perez M, Haramati J, Barros-Nuñez P, Gonzalez-Ramella O, Del Toro-Arreola A, Ortiz-Lazareno P, et al: MHC class I-related chain A and B ligands are differentially expressed in human cervical cancer cell lines. Cancer Cell Int. 11:152011. View Article : Google Scholar : PubMed/NCBI | |
Hilpert J, Grosse-Hovest L, Grünebach F, Buechele C, Nuebling T, Raum T, Steinle A and Salih HR: Comprehensive analysis of NKG2D ligand expression and release in leukemia: Implications for NKG2D-mediated NK cell responses. J Immunol. 189:1360–1371. 2012. View Article : Google Scholar : PubMed/NCBI | |
Arai J, Goto K, Otoyama Y, Nakajima Y, Sugiura I, Kajiwara A, Tojo M, Ichikawa Y, Uozumi S, Shimozuma Y, et al: Leukotriene receptor antagonists enhance HCC treatment efficacy by inhibiting ADAMs and suppressing MICA shedding. Cancer Immunol Immunother. 70:203–213. 2021. View Article : Google Scholar : PubMed/NCBI | |
Molfetta R, Quatrini L, Zitti B, Capuano C, Galandrini R, Santoni A and Paolini R: Regulation of NKG2D expression and signaling by endocytosis. Trends Immunol. 37:790–802. 2016. View Article : Google Scholar : PubMed/NCBI | |
Clayton A and Tabi Z: Exosomes and the MICA-NKG2D system in cancer. Blood Cells Mol Dis. 34:206–213. 2005. View Article : Google Scholar : PubMed/NCBI | |
Molfetta R, Quatrini L, Capuano C, Gasparrini F, Zitti B, Zingoni A, Galandrini R, Santoni A and Paolini R: c-Cbl regulates MICA-but not ULBP2-induced NKG2D down-modulation in human NK cells. Eur J Immunol. 44:2761–2770. 2014. View Article : Google Scholar : PubMed/NCBI | |
Deng W, Gowen BG, Zhang L, Wang L, Lau S, Iannello A, Xu J, Rovis TL, Xiong N and Raulet DH: Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science. 348:136–139. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vulpis E, Loconte L, Peri A, Molfetta R, Caracciolo G, Masuelli L, Tomaipitinca L, Peruzzi G, Petillo S, Petrucci MT, et al: Impact on NK cell functions of acute versus chronic exposure to extracellular vesicle-associated MICA: Dual role in cancer immunosurveillance. J Extracell Vesicles. 11:e121762022. View Article : Google Scholar : PubMed/NCBI | |
Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S and Hayashi N: Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol. 43:1013–1020. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu D, Li G, Staveley-O'Carroll KF, Graff JN, Li Z and Wu JD: Antibody-mediated neutralization of soluble MIC significantly enhances CTLA4 blockade therapy. Sci Adv. 3:e16021332017. View Article : Google Scholar : PubMed/NCBI | |
Xiao G, Wang X, Sheng J, Lu S, Yu X and Wu JD: Soluble NKG2D ligand promotes MDSC expansion and skews macrophage to the alternatively activated phenotype. J Hematol Oncol. 8:132015. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi K, Chikumi H, Shimizu A, Takata M, Kinoshita N, Hashimoto K, Nakamoto M, Matsunaga S, Kurai J, Miyake N, et al: Diagnostic and prognostic impact of serum-soluble UL16-binding protein 2 in lung cancer patients. Cancer Sci. 103:1405–1413. 2012. View Article : Google Scholar : PubMed/NCBI | |
Duffy MJ, Sturgeon C, Lamerz R, Haglund C, Holubec VL, Klapdor R, Nicolini A, Topolcan O and Heinemann V: Tumor markers in pancreatic cancer: A European group on tumor markers (EGTM) status report. Ann Oncol. 21:441–447. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chung HW and Lim JB: Clinical significance of serum levels of immune-associated molecules, uric acid and soluble MHC class I chain-related molecules A and B, as diagnostic tumor markers for pancreatic ductal adenocarcinoma. Cancer Sci. 102:1673–1679. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chung HW, Jang S and Lim JB: Clinical implications and diagnostic usefulness of correlation between soluble major histocompatibility complex class I chain-related molecule a and protumorigenic cytokines in pancreatic ductal adenocarcinoma. Cancer. 119:233–244. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Zhao YK, Yuan GJ and Zhu QG: Clinical significance of soluble major histocompatibility complex class I chain-related a in renal cell carcinoma patients. Asian Pac J Cancer Prev. 14:5651–5655. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A and Salih HR: Soluble MICA in malignant diseases. Int J Cancer. 118:684–687. 2006. View Article : Google Scholar : PubMed/NCBI | |
Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A and Salih HR: Soluble MICB in malignant diseases: Analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother. 55:1584–1589. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K and Plymate SR: Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest. 114:560–568. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Huang JF, Huo Z, Zhang Q, Jiang Y, Wu X, Li Y, Jiang G, Zeng L, Yan XX, et al: Elevation of soluble major histocompatibility complex class I related chain A protein in malignant and infectious diseases in Chinese patients. BMC Immunol. 13:622012. View Article : Google Scholar : PubMed/NCBI | |
Mantovani S, Varchetta S, Mele D, Donadon M, Torzilli G, Soldani C, Franceschini B, Porta C, Chiellino S, Pedrazzoli P, et al: An anti-MICA/B antibody and IL-15 rescue altered NKG2D-dependent NK cell responses in hepatocellular carcinoma. Cancers (Basel). 12:35832020. View Article : Google Scholar : PubMed/NCBI | |
Kshersagar J, Damle MN, Bedge P, Jagdale R, Tardalkar K, Jadhav D, Jagadale S, Toro Y, Sharma R and Joshi MG: Downregulation of MICA/B tumor surface expressions and augmented soluble MICA serum levels correlate with disease stage in breast cancer. Breast Dis. 41:471–480. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kohga K, Takehara T, Tatsumi T, Ohkawa K, Miyagi T, Hiramatsu N, Kanto T, Kasugai T, Katayama K, Kato M and Hayashi N: Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma. Cancer Sci. 99:1643–1649. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR and Dranoff G: MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA. 105:1285–1290. 2008. View Article : Google Scholar : PubMed/NCBI | |
Paschen A, Sucker A, Hill B, Moll I, Zapatka M, Nguyen XD, Sim GC, Gutmann I, Hassel J, Becker JC, et al: Differential clinical significance of individual NKG2D ligands in melanoma: Soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin Cancer Res. 15:5208–5215. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Chen N, Yu Y, Zhou L, Niu C, Liu Y, Tian H, Lv Z, Han F and Cui J: Prognostic value of MICA/B in cancers: A systematic review and meta-analysis. Oncotarget. 8:96384–96395. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Rao GS, Groh V, Spies T, Gattuso P, Kaufman HL, Plate J and Prinz RA: Major histocompatibility complex class I-related chain A/B (MICA/B) expression in tumor tissue and serum of pancreatic cancer: Role of uric acid accumulation in gemcitabine-induced MICA/B expression. BMC Cancer. 11:1942011. View Article : Google Scholar : PubMed/NCBI | |
Wang LP, Niu H, Xia YF, Han YL, Niu P, Wang HY and Zhou QL: Prognostic significance of serum sMICA levels in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 19:2226–2230. 2015.PubMed/NCBI | |
Xing S, Zhu Y and Sun Y: Serum sMICA as biomarker in detection of non-small-cell lung carcinoma. Br J Biomed Sci. 75:50–52. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weil S, Memmer S, Lechner A, Huppert V, Giannattasio A, Becker T, Müller-Runte A, Lampe K, Beutner D, Quaas A, et al: Natural killer group 2D ligand depletion reconstitutes natural killer cell immunosurveillance of head and neck squamous cell carcinoma. Front Immunol. 8:3872017. View Article : Google Scholar : PubMed/NCBI | |
Chen JL, Chang CC, Huang YS, Kuo HY, Chen TY, Wang CW, Kuo SH and Lin YL: Persistently elevated soluble MHC class I polypeptide-related sequence A and transforming growth factor-β1 levels are poor prognostic factors in head and neck squamous cell carcinoma after definitive chemoradiotherapy. PLoS One. 13:e02022242018. View Article : Google Scholar : PubMed/NCBI | |
Li JJ, Pan K, Gu MF, Chen MS, Zhao JJ, Wang H, Liang XT, Sun JC and Xia JC: Prognostic value of soluble MICA levels in the serum of patients with advanced hepatocellular carcinoma. Chin J Cancer. 32:141–148. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cheung PF, Yip CW, Wong NC, Fong DY, Ng LW, Wan AM, Wong CK, Cheung TT, Ng IO, Poon RT, et al: Granulin-epithelin precursor renders hepatocellular carcinoma cells resistant to natural killer cytotoxicity. Cancer Immunol Res. 2:1209–1219. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roshani R, Boroujerdnia MG, Talaiezadeh AH and Khodadadi A: Assessment of changes in expression and presentation of NKG2D under influence of MICA serum factor in different stages of breast cancer. Tumour Biol. 37:6953–6962. 2016. View Article : Google Scholar : PubMed/NCBI | |
Madjd Z, Spendlove I, Moss R, Bevin S, Pinder SE, Watson NF, Ellis I and Durrant LG: Upregulation of MICA on high-grade invasive operable breast carcinoma. Cancer Immun. 7:172007.PubMed/NCBI | |
Zhao YK, Jia CM, Yuan GJ, Liu W, Qiu Y and Zhu QG: Expression and clinical value of the soluble major histocompatibility complex class I-related chain A molecule in the serum of patients with renal tumors. Genet Mol Res. 14:7233–7240. 2015. View Article : Google Scholar : PubMed/NCBI | |
Samuels S, Ferns DM, Meijer D, van Straalen JP, Buist MR, Zijlmans HJ, Kenter GG and Jordanova ES: High levels of soluble MICA are significantly related to increased disease-free and disease-specific survival in patients with cervical adenocarcinoma. Tissue Antigens. 85:476–483. 2015. View Article : Google Scholar : PubMed/NCBI | |
Märten A, von Lilienfeld-Toal M, Büchler MW and Schmidt J: Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer. 119:2359–2365. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Xu H and Zhu XX: Abnormal expression levels of sMICA and NKG2D are correlated with poor prognosis in pancreatic cancer. Ther Clin Risk Manag. 12:11–18. 2015.PubMed/NCBI | |
Duan X, Deng L, Chen X, Lu Y, Zhang Q, Zhang K, Hu Y, Zeng J and Sun W: Clinical significance of the immunostimulatory MHC class I chain-related molecule A and NKG2D receptor on NK cells in pancreatic cancer. Med Oncol. 28:466–474. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ben Chaaben A, Ouni N, Douik H, Ayari F, Abaza H, Mamoghli T, Harzallah L, Fortier C, Boukouaci W, Krishnamoorthy R, et al: Soluble MICA and anti-MICA antibodies as biomarkers of nasopharyngeal carcinoma disease. Immunol Invest. 49:498–509. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tamaki S, Sanefuzi N, Kawakami M, Aoki K, Imai Y, Yamanaka Y, Yamamoto K, Ishitani A, Hatake K and Kirita T: Association between soluble MICA levels and disease stage IV oral squamous cell carcinoma in Japanese patients. Hum Immunol. 69:88–93. 2008. View Article : Google Scholar : PubMed/NCBI | |
Arreygue-Garcia NA, Daneri-Navarro A, del Toro-Arreola A, Cid-Arregui A, Gonzalez-Ramella O, Jave-Suarez LF, Aguilar-Lemarroy A, Troyo-Sanroman R, Bravo-Cuellar A, Delgado-Rizo V, et al: Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions. BMC Cancer. 8:162008. View Article : Google Scholar : PubMed/NCBI | |
Nückel H, Switala M, Sellmann L, Horn PA, Dürig J, Dührsen U, Küppers R, Grosse-Wilde H and Rebmann V: The prognostic significance of soluble NKG2D ligands in B-cell chronic lymphocytic leukemia. Leukemia. 24:1152–1159. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maccalli C, Giannarelli D, Capocefalo F, Pilla L, Fonsatti E, Di Giacomo AM, Parmiani G and Maio M: Immunological markers and clinical outcome of advanced melanoma patients receiving ipilimumab plus fotemustine in the NIBIT-M1 study. Oncoimmunology. 5:e10710072015. View Article : Google Scholar : PubMed/NCBI | |
Rebmann V, Schütt P, Brandhorst D, Opalka B, Moritz T, Nowrousian MR and Grosse-Wilde H: Soluble MICA as an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients. Clin Immunol. 123:114–120. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Barber A and Sentman CL: Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res. 66:5927–5933. 2006. View Article : Google Scholar : PubMed/NCBI | |
Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, Schmucker A, Reder J, Sentman CL, Gilham DE, et al: Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res. 7:100–112. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Luo Q, Luo W, Wan L, Zhu Q, Yin X, Lu X, Song Z, Wei L, Xiang Z and Zou Y: A soluble NK-CAR mediates the specific cytotoxicity of NK cells toward the target CD20+ lymphoma cells. Aging Dis. 13:1576–1588. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ferrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, et al: Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 359:1537–1542. 2018. View Article : Google Scholar : PubMed/NCBI | |
Du C, Bevers J III, Cook R, Lombana TN, Rajasekaran K, Matsumoto M, Spiess C, Kim JM and Ye Z: MICA immune complex formed with alpha 3 domain-specific antibody activates human NK cells in a Fc-dependent manner. J Immunother Cancer. 7:2072019. View Article : Google Scholar : PubMed/NCBI | |
Alves da Silva PH, Xing S, Kotini AG, Papapetrou EP, Song X, Wucherpfennig KW, Mascarenhas J and Ferrari de Andrade L: MICA/B antibody induces macrophage-mediated immunity against acute myeloid leukemia. Blood. 139:205–216. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ferrari de Andrade L, Kumar S, Luoma AM, Ito Y, Alves da Silva PH, Pan D, Pyrdol JW, Yoon CH and Wucherpfennig KW: Inhibition of MICA and MICB shedding elicits NK-cell-mediated immunity against tumors resistant to cytotoxic T cells. Cancer Immunol Res. 8:769–780. 2020. View Article : Google Scholar : PubMed/NCBI | |
Badrinath S, Dellacherie MO, Li A, Zheng S, Zhang X, Sobral M, Pyrdol JW, Smith KL, Lu Y, Haag S, et al: A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature. 606:992–998. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Zhang J, Liu D, Li G, Staveley-O'Carroll KF, Li Z and Wu JD: Nonblocking monoclonal antibody targeting soluble MIC revamps endogenous innate and adaptive antitumor responses and eliminates primary and metastatic tumors. Clin Cancer Res. 21:4819–4830. 2015. View Article : Google Scholar : PubMed/NCBI | |
Basher F, Dhar P, Wang X, Wainwright DA, Zhang B, Sosman J, Ji Z and Wu JD: Antibody targeting tumor-derived soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival and function and enhances melanoma response to PDL1 blockade therapy. J Hematol Oncol. 13:742020. View Article : Google Scholar : PubMed/NCBI | |
Narni-Mancinelli E and Vivier E: Shed NKG2D ligand boosts NK cell immunity. Cell Res. 25:651–652. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamanegi K, Yamane J, Kobayashi K, Ohyama H, Nakasho K, Yamada N, Hata M, Fukunaga S, Futani H, Okamura H and Terada N: Downregulation of matrix metalloproteinase-9 mRNA by valproic acid plays a role in inhibiting the shedding of MHC class I-related molecules A and B on the surface of human osteosarcoma cells. Oncol Rep. 28:1585–1590. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miyashita T, Miki K, Kamigaki T, Makino I, Tajima H, Nakanuma S, Hayashi H, Takamura H, Fushida S, Ahmed AK, et al: Low-dose valproic acid with low-dose gemcitabine augments MHC class I-related chain A/B expression without inducing the release of soluble MHC class I-related chain A/B. Oncol Lett. 14:5918–5926. 2017.PubMed/NCBI | |
Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J, Gratwohl A, Tichelli A, Paluszewska M, et al: NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood. 111:1428–1436. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ho TCS, Chan AHY and Ganesan A: Thirty years of HDAC inhibitors: 2020 Insight and hindsight. J Med Chem. 63:12460–12484. 2020. View Article : Google Scholar : PubMed/NCBI | |
Camodeca C, Nuti E, Tepshi L, Boero S, Tuccinardi T, Stura EA, Poggi A, Zocchi MR and Rossello A: Discovery of a new selective inhibitor of A disintegrin and metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin's lymphoma cell models. Eur J Med Chem. 111:193–201. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sekiba K, Otsuka M, Seimiya T, Tanaka E, Funato K, Miyakawa Y and Koike K: The fatty-acid amide hydrolase inhibitor URB597 inhibits MICA/B shedding. Sci Rep. 10:155562020. View Article : Google Scholar : PubMed/NCBI | |
Liu J and Khalil RA: Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci. 148:355–420. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Sikorski R, Sampath P and Thorne SH: Modulation of NKG2D-ligand cell surface expression enhances immune cell therapy of cancer. J Immunother. 34:289–296. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nwangwu CA, Weiher H and Schmidt-Wolf IGH: Increase of CIK cell efficacy by upregulating cell surface MICA and inhibition of NKG2D ligand shedding in multiple myeloma. Hematol Oncol. 35:719–725. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fuertes MB, Domaica CI and Zwirner NW: Leveraging NKG2D ligands in immuno-oncology. Front Immunol. 12:7131582021. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Zhou Y, Wang X, Guo J, Li J, Fan H, Dou J, Shen B and Zhou C: Enhanced antitumor activity of gemcitabine by polysaccharide-induced NK cell activation and immune cytotoxicity reduction in vitro/vivo. Carbohydr Polym. 173:360–371. 2017. View Article : Google Scholar : PubMed/NCBI | |
Goto K, Arai J, Stephanou A and Kato N: Novel therapeutic features of disulfiram against hepatocellular carcinoma cells with inhibitory effects on a disintegrin and metalloproteinase 10. Oncotarget. 9:18821–18831. 2018. View Article : Google Scholar : PubMed/NCBI |