Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2024 Volume 52 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2024 Volume 52 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review)

  • Authors:
    • Shuhao Huang
    • Zihao Qin
    • Feiyang Wang
    • Yiping Kang
    • Biqiong Ren
  • View Affiliations / Copyright

    Affiliations: Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 137
    |
    Published online on: August 14, 2024
       https://doi.org/10.3892/or.2024.8796
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The immune system is integral to the surveillance and eradication of tumor cells. Interactions between the natural killer group 2 member D (NKG2D) receptor and its ligands (NKG2DLs) are vital for activating NKG2D receptor‑positive immune cells, such as natural killer cells. This activation enables these cells to identify and destroy tumor cells presenting with NKG2DLs, which is an essential aspect of tumor immunity. However, tumor immune escape is facilitated by soluble NKG2DL (sNKG2DL) shed from the surface of tumor cells. The production of sNKG2DL is predominantly regulated by metalloproteinases [a disintegrin and metalloproteinases (ADAM) and matrix metalloproteinase (MMP) families] and exosomes. sNKG2DL not only diminish immune recognition on the tumor cell surface but also suppress the function of immune cells, such as NK cells, and reduce the expression of the NKG2D receptor. This process promotes immune evasion, progression, and metastasis of tumors. In this review, an in‑depth summary of the mechanisms and factors that influence sNKG2DL production and their contribution to immune suppression within the tumor microenvironment are provided. Furthermore, due to the significant link between sNKG2DLs and tumor progression and metastasis, they have great potential as novel biomarkers. Detectable via liquid biopsies, sNKG2DLs could assess tumor malignancy and prognosis, and act as pivotal targets for immunotherapy. This could lead to the discovery of new drugs or the enhancement of existing treatments. Thus, the application of sNKG2DLs in clinical oncology was explored, offering substantial theoretical support for the development of innovative immunotherapeutic strategies for sNKG2DLs.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, Wang Y, Xiong F, Guo C, Li Y, et al: Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer. 18:292019. View Article : Google Scholar : PubMed/NCBI

2 

Tan G, Spillane KM and Maher J: The role and regulation of the NKG2D/NKG2D ligand system in cancer. Biology (Basel). 12:10792023.PubMed/NCBI

3 

Ullrich E, Koch J, Cerwenka A and Steinle A: New prospects on the NKG2D/NKG2DL system for oncology. Oncoimmunology. 2:e260972013. View Article : Google Scholar : PubMed/NCBI

4 

Raulet DH: Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 3:781–790. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Zingoni A, Molfetta R, Fionda C, Soriani A, Paolini R, Cippitelli M, Cerboni C and Santoni A: NKG2D and its ligands: ‘One for all, all for one’. Front Immunol. 9:4762018. View Article : Google Scholar : PubMed/NCBI

6 

Tchacrome I, Zhu Q, Saleh MA and Zou Y: Diseases association with the polymorphic major histocompatibility complex class I related chain a: MICA gene. Transpl Immunol. 75:1016652022. View Article : Google Scholar : PubMed/NCBI

7 

Maurer S, Zhong X, Prada BD, Mascarenhas J and de Andrade LF: The latest breakthroughs in immunotherapy for acute myeloid leukemia, with a special focus on NKG2D ligands. Int J Mol Sci. 23:159072022. View Article : Google Scholar : PubMed/NCBI

8 

Campos-Silva C, López-Borrego S, Felgueres MJ, Esteso G and Vales-Gomez M: NKG2D ligands in liquid biopsy: The importance of soluble and vesicle-bound proteins for immune modulation. Crit Rev Immunol. 42:21–40. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Lanier LL: NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 3:575–582. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Touboul R, Zaravinos A and Bonavida B: Defective natural killer cells in melanoma: Role of NKG2D in pathogenesis and immunotherapy. Crit Rev Immunol. 41:45–76. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Jones AB, Rocco A, Lamb LS, Friedman GK and Hjelmeland AB: Regulation of NKG2D stress ligands and its relevance in cancer progression. Cancers (Basel). 14:23392022. View Article : Google Scholar : PubMed/NCBI

12 

Groh V, Bahram S, Bauer S, Herman A, Beauchamp M and Spies T: Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA. 93:12445–12450. 1996. View Article : Google Scholar : PubMed/NCBI

13 

Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M and Chalupny NJ: ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 14:123–133. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Groh V, Steinle A, Bauer S and Spies T: Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science. 279:1737–1740. 1998. View Article : Google Scholar : PubMed/NCBI

15 

Venkataraman GM, Suciu D, Groh V, Boss JM and Spies T: Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D. J Immunol. 178:961–969. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K and Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 73:39–85. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG and Cerwenka A: Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res. 71:5998–6009. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Zhao Y, Simon M, Seluanov A and Gorbunova V: DNA damage and repair in age-related inflammation. Nat Rev Immunol. 23:75–89. 2023. View Article : Google Scholar : PubMed/NCBI

19 

Lin D, Lavender H, Soilleux EJ and O'Callaghan CA: NF-κB regulates MICA gene transcription in endothelial cell through a genetically inhibitable control site. J Biol Chem. 287:4299–4310. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Schrambach S, Ardizzone M, Leymarie V, Sibilia J and Bahram S: In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS One. 2:e5182007. View Article : Google Scholar : PubMed/NCBI

21 

Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, Mandelboim M and Mandelboim O: Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol. 9:1065–1073. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Yadav D, Ngolab J, Lim RSH, Krishnamurthy S and Bui JD: Cutting edge: Down-regulation of MHC class I-related chain A on tumor cells by IFN-gamma-induced microRNA. J Immunol. 182:39–43. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Heinemann A, Zhao F, Pechlivanis S, Eberle J, Steinle A, Diederichs S, Schadendorf D and Paschen A: Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res. 72:460–471. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Kato N, Tanaka J, Sugita J, Toubai T, Miura Y, Ibata M, Syono Y, Ota S, Kondo T, Asaka M and Imamura M: Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia. 21:2103–2108. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Morimoto Y, Yamashita N, Daimon T, Hirose H, Yamano S, Haratake N, Ishikawa S, Bhattacharya A, Fushimi A, Ahmad R, et al: MUC1-C is a master regulator of MICA/B NKG2D ligand and exosome secretion in human cancer cells. J Immunother Cancer. 11:e0062382023. View Article : Google Scholar : PubMed/NCBI

26 

Zhang X, Rao A, Sette P, Deibert C, Pomerantz A, Kim WJ, Kohanbash G, Chang Y, Park Y, Engh J, et al: IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro Oncol. 18:1402–1412. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Tsukerman P, Stern-Ginossar N, Gur C, Glasner A, Nachmani D, Bauman Y, Yamin R, Vitenshtein A, Stanietsky N, Bar-Mag T, et al: MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res. 72:5463–5472. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Codo P, Weller M, Meister G, Szabo E, Steinle A, Wolter M, Reifenberger G and Roth P: MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget. 5:7651–7662. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Breunig C, Pahl J, Küblbeck M, Miller M, Antonelli D, Erdem N, Wirth C, Will R, Bott A, Cerwenka A and Wiemann S: MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis. 8:e29732017. View Article : Google Scholar : PubMed/NCBI

30 

Eagle RA, Flack G, Warford A, Martínez-Borra J, Jafferji I, Traherne JA, Ohashi M, Boyle LH, Barrow AD, Caillat-Zucman S, et al: Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G. PLoS One. 4:e45032009. View Article : Google Scholar : PubMed/NCBI

31 

Fernández-Messina L, Reyburn HT and Valés-Gómez M: A short half-life of ULBP1 at the cell surface due to internalization and proteosomal degradation. Immunol Cell Biol. 94:479–485. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Agüera-González S, Boutet P, Reyburn HT and Valés-Gómez M: Brief residence at the plasma membrane of the MHC class I-related chain B is due to clathrin-mediated cholesterol-dependent endocytosis and shedding. J Immunol. 182:4800–4808. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Gomis-Rüth FX: Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol. 24:157–202. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Edwards DR, Handsley MM and Pennington CJ: The ADAM metalloproteinases. Mol Aspects Med. 29:258–289. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Cui N, Hu M and Khalil RA: Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 147:1–73. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH, Strong RK, Groh V and Spies T: Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature. 447:482–486. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Wang X, Lundgren AD, Singh P, Goodlett DR, Plymate SR and Wu JD: An six-amino acid motif in the alpha3 domain of MICA is the cancer therapeutic target to inhibit shedding. Biochem Biophys Res Commun. 387:476–481. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, Ludwig A, Stevanovic S, Rammensee HG and Steinle A: Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 68:6368–6376. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Waldhauer I and Steinle A: Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res. 66:2520–2526. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Boutet P, Agüera-González S, Atkinson S, Pennington CJ, Edwards DR, Murphy G, Reyburn HT and Valés-Gómez M: Cutting edge: The metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J Immunol. 182:49–53. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Fernández-Messina L, Ashiru O, Boutet P, Agüera-González S, Skepper JN, Reyburn HT and Valés-Gómez M: Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol Chem. 285:8543–8551. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Raneros AB, Minguela A, Rodriguez RM, Colado E, Bernal T, Anguita E, Mogorron AV, Gil AC, Vidal-Castiñeira JR, Márquez-Kisinousky L, et al: Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition. Oncotarget. 8:31959–31976. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Brown DA: Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda). 21:430–439. 2006.PubMed/NCBI

44 

de Gassart A, Geminard C, Fevrier B, Raposo G and Vidal M: Lipid raft-associated protein sorting in exosomes. Blood. 102:4336–4344. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Ashiru O, Boutet P, Fernández-Messina L, Agüera-González S, Skepper JN, Valés-Gómez M and Reyburn HT: Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 70:481–489. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Hedlund M, Nagaeva O, Kargl D, Baranov V and Mincheva-Nilsson L: Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One. 6:e168992011. View Article : Google Scholar : PubMed/NCBI

47 

Agüera-González S, Gross CC, Fernández-Messina L, Ashiru O, Esteso G, Hang HC, Reyburn HT, Long EO and Valés-Gómez M: Palmitoylation of MICA, a ligand for NKG2D, mediates its recruitment to membrane microdomains and promotes its shedding. Eur J Immunol. 41:3667–3676. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Eleme K, Taner SB, Onfelt B, Collinson LM, McCann FE, Chalupny NJ, Cosman D, Hopkins C, Magee AI and Davis DM: Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J Exp Med. 199:1005–1010. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Bacon L, Eagle RA, Meyer M, Easom N, Young NT and Trowsdale J: Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol. 173:1078–1084. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Cao W, Xi X, Hao Z, Li W, Kong Y, Cui L, Ma C, Ba D and He W: RAET1E2, a soluble isoform of the UL16-binding protein RAET1E produced by tumor cells, inhibits NKG2D-mediated NK cytotoxicity. J Biol Chem. 282:18922–18928. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Zingoni A, Vulpis E, Cecere F, Amendola MG, Fuerst D, Saribekyan T, Achour A, Sandalova T, Nardone I, Peri A, et al: MICA-129 dimorphism and soluble MICA are associated with the progression of multiple myeloma. Front Immunol. 9:9262018. View Article : Google Scholar : PubMed/NCBI

52 

Toledo-Stuardo K, Ribeiro CH, Canals A, Morales M, Gárate V, Rodríguez-Siza J, Tello S, Bustamante M, Armisen R, Matthies DJ, et al: Major histocompatibility complex class I-related chain A (MICA) allelic variants associate with susceptibility and prognosis of gastric cancer. Front Immunol. 12:6455282021. View Article : Google Scholar : PubMed/NCBI

53 

Ashiru O, López-Cobo S, Fernández-Messina L, Pontes-Quero S, Pandolfi R, Reyburn HT and Valés-Gómez M: A GPI anchor explains the unique biological features of the common NKG2D-ligand allele MICA*008. Biochem J. 454:295–302. 2013. View Article : Google Scholar : PubMed/NCBI

54 

López-Cobo S, Campos-Silva C and Valés-Gómez M: Glycosyl-phosphatidyl-inositol (GPI)-anchors and metalloproteases: Their roles in the regulation of exosome composition and NKG2D-mediated immune recognition. Front Cell Dev Biol. 4:972016. View Article : Google Scholar : PubMed/NCBI

55 

Isernhagen A, Schilling D, Monecke S, Shah P, Elsner L, Walter L, Multhoff G and Dressel R: The MICA-129Met/Val dimorphism affects plasma membrane expression and shedding of the NKG2D ligand MICA. Immunogenetics. 68:109–123. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, Otsuka M, Tateishi R, Omata M, Nakagawa H, et al: Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 43:455–458. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR and Graham CH: Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res. 71:7433–7441. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Ou ZL, Luo Z, Wei W, Liang S, Gao TL and Lu YB: Hypoxia-induced shedding of MICA and HIF1A-mediated immune escape of pancreatic cancer cells from NK cells: Role of circ_0000977/miR-153 axis. RNA Biol. 16:1592–1603. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, et al: Cellular senescence: Defining a path forward. Cell. 179:813–827. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Zhang Y, Hu R, Xi B, Nie D, Xu H and Liu A: Mechanisms of senescence-related NKG2D ligands release and immune escape induced by chemotherapy in neuroblastoma cells. Front Cell Dev Biol. 10:8294042022. View Article : Google Scholar : PubMed/NCBI

61 

Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A and Hayashi N: Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology. 51:1264–1273. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Ziani L, Safta-Saadoun TB, Gourbeix J, Cavalcanti A, Robert C, Favre G, Chouaib S and Thiery J: Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget. 8:19780–19794. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Maurer S, Kropp KN, Klein G, Steinle A, Haen SP, Walz JS, Hinterleitner C, Märklin M, Kopp HG and Salih HR: Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. Oncoimmunology. 7:e13648272017. View Article : Google Scholar : PubMed/NCBI

64 

Zocchi MR, Catellani S, Canevali P, Tavella S, Garuti A, Villaggio B, Zunino A, Gobbi M, Fraternali-Orcioni G, Kunkl A, et al: High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas. Blood. 119:1479–1489. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Vandooren J, Van den Steen PE and Opdenakker G: Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade. Crit Rev Biochem Mol Biol. 48:222–272. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Kohga K, Tatsumi T, Tsunematsu H, Aono S, Shimizu S, Kodama T, Hikita H, Yamamoto M, Oze T, Aketa H, et al: Interleukin-1β enhances the production of soluble MICA in human hepatocellular carcinoma. Cancer Immunol Immunother. 61:1425–1432. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Lu Y, Jiang F, Zheng X, Katakowski M, Buller B, To SS and Chopp M: TGF-β1 promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol Rep. 25:1329–1335. 2011.PubMed/NCBI

68 

Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A, Weller M and Friese MA: TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain. 129:2416–2425. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Fang X, Guo L, Xing Z, Shi L, Liang H, Li A, Kuang C, Tao B and Yang Q: IDO1 can impair NK cells function against non-small cell lung cancer by downregulation of NKG2D ligand via ADAM10. Pharmacol Res. 177:1061322022. View Article : Google Scholar : PubMed/NCBI

70 

Del Toro-Arreola S, Arreygue-Garcia N, Aguilar-Lemarroy A, Cid-Arregui A, Jimenez-Perez M, Haramati J, Barros-Nuñez P, Gonzalez-Ramella O, Del Toro-Arreola A, Ortiz-Lazareno P, et al: MHC class I-related chain A and B ligands are differentially expressed in human cervical cancer cell lines. Cancer Cell Int. 11:152011. View Article : Google Scholar : PubMed/NCBI

71 

Hilpert J, Grosse-Hovest L, Grünebach F, Buechele C, Nuebling T, Raum T, Steinle A and Salih HR: Comprehensive analysis of NKG2D ligand expression and release in leukemia: Implications for NKG2D-mediated NK cell responses. J Immunol. 189:1360–1371. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Arai J, Goto K, Otoyama Y, Nakajima Y, Sugiura I, Kajiwara A, Tojo M, Ichikawa Y, Uozumi S, Shimozuma Y, et al: Leukotriene receptor antagonists enhance HCC treatment efficacy by inhibiting ADAMs and suppressing MICA shedding. Cancer Immunol Immunother. 70:203–213. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Molfetta R, Quatrini L, Zitti B, Capuano C, Galandrini R, Santoni A and Paolini R: Regulation of NKG2D expression and signaling by endocytosis. Trends Immunol. 37:790–802. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Clayton A and Tabi Z: Exosomes and the MICA-NKG2D system in cancer. Blood Cells Mol Dis. 34:206–213. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Molfetta R, Quatrini L, Capuano C, Gasparrini F, Zitti B, Zingoni A, Galandrini R, Santoni A and Paolini R: c-Cbl regulates MICA-but not ULBP2-induced NKG2D down-modulation in human NK cells. Eur J Immunol. 44:2761–2770. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Deng W, Gowen BG, Zhang L, Wang L, Lau S, Iannello A, Xu J, Rovis TL, Xiong N and Raulet DH: Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science. 348:136–139. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Vulpis E, Loconte L, Peri A, Molfetta R, Caracciolo G, Masuelli L, Tomaipitinca L, Peruzzi G, Petillo S, Petrucci MT, et al: Impact on NK cell functions of acute versus chronic exposure to extracellular vesicle-associated MICA: Dual role in cancer immunosurveillance. J Extracell Vesicles. 11:e121762022. View Article : Google Scholar : PubMed/NCBI

78 

Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S and Hayashi N: Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol. 43:1013–1020. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Zhang J, Liu D, Li G, Staveley-O'Carroll KF, Graff JN, Li Z and Wu JD: Antibody-mediated neutralization of soluble MIC significantly enhances CTLA4 blockade therapy. Sci Adv. 3:e16021332017. View Article : Google Scholar : PubMed/NCBI

80 

Xiao G, Wang X, Sheng J, Lu S, Yu X and Wu JD: Soluble NKG2D ligand promotes MDSC expansion and skews macrophage to the alternatively activated phenotype. J Hematol Oncol. 8:132015. View Article : Google Scholar : PubMed/NCBI

81 

Yamaguchi K, Chikumi H, Shimizu A, Takata M, Kinoshita N, Hashimoto K, Nakamoto M, Matsunaga S, Kurai J, Miyake N, et al: Diagnostic and prognostic impact of serum-soluble UL16-binding protein 2 in lung cancer patients. Cancer Sci. 103:1405–1413. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Duffy MJ, Sturgeon C, Lamerz R, Haglund C, Holubec VL, Klapdor R, Nicolini A, Topolcan O and Heinemann V: Tumor markers in pancreatic cancer: A European group on tumor markers (EGTM) status report. Ann Oncol. 21:441–447. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Chung HW and Lim JB: Clinical significance of serum levels of immune-associated molecules, uric acid and soluble MHC class I chain-related molecules A and B, as diagnostic tumor markers for pancreatic ductal adenocarcinoma. Cancer Sci. 102:1673–1679. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Chung HW, Jang S and Lim JB: Clinical implications and diagnostic usefulness of correlation between soluble major histocompatibility complex class I chain-related molecule a and protumorigenic cytokines in pancreatic ductal adenocarcinoma. Cancer. 119:233–244. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Qiu Y, Zhao YK, Yuan GJ and Zhu QG: Clinical significance of soluble major histocompatibility complex class I chain-related a in renal cell carcinoma patients. Asian Pac J Cancer Prev. 14:5651–5655. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A and Salih HR: Soluble MICA in malignant diseases. Int J Cancer. 118:684–687. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A and Salih HR: Soluble MICB in malignant diseases: Analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother. 55:1584–1589. 2006. View Article : Google Scholar : PubMed/NCBI

88 

Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K and Plymate SR: Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest. 114:560–568. 2004. View Article : Google Scholar : PubMed/NCBI

89 

Jiang X, Huang JF, Huo Z, Zhang Q, Jiang Y, Wu X, Li Y, Jiang G, Zeng L, Yan XX, et al: Elevation of soluble major histocompatibility complex class I related chain A protein in malignant and infectious diseases in Chinese patients. BMC Immunol. 13:622012. View Article : Google Scholar : PubMed/NCBI

90 

Mantovani S, Varchetta S, Mele D, Donadon M, Torzilli G, Soldani C, Franceschini B, Porta C, Chiellino S, Pedrazzoli P, et al: An anti-MICA/B antibody and IL-15 rescue altered NKG2D-dependent NK cell responses in hepatocellular carcinoma. Cancers (Basel). 12:35832020. View Article : Google Scholar : PubMed/NCBI

91 

Kshersagar J, Damle MN, Bedge P, Jagdale R, Tardalkar K, Jadhav D, Jagadale S, Toro Y, Sharma R and Joshi MG: Downregulation of MICA/B tumor surface expressions and augmented soluble MICA serum levels correlate with disease stage in breast cancer. Breast Dis. 41:471–480. 2022. View Article : Google Scholar : PubMed/NCBI

92 

Kohga K, Takehara T, Tatsumi T, Ohkawa K, Miyagi T, Hiramatsu N, Kanto T, Kasugai T, Katayama K, Kato M and Hayashi N: Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma. Cancer Sci. 99:1643–1649. 2008. View Article : Google Scholar : PubMed/NCBI

93 

Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR and Dranoff G: MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA. 105:1285–1290. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Paschen A, Sucker A, Hill B, Moll I, Zapatka M, Nguyen XD, Sim GC, Gutmann I, Hassel J, Becker JC, et al: Differential clinical significance of individual NKG2D ligands in melanoma: Soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin Cancer Res. 15:5208–5215. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Zhao Y, Chen N, Yu Y, Zhou L, Niu C, Liu Y, Tian H, Lv Z, Han F and Cui J: Prognostic value of MICA/B in cancers: A systematic review and meta-analysis. Oncotarget. 8:96384–96395. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Xu X, Rao GS, Groh V, Spies T, Gattuso P, Kaufman HL, Plate J and Prinz RA: Major histocompatibility complex class I-related chain A/B (MICA/B) expression in tumor tissue and serum of pancreatic cancer: Role of uric acid accumulation in gemcitabine-induced MICA/B expression. BMC Cancer. 11:1942011. View Article : Google Scholar : PubMed/NCBI

97 

Wang LP, Niu H, Xia YF, Han YL, Niu P, Wang HY and Zhou QL: Prognostic significance of serum sMICA levels in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 19:2226–2230. 2015.PubMed/NCBI

98 

Xing S, Zhu Y and Sun Y: Serum sMICA as biomarker in detection of non-small-cell lung carcinoma. Br J Biomed Sci. 75:50–52. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Weil S, Memmer S, Lechner A, Huppert V, Giannattasio A, Becker T, Müller-Runte A, Lampe K, Beutner D, Quaas A, et al: Natural killer group 2D ligand depletion reconstitutes natural killer cell immunosurveillance of head and neck squamous cell carcinoma. Front Immunol. 8:3872017. View Article : Google Scholar : PubMed/NCBI

100 

Chen JL, Chang CC, Huang YS, Kuo HY, Chen TY, Wang CW, Kuo SH and Lin YL: Persistently elevated soluble MHC class I polypeptide-related sequence A and transforming growth factor-β1 levels are poor prognostic factors in head and neck squamous cell carcinoma after definitive chemoradiotherapy. PLoS One. 13:e02022242018. View Article : Google Scholar : PubMed/NCBI

101 

Li JJ, Pan K, Gu MF, Chen MS, Zhao JJ, Wang H, Liang XT, Sun JC and Xia JC: Prognostic value of soluble MICA levels in the serum of patients with advanced hepatocellular carcinoma. Chin J Cancer. 32:141–148. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Cheung PF, Yip CW, Wong NC, Fong DY, Ng LW, Wan AM, Wong CK, Cheung TT, Ng IO, Poon RT, et al: Granulin-epithelin precursor renders hepatocellular carcinoma cells resistant to natural killer cytotoxicity. Cancer Immunol Res. 2:1209–1219. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Roshani R, Boroujerdnia MG, Talaiezadeh AH and Khodadadi A: Assessment of changes in expression and presentation of NKG2D under influence of MICA serum factor in different stages of breast cancer. Tumour Biol. 37:6953–6962. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Madjd Z, Spendlove I, Moss R, Bevin S, Pinder SE, Watson NF, Ellis I and Durrant LG: Upregulation of MICA on high-grade invasive operable breast carcinoma. Cancer Immun. 7:172007.PubMed/NCBI

105 

Zhao YK, Jia CM, Yuan GJ, Liu W, Qiu Y and Zhu QG: Expression and clinical value of the soluble major histocompatibility complex class I-related chain A molecule in the serum of patients with renal tumors. Genet Mol Res. 14:7233–7240. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Samuels S, Ferns DM, Meijer D, van Straalen JP, Buist MR, Zijlmans HJ, Kenter GG and Jordanova ES: High levels of soluble MICA are significantly related to increased disease-free and disease-specific survival in patients with cervical adenocarcinoma. Tissue Antigens. 85:476–483. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Märten A, von Lilienfeld-Toal M, Büchler MW and Schmidt J: Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer. 119:2359–2365. 2006. View Article : Google Scholar : PubMed/NCBI

108 

Chen J, Xu H and Zhu XX: Abnormal expression levels of sMICA and NKG2D are correlated with poor prognosis in pancreatic cancer. Ther Clin Risk Manag. 12:11–18. 2015.PubMed/NCBI

109 

Duan X, Deng L, Chen X, Lu Y, Zhang Q, Zhang K, Hu Y, Zeng J and Sun W: Clinical significance of the immunostimulatory MHC class I chain-related molecule A and NKG2D receptor on NK cells in pancreatic cancer. Med Oncol. 28:466–474. 2011. View Article : Google Scholar : PubMed/NCBI

110 

Ben Chaaben A, Ouni N, Douik H, Ayari F, Abaza H, Mamoghli T, Harzallah L, Fortier C, Boukouaci W, Krishnamoorthy R, et al: Soluble MICA and anti-MICA antibodies as biomarkers of nasopharyngeal carcinoma disease. Immunol Invest. 49:498–509. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Tamaki S, Sanefuzi N, Kawakami M, Aoki K, Imai Y, Yamanaka Y, Yamamoto K, Ishitani A, Hatake K and Kirita T: Association between soluble MICA levels and disease stage IV oral squamous cell carcinoma in Japanese patients. Hum Immunol. 69:88–93. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Arreygue-Garcia NA, Daneri-Navarro A, del Toro-Arreola A, Cid-Arregui A, Gonzalez-Ramella O, Jave-Suarez LF, Aguilar-Lemarroy A, Troyo-Sanroman R, Bravo-Cuellar A, Delgado-Rizo V, et al: Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions. BMC Cancer. 8:162008. View Article : Google Scholar : PubMed/NCBI

113 

Nückel H, Switala M, Sellmann L, Horn PA, Dürig J, Dührsen U, Küppers R, Grosse-Wilde H and Rebmann V: The prognostic significance of soluble NKG2D ligands in B-cell chronic lymphocytic leukemia. Leukemia. 24:1152–1159. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Maccalli C, Giannarelli D, Capocefalo F, Pilla L, Fonsatti E, Di Giacomo AM, Parmiani G and Maio M: Immunological markers and clinical outcome of advanced melanoma patients receiving ipilimumab plus fotemustine in the NIBIT-M1 study. Oncoimmunology. 5:e10710072015. View Article : Google Scholar : PubMed/NCBI

115 

Rebmann V, Schütt P, Brandhorst D, Opalka B, Moritz T, Nowrousian MR and Grosse-Wilde H: Soluble MICA as an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients. Clin Immunol. 123:114–120. 2007. View Article : Google Scholar : PubMed/NCBI

116 

Zhang T, Barber A and Sentman CL: Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res. 66:5927–5933. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, Schmucker A, Reder J, Sentman CL, Gilham DE, et al: Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res. 7:100–112. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Liu R, Luo Q, Luo W, Wan L, Zhu Q, Yin X, Lu X, Song Z, Wei L, Xiang Z and Zou Y: A soluble NK-CAR mediates the specific cytotoxicity of NK cells toward the target CD20+ lymphoma cells. Aging Dis. 13:1576–1588. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Ferrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ, et al: Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 359:1537–1542. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Du C, Bevers J III, Cook R, Lombana TN, Rajasekaran K, Matsumoto M, Spiess C, Kim JM and Ye Z: MICA immune complex formed with alpha 3 domain-specific antibody activates human NK cells in a Fc-dependent manner. J Immunother Cancer. 7:2072019. View Article : Google Scholar : PubMed/NCBI

121 

Alves da Silva PH, Xing S, Kotini AG, Papapetrou EP, Song X, Wucherpfennig KW, Mascarenhas J and Ferrari de Andrade L: MICA/B antibody induces macrophage-mediated immunity against acute myeloid leukemia. Blood. 139:205–216. 2022. View Article : Google Scholar : PubMed/NCBI

122 

Ferrari de Andrade L, Kumar S, Luoma AM, Ito Y, Alves da Silva PH, Pan D, Pyrdol JW, Yoon CH and Wucherpfennig KW: Inhibition of MICA and MICB shedding elicits NK-cell-mediated immunity against tumors resistant to cytotoxic T cells. Cancer Immunol Res. 8:769–780. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Badrinath S, Dellacherie MO, Li A, Zheng S, Zhang X, Sobral M, Pyrdol JW, Smith KL, Lu Y, Haag S, et al: A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature. 606:992–998. 2022. View Article : Google Scholar : PubMed/NCBI

124 

Lu S, Zhang J, Liu D, Li G, Staveley-O'Carroll KF, Li Z and Wu JD: Nonblocking monoclonal antibody targeting soluble MIC revamps endogenous innate and adaptive antitumor responses and eliminates primary and metastatic tumors. Clin Cancer Res. 21:4819–4830. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Basher F, Dhar P, Wang X, Wainwright DA, Zhang B, Sosman J, Ji Z and Wu JD: Antibody targeting tumor-derived soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival and function and enhances melanoma response to PDL1 blockade therapy. J Hematol Oncol. 13:742020. View Article : Google Scholar : PubMed/NCBI

126 

Narni-Mancinelli E and Vivier E: Shed NKG2D ligand boosts NK cell immunity. Cell Res. 25:651–652. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Yamanegi K, Yamane J, Kobayashi K, Ohyama H, Nakasho K, Yamada N, Hata M, Fukunaga S, Futani H, Okamura H and Terada N: Downregulation of matrix metalloproteinase-9 mRNA by valproic acid plays a role in inhibiting the shedding of MHC class I-related molecules A and B on the surface of human osteosarcoma cells. Oncol Rep. 28:1585–1590. 2012. View Article : Google Scholar : PubMed/NCBI

128 

Miyashita T, Miki K, Kamigaki T, Makino I, Tajima H, Nakanuma S, Hayashi H, Takamura H, Fushida S, Ahmed AK, et al: Low-dose valproic acid with low-dose gemcitabine augments MHC class I-related chain A/B expression without inducing the release of soluble MHC class I-related chain A/B. Oncol Lett. 14:5918–5926. 2017.PubMed/NCBI

129 

Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J, Gratwohl A, Tichelli A, Paluszewska M, et al: NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood. 111:1428–1436. 2008. View Article : Google Scholar : PubMed/NCBI

130 

Ho TCS, Chan AHY and Ganesan A: Thirty years of HDAC inhibitors: 2020 Insight and hindsight. J Med Chem. 63:12460–12484. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Camodeca C, Nuti E, Tepshi L, Boero S, Tuccinardi T, Stura EA, Poggi A, Zocchi MR and Rossello A: Discovery of a new selective inhibitor of A disintegrin and metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin's lymphoma cell models. Eur J Med Chem. 111:193–201. 2016. View Article : Google Scholar : PubMed/NCBI

132 

Sekiba K, Otsuka M, Seimiya T, Tanaka E, Funato K, Miyakawa Y and Koike K: The fatty-acid amide hydrolase inhibitor URB597 inhibits MICA/B shedding. Sci Rep. 10:155562020. View Article : Google Scholar : PubMed/NCBI

133 

Liu J and Khalil RA: Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci. 148:355–420. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Huang B, Sikorski R, Sampath P and Thorne SH: Modulation of NKG2D-ligand cell surface expression enhances immune cell therapy of cancer. J Immunother. 34:289–296. 2011. View Article : Google Scholar : PubMed/NCBI

135 

Nwangwu CA, Weiher H and Schmidt-Wolf IGH: Increase of CIK cell efficacy by upregulating cell surface MICA and inhibition of NKG2D ligand shedding in multiple myeloma. Hematol Oncol. 35:719–725. 2017. View Article : Google Scholar : PubMed/NCBI

136 

Fuertes MB, Domaica CI and Zwirner NW: Leveraging NKG2D ligands in immuno-oncology. Front Immunol. 12:7131582021. View Article : Google Scholar : PubMed/NCBI

137 

Xie X, Zhou Y, Wang X, Guo J, Li J, Fan H, Dou J, Shen B and Zhou C: Enhanced antitumor activity of gemcitabine by polysaccharide-induced NK cell activation and immune cytotoxicity reduction in vitro/vivo. Carbohydr Polym. 173:360–371. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Goto K, Arai J, Stephanou A and Kato N: Novel therapeutic features of disulfiram against hepatocellular carcinoma cells with inhibitory effects on a disintegrin and metalloproteinase 10. Oncotarget. 9:18821–18831. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang S, Qin Z, Wang F, Kang Y and Ren B: A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review). Oncol Rep 52: 137, 2024.
APA
Huang, S., Qin, Z., Wang, F., Kang, Y., & Ren, B. (2024). A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review). Oncology Reports, 52, 137. https://doi.org/10.3892/or.2024.8796
MLA
Huang, S., Qin, Z., Wang, F., Kang, Y., Ren, B."A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review)". Oncology Reports 52.4 (2024): 137.
Chicago
Huang, S., Qin, Z., Wang, F., Kang, Y., Ren, B."A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review)". Oncology Reports 52, no. 4 (2024): 137. https://doi.org/10.3892/or.2024.8796
Copy and paste a formatted citation
x
Spandidos Publications style
Huang S, Qin Z, Wang F, Kang Y and Ren B: A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review). Oncol Rep 52: 137, 2024.
APA
Huang, S., Qin, Z., Wang, F., Kang, Y., & Ren, B. (2024). A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review). Oncology Reports, 52, 137. https://doi.org/10.3892/or.2024.8796
MLA
Huang, S., Qin, Z., Wang, F., Kang, Y., Ren, B."A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review)". Oncology Reports 52.4 (2024): 137.
Chicago
Huang, S., Qin, Z., Wang, F., Kang, Y., Ren, B."A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review)". Oncology Reports 52, no. 4 (2024): 137. https://doi.org/10.3892/or.2024.8796
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team