|
1
|
Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y,
Wang Y, Xiong F, Guo C, Li Y, et al: Natural killer group 2D
receptor and its ligands in cancer immune escape. Mol Cancer.
18:292019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tan G, Spillane KM and Maher J: The role
and regulation of the NKG2D/NKG2D ligand system in cancer. Biology
(Basel). 12:10792023.PubMed/NCBI
|
|
3
|
Ullrich E, Koch J, Cerwenka A and Steinle
A: New prospects on the NKG2D/NKG2DL system for oncology.
Oncoimmunology. 2:e260972013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Raulet DH: Roles of the NKG2D
immunoreceptor and its ligands. Nat Rev Immunol. 3:781–790. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zingoni A, Molfetta R, Fionda C, Soriani
A, Paolini R, Cippitelli M, Cerboni C and Santoni A: NKG2D and its
ligands: ‘One for all, all for one’. Front Immunol. 9:4762018.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tchacrome I, Zhu Q, Saleh MA and Zou Y:
Diseases association with the polymorphic major histocompatibility
complex class I related chain a: MICA gene. Transpl Immunol.
75:1016652022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Maurer S, Zhong X, Prada BD, Mascarenhas J
and de Andrade LF: The latest breakthroughs in immunotherapy for
acute myeloid leukemia, with a special focus on NKG2D ligands. Int
J Mol Sci. 23:159072022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Campos-Silva C, López-Borrego S, Felgueres
MJ, Esteso G and Vales-Gomez M: NKG2D ligands in liquid biopsy: The
importance of soluble and vesicle-bound proteins for immune
modulation. Crit Rev Immunol. 42:21–40. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lanier LL: NKG2D receptor and its ligands
in host defense. Cancer Immunol Res. 3:575–582. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Touboul R, Zaravinos A and Bonavida B:
Defective natural killer cells in melanoma: Role of NKG2D in
pathogenesis and immunotherapy. Crit Rev Immunol. 41:45–76. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jones AB, Rocco A, Lamb LS, Friedman GK
and Hjelmeland AB: Regulation of NKG2D stress ligands and its
relevance in cancer progression. Cancers (Basel). 14:23392022.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Groh V, Bahram S, Bauer S, Herman A,
Beauchamp M and Spies T: Cell stress-regulated human major
histocompatibility complex class I gene expressed in
gastrointestinal epithelium. Proc Natl Acad Sci USA.
93:12445–12450. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cosman D, Müllberg J, Sutherland CL, Chin
W, Armitage R, Fanslow W, Kubin M and Chalupny NJ: ULBPs, novel MHC
class I-related molecules, bind to CMV glycoprotein UL16 and
stimulate NK cytotoxicity through the NKG2D receptor. Immunity.
14:123–133. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Groh V, Steinle A, Bauer S and Spies T:
Recognition of stress-induced MHC molecules by intestinal
epithelial gammadelta T cells. Science. 279:1737–1740. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Venkataraman GM, Suciu D, Groh V, Boss JM
and Spies T: Promoter region architecture and transcriptional
regulation of the genes for the MHC class I-related chain A and B
ligands of NKG2D. J Immunol. 178:961–969. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K
and Linn S: Molecular mechanisms of mammalian DNA repair and the
DNA damage checkpoints. Annu Rev Biochem. 73:39–85. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Textor S, Fiegler N, Arnold A, Porgador A,
Hofmann TG and Cerwenka A: Human NK cells are alerted to induction
of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1
and ULBP2. Cancer Res. 71:5998–6009. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhao Y, Simon M, Seluanov A and Gorbunova
V: DNA damage and repair in age-related inflammation. Nat Rev
Immunol. 23:75–89. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lin D, Lavender H, Soilleux EJ and
O'Callaghan CA: NF-κB regulates MICA gene transcription in
endothelial cell through a genetically inhibitable control site. J
Biol Chem. 287:4299–4310. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Schrambach S, Ardizzone M, Leymarie V,
Sibilia J and Bahram S: In vivo expression pattern of MICA and MICB
and its relevance to auto-immunity and cancer. PLoS One.
2:e5182007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Stern-Ginossar N, Gur C, Biton M, Horwitz
E, Elboim M, Stanietsky N, Mandelboim M and Mandelboim O: Human
microRNAs regulate stress-induced immune responses mediated by the
receptor NKG2D. Nat Immunol. 9:1065–1073. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yadav D, Ngolab J, Lim RSH, Krishnamurthy
S and Bui JD: Cutting edge: Down-regulation of MHC class I-related
chain A on tumor cells by IFN-gamma-induced microRNA. J Immunol.
182:39–43. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Heinemann A, Zhao F, Pechlivanis S, Eberle
J, Steinle A, Diederichs S, Schadendorf D and Paschen A: Tumor
suppressive microRNAs miR-34a/c control cancer cell expression of
ULBP2, a stress-induced ligand of the natural killer cell receptor
NKG2D. Cancer Res. 72:460–471. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kato N, Tanaka J, Sugita J, Toubai T,
Miura Y, Ibata M, Syono Y, Ota S, Kondo T, Asaka M and Imamura M:
Regulation of the expression of MHC class I-related chain A, B
(MICA, MICB) via chromatin remodeling and its impact on the
susceptibility of leukemic cells to the cytotoxicity of
NKG2D-expressing cells. Leukemia. 21:2103–2108. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Morimoto Y, Yamashita N, Daimon T, Hirose
H, Yamano S, Haratake N, Ishikawa S, Bhattacharya A, Fushimi A,
Ahmad R, et al: MUC1-C is a master regulator of MICA/B NKG2D ligand
and exosome secretion in human cancer cells. J Immunother Cancer.
11:e0062382023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang X, Rao A, Sette P, Deibert C,
Pomerantz A, Kim WJ, Kohanbash G, Chang Y, Park Y, Engh J, et al:
IDH mutant gliomas escape natural killer cell immune surveillance
by downregulation of NKG2D ligand expression. Neuro Oncol.
18:1402–1412. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tsukerman P, Stern-Ginossar N, Gur C,
Glasner A, Nachmani D, Bauman Y, Yamin R, Vitenshtein A, Stanietsky
N, Bar-Mag T, et al: MiR-10b downregulates the stress-induced cell
surface molecule MICB, a critical ligand for cancer cell
recognition by natural killer cells. Cancer Res. 72:5463–5472.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Codo P, Weller M, Meister G, Szabo E,
Steinle A, Wolter M, Reifenberger G and Roth P: MicroRNA-mediated
down-regulation of NKG2D ligands contributes to glioma immune
escape. Oncotarget. 5:7651–7662. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Breunig C, Pahl J, Küblbeck M, Miller M,
Antonelli D, Erdem N, Wirth C, Will R, Bott A, Cerwenka A and
Wiemann S: MicroRNA-519a-3p mediates apoptosis resistance in breast
cancer cells and their escape from recognition by natural killer
cells. Cell Death Dis. 8:e29732017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Eagle RA, Flack G, Warford A,
Martínez-Borra J, Jafferji I, Traherne JA, Ohashi M, Boyle LH,
Barrow AD, Caillat-Zucman S, et al: Cellular expression,
trafficking, and function of two isoforms of human ULBP5/RAET1G.
PLoS One. 4:e45032009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Fernández-Messina L, Reyburn HT and
Valés-Gómez M: A short half-life of ULBP1 at the cell surface due
to internalization and proteosomal degradation. Immunol Cell Biol.
94:479–485. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Agüera-González S, Boutet P, Reyburn HT
and Valés-Gómez M: Brief residence at the plasma membrane of the
MHC class I-related chain B is due to clathrin-mediated
cholesterol-dependent endocytosis and shedding. J Immunol.
182:4800–4808. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gomis-Rüth FX: Structural aspects of the
metzincin clan of metalloendopeptidases. Mol Biotechnol.
24:157–202. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Edwards DR, Handsley MM and Pennington CJ:
The ADAM metalloproteinases. Mol Aspects Med. 29:258–289. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cui N, Hu M and Khalil RA: Biochemical and
biological attributes of matrix metalloproteinases. Prog Mol Biol
Transl Sci. 147:1–73. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai
Z, Mann HH, Strong RK, Groh V and Spies T:
Disulphide-isomerase-enabled shedding of tumour-associated NKG2D
ligands. Nature. 447:482–486. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang X, Lundgren AD, Singh P, Goodlett DR,
Plymate SR and Wu JD: An six-amino acid motif in the alpha3 domain
of MICA is the cancer therapeutic target to inhibit shedding.
Biochem Biophys Res Commun. 387:476–481. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Waldhauer I, Goehlsdorf D, Gieseke F,
Weinschenk T, Wittenbrink M, Ludwig A, Stevanovic S, Rammensee HG
and Steinle A: Tumor-associated MICA is shed by ADAM proteases.
Cancer Res. 68:6368–6376. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Waldhauer I and Steinle A: Proteolytic
release of soluble UL16-binding protein 2 from tumor cells. Cancer
Res. 66:2520–2526. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Boutet P, Agüera-González S, Atkinson S,
Pennington CJ, Edwards DR, Murphy G, Reyburn HT and Valés-Gómez M:
Cutting edge: The metalloproteinase ADAM17/TNF-alpha-converting
enzyme regulates proteolytic shedding of the MHC class I-related
chain B protein. J Immunol. 182:49–53. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fernández-Messina L, Ashiru O, Boutet P,
Agüera-González S, Skepper JN, Reyburn HT and Valés-Gómez M:
Differential mechanisms of shedding of the
glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol
Chem. 285:8543–8551. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Raneros AB, Minguela A, Rodriguez RM,
Colado E, Bernal T, Anguita E, Mogorron AV, Gil AC,
Vidal-Castiñeira JR, Márquez-Kisinousky L, et al: Increasing TIMP3
expression by hypomethylating agents diminishes soluble MICA, MICB
and ULBP2 shedding in acute myeloid leukemia, facilitating NK
cell-mediated immune recognition. Oncotarget. 8:31959–31976. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Brown DA: Lipid rafts, detergent-resistant
membranes, and raft targeting signals. Physiology (Bethesda).
21:430–439. 2006.PubMed/NCBI
|
|
44
|
de Gassart A, Geminard C, Fevrier B,
Raposo G and Vidal M: Lipid raft-associated protein sorting in
exosomes. Blood. 102:4336–4344. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ashiru O, Boutet P, Fernández-Messina L,
Agüera-González S, Skepper JN, Valés-Gómez M and Reyburn HT:
Natural killer cell cytotoxicity is suppressed by exposure to the
human NKG2D ligand MICA*008 that is shed by tumor cells in
exosomes. Cancer Res. 70:481–489. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hedlund M, Nagaeva O, Kargl D, Baranov V
and Mincheva-Nilsson L: Thermal- and oxidative stress causes
enhanced release of NKG2D ligand-bearing immunosuppressive exosomes
in leukemia/lymphoma T and B cells. PLoS One. 6:e168992011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Agüera-González S, Gross CC,
Fernández-Messina L, Ashiru O, Esteso G, Hang HC, Reyburn HT, Long
EO and Valés-Gómez M: Palmitoylation of MICA, a ligand for NKG2D,
mediates its recruitment to membrane microdomains and promotes its
shedding. Eur J Immunol. 41:3667–3676. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Eleme K, Taner SB, Onfelt B, Collinson LM,
McCann FE, Chalupny NJ, Cosman D, Hopkins C, Magee AI and Davis DM:
Cell surface organization of stress-inducible proteins ULBP and
MICA that stimulate human NK cells and T cells via NKG2D. J Exp
Med. 199:1005–1010. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bacon L, Eagle RA, Meyer M, Easom N, Young
NT and Trowsdale J: Two human ULBP/RAET1 molecules with
transmembrane regions are ligands for NKG2D. J Immunol.
173:1078–1084. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cao W, Xi X, Hao Z, Li W, Kong Y, Cui L,
Ma C, Ba D and He W: RAET1E2, a soluble isoform of the UL16-binding
protein RAET1E produced by tumor cells, inhibits NKG2D-mediated NK
cytotoxicity. J Biol Chem. 282:18922–18928. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zingoni A, Vulpis E, Cecere F, Amendola
MG, Fuerst D, Saribekyan T, Achour A, Sandalova T, Nardone I, Peri
A, et al: MICA-129 dimorphism and soluble MICA are associated with
the progression of multiple myeloma. Front Immunol. 9:9262018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Toledo-Stuardo K, Ribeiro CH, Canals A,
Morales M, Gárate V, Rodríguez-Siza J, Tello S, Bustamante M,
Armisen R, Matthies DJ, et al: Major histocompatibility complex
class I-related chain A (MICA) allelic variants associate with
susceptibility and prognosis of gastric cancer. Front Immunol.
12:6455282021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ashiru O, López-Cobo S, Fernández-Messina
L, Pontes-Quero S, Pandolfi R, Reyburn HT and Valés-Gómez M: A GPI
anchor explains the unique biological features of the common
NKG2D-ligand allele MICA*008. Biochem J. 454:295–302. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
López-Cobo S, Campos-Silva C and
Valés-Gómez M: Glycosyl-phosphatidyl-inositol (GPI)-anchors and
metalloproteases: Their roles in the regulation of exosome
composition and NKG2D-mediated immune recognition. Front Cell Dev
Biol. 4:972016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Isernhagen A, Schilling D, Monecke S, Shah
P, Elsner L, Walter L, Multhoff G and Dressel R: The
MICA-129Met/Val dimorphism affects plasma membrane expression and
shedding of the NKG2D ligand MICA. Immunogenetics. 68:109–123.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kumar V, Kato N, Urabe Y, Takahashi A,
Muroyama R, Hosono N, Otsuka M, Tateishi R, Omata M, Nakagawa H, et
al: Genome-wide association study identifies a susceptibility locus
for HCV-induced hepatocellular carcinoma. Nat Genet. 43:455–458.
2011. View
Article : Google Scholar : PubMed/NCBI
|
|
57
|
Barsoum IB, Hamilton TK, Li X, Cotechini
T, Miles EA, Siemens DR and Graham CH: Hypoxia induces escape from
innate immunity in cancer cells via increased expression of ADAM10:
role of nitric oxide. Cancer Res. 71:7433–7441. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ou ZL, Luo Z, Wei W, Liang S, Gao TL and
Lu YB: Hypoxia-induced shedding of MICA and HIF1A-mediated immune
escape of pancreatic cancer cells from NK cells: Role of
circ_0000977/miR-153 axis. RNA Biol. 16:1592–1603. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gorgoulis V, Adams PD, Alimonti A, Bennett
DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K,
Ferbeyre G, et al: Cellular senescence: Defining a path forward.
Cell. 179:813–827. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang Y, Hu R, Xi B, Nie D, Xu H and Liu
A: Mechanisms of senescence-related NKG2D ligands release and
immune escape induced by chemotherapy in neuroblastoma cells. Front
Cell Dev Biol. 10:8294042022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kohga K, Takehara T, Tatsumi T, Ishida H,
Miyagi T, Hosui A and Hayashi N: Sorafenib inhibits the shedding of
major histocompatibility complex class I-related chain A on
hepatocellular carcinoma cells by down-regulating a disintegrin and
metalloproteinase 9. Hepatology. 51:1264–1273. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ziani L, Safta-Saadoun TB, Gourbeix J,
Cavalcanti A, Robert C, Favre G, Chouaib S and Thiery J:
Melanoma-associated fibroblasts decrease tumor cell susceptibility
to NK cell-mediated killing through matrix-metalloproteinases
secretion. Oncotarget. 8:19780–19794. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Maurer S, Kropp KN, Klein G, Steinle A,
Haen SP, Walz JS, Hinterleitner C, Märklin M, Kopp HG and Salih HR:
Platelet-mediated shedding of NKG2D ligands impairs NK cell
immune-surveillance of tumor cells. Oncoimmunology. 7:e13648272017.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zocchi MR, Catellani S, Canevali P,
Tavella S, Garuti A, Villaggio B, Zunino A, Gobbi M,
Fraternali-Orcioni G, Kunkl A, et al: High ERp5/ADAM10 expression
in lymph node microenvironment and impaired NKG2D ligands
recognition in Hodgkin lymphomas. Blood. 119:1479–1489. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Vandooren J, Van den Steen PE and
Opdenakker G: Biochemistry and molecular biology of gelatinase B or
matrix metalloproteinase-9 (MMP-9): The next decade. Crit Rev
Biochem Mol Biol. 48:222–272. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kohga K, Tatsumi T, Tsunematsu H, Aono S,
Shimizu S, Kodama T, Hikita H, Yamamoto M, Oze T, Aketa H, et al:
Interleukin-1β enhances the production of soluble MICA in human
hepatocellular carcinoma. Cancer Immunol Immunother. 61:1425–1432.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lu Y, Jiang F, Zheng X, Katakowski M,
Buller B, To SS and Chopp M: TGF-β1 promotes motility and
invasiveness of glioma cells through activation of ADAM17. Oncol
Rep. 25:1329–1335. 2011.PubMed/NCBI
|
|
68
|
Eisele G, Wischhusen J, Mittelbronn M,
Meyermann R, Waldhauer I, Steinle A, Weller M and Friese MA:
TGF-beta and metalloproteinases differentially suppress NKG2D
ligand surface expression on malignant glioma cells. Brain.
129:2416–2425. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fang X, Guo L, Xing Z, Shi L, Liang H, Li
A, Kuang C, Tao B and Yang Q: IDO1 can impair NK cells function
against non-small cell lung cancer by downregulation of NKG2D
ligand via ADAM10. Pharmacol Res. 177:1061322022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Del Toro-Arreola S, Arreygue-Garcia N,
Aguilar-Lemarroy A, Cid-Arregui A, Jimenez-Perez M, Haramati J,
Barros-Nuñez P, Gonzalez-Ramella O, Del Toro-Arreola A,
Ortiz-Lazareno P, et al: MHC class I-related chain A and B ligands
are differentially expressed in human cervical cancer cell lines.
Cancer Cell Int. 11:152011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hilpert J, Grosse-Hovest L, Grünebach F,
Buechele C, Nuebling T, Raum T, Steinle A and Salih HR:
Comprehensive analysis of NKG2D ligand expression and release in
leukemia: Implications for NKG2D-mediated NK cell responses. J
Immunol. 189:1360–1371. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Arai J, Goto K, Otoyama Y, Nakajima Y,
Sugiura I, Kajiwara A, Tojo M, Ichikawa Y, Uozumi S, Shimozuma Y,
et al: Leukotriene receptor antagonists enhance HCC treatment
efficacy by inhibiting ADAMs and suppressing MICA shedding. Cancer
Immunol Immunother. 70:203–213. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Molfetta R, Quatrini L, Zitti B, Capuano
C, Galandrini R, Santoni A and Paolini R: Regulation of NKG2D
expression and signaling by endocytosis. Trends Immunol.
37:790–802. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Clayton A and Tabi Z: Exosomes and the
MICA-NKG2D system in cancer. Blood Cells Mol Dis. 34:206–213. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Molfetta R, Quatrini L, Capuano C,
Gasparrini F, Zitti B, Zingoni A, Galandrini R, Santoni A and
Paolini R: c-Cbl regulates MICA-but not ULBP2-induced NKG2D
down-modulation in human NK cells. Eur J Immunol. 44:2761–2770.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Deng W, Gowen BG, Zhang L, Wang L, Lau S,
Iannello A, Xu J, Rovis TL, Xiong N and Raulet DH: Antitumor
immunity. A shed NKG2D ligand that promotes natural killer cell
activation and tumor rejection. Science. 348:136–139. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Vulpis E, Loconte L, Peri A, Molfetta R,
Caracciolo G, Masuelli L, Tomaipitinca L, Peruzzi G, Petillo S,
Petrucci MT, et al: Impact on NK cell functions of acute versus
chronic exposure to extracellular vesicle-associated MICA: Dual
role in cancer immunosurveillance. J Extracell Vesicles.
11:e121762022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Jinushi M, Takehara T, Tatsumi T,
Hiramatsu N, Sakamori R, Yamaguchi S and Hayashi N: Impairment of
natural killer cell and dendritic cell functions by the soluble
form of MHC class I-related chain A in advanced human
hepatocellular carcinomas. J Hepatol. 43:1013–1020. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang J, Liu D, Li G, Staveley-O'Carroll
KF, Graff JN, Li Z and Wu JD: Antibody-mediated neutralization of
soluble MIC significantly enhances CTLA4 blockade therapy. Sci Adv.
3:e16021332017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Xiao G, Wang X, Sheng J, Lu S, Yu X and Wu
JD: Soluble NKG2D ligand promotes MDSC expansion and skews
macrophage to the alternatively activated phenotype. J Hematol
Oncol. 8:132015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yamaguchi K, Chikumi H, Shimizu A, Takata
M, Kinoshita N, Hashimoto K, Nakamoto M, Matsunaga S, Kurai J,
Miyake N, et al: Diagnostic and prognostic impact of serum-soluble
UL16-binding protein 2 in lung cancer patients. Cancer Sci.
103:1405–1413. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Duffy MJ, Sturgeon C, Lamerz R, Haglund C,
Holubec VL, Klapdor R, Nicolini A, Topolcan O and Heinemann V:
Tumor markers in pancreatic cancer: A European group on tumor
markers (EGTM) status report. Ann Oncol. 21:441–447. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chung HW and Lim JB: Clinical significance
of serum levels of immune-associated molecules, uric acid and
soluble MHC class I chain-related molecules A and B, as diagnostic
tumor markers for pancreatic ductal adenocarcinoma. Cancer Sci.
102:1673–1679. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chung HW, Jang S and Lim JB: Clinical
implications and diagnostic usefulness of correlation between
soluble major histocompatibility complex class I chain-related
molecule a and protumorigenic cytokines in pancreatic ductal
adenocarcinoma. Cancer. 119:233–244. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Qiu Y, Zhao YK, Yuan GJ and Zhu QG:
Clinical significance of soluble major histocompatibility complex
class I chain-related a in renal cell carcinoma patients. Asian Pac
J Cancer Prev. 14:5651–5655. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Holdenrieder S, Stieber P, Peterfi A,
Nagel D, Steinle A and Salih HR: Soluble MICA in malignant
diseases. Int J Cancer. 118:684–687. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Holdenrieder S, Stieber P, Peterfi A,
Nagel D, Steinle A and Salih HR: Soluble MICB in malignant
diseases: Analysis of diagnostic significance and correlation with
soluble MICA. Cancer Immunol Immunother. 55:1584–1589. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wu JD, Higgins LM, Steinle A, Cosman D,
Haugk K and Plymate SR: Prevalent expression of the
immunostimulatory MHC class I chain-related molecule is
counteracted by shedding in prostate cancer. J Clin Invest.
114:560–568. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Jiang X, Huang JF, Huo Z, Zhang Q, Jiang
Y, Wu X, Li Y, Jiang G, Zeng L, Yan XX, et al: Elevation of soluble
major histocompatibility complex class I related chain A protein in
malignant and infectious diseases in Chinese patients. BMC Immunol.
13:622012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mantovani S, Varchetta S, Mele D, Donadon
M, Torzilli G, Soldani C, Franceschini B, Porta C, Chiellino S,
Pedrazzoli P, et al: An anti-MICA/B antibody and IL-15 rescue
altered NKG2D-dependent NK cell responses in hepatocellular
carcinoma. Cancers (Basel). 12:35832020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kshersagar J, Damle MN, Bedge P, Jagdale
R, Tardalkar K, Jadhav D, Jagadale S, Toro Y, Sharma R and Joshi
MG: Downregulation of MICA/B tumor surface expressions and
augmented soluble MICA serum levels correlate with disease stage in
breast cancer. Breast Dis. 41:471–480. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kohga K, Takehara T, Tatsumi T, Ohkawa K,
Miyagi T, Hiramatsu N, Kanto T, Kasugai T, Katayama K, Kato M and
Hayashi N: Serum levels of soluble major histocompatibility complex
(MHC) class I-related chain A in patients with chronic liver
diseases and changes during transcatheter arterial embolization for
hepatocellular carcinoma. Cancer Sci. 99:1643–1649. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Jinushi M, Vanneman M, Munshi NC, Tai YT,
Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR and
Dranoff G: MHC class I chain-related protein A antibodies and
shedding are associated with the progression of multiple myeloma.
Proc Natl Acad Sci USA. 105:1285–1290. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Paschen A, Sucker A, Hill B, Moll I,
Zapatka M, Nguyen XD, Sim GC, Gutmann I, Hassel J, Becker JC, et
al: Differential clinical significance of individual NKG2D ligands
in melanoma: Soluble ULBP2 as an indicator of poor prognosis
superior to S100B. Clin Cancer Res. 15:5208–5215. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhao Y, Chen N, Yu Y, Zhou L, Niu C, Liu
Y, Tian H, Lv Z, Han F and Cui J: Prognostic value of MICA/B in
cancers: A systematic review and meta-analysis. Oncotarget.
8:96384–96395. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xu X, Rao GS, Groh V, Spies T, Gattuso P,
Kaufman HL, Plate J and Prinz RA: Major histocompatibility complex
class I-related chain A/B (MICA/B) expression in tumor tissue and
serum of pancreatic cancer: Role of uric acid accumulation in
gemcitabine-induced MICA/B expression. BMC Cancer. 11:1942011.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang LP, Niu H, Xia YF, Han YL, Niu P,
Wang HY and Zhou QL: Prognostic significance of serum sMICA levels
in non-small cell lung cancer. Eur Rev Med Pharmacol Sci.
19:2226–2230. 2015.PubMed/NCBI
|
|
98
|
Xing S, Zhu Y and Sun Y: Serum sMICA as
biomarker in detection of non-small-cell lung carcinoma. Br J
Biomed Sci. 75:50–52. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Weil S, Memmer S, Lechner A, Huppert V,
Giannattasio A, Becker T, Müller-Runte A, Lampe K, Beutner D, Quaas
A, et al: Natural killer group 2D ligand depletion reconstitutes
natural killer cell immunosurveillance of head and neck squamous
cell carcinoma. Front Immunol. 8:3872017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Chen JL, Chang CC, Huang YS, Kuo HY, Chen
TY, Wang CW, Kuo SH and Lin YL: Persistently elevated soluble MHC
class I polypeptide-related sequence A and transforming growth
factor-β1 levels are poor prognostic factors in head and neck
squamous cell carcinoma after definitive chemoradiotherapy. PLoS
One. 13:e02022242018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li JJ, Pan K, Gu MF, Chen MS, Zhao JJ,
Wang H, Liang XT, Sun JC and Xia JC: Prognostic value of soluble
MICA levels in the serum of patients with advanced hepatocellular
carcinoma. Chin J Cancer. 32:141–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Cheung PF, Yip CW, Wong NC, Fong DY, Ng
LW, Wan AM, Wong CK, Cheung TT, Ng IO, Poon RT, et al:
Granulin-epithelin precursor renders hepatocellular carcinoma cells
resistant to natural killer cytotoxicity. Cancer Immunol Res.
2:1209–1219. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Roshani R, Boroujerdnia MG, Talaiezadeh AH
and Khodadadi A: Assessment of changes in expression and
presentation of NKG2D under influence of MICA serum factor in
different stages of breast cancer. Tumour Biol. 37:6953–6962. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Madjd Z, Spendlove I, Moss R, Bevin S,
Pinder SE, Watson NF, Ellis I and Durrant LG: Upregulation of MICA
on high-grade invasive operable breast carcinoma. Cancer Immun.
7:172007.PubMed/NCBI
|
|
105
|
Zhao YK, Jia CM, Yuan GJ, Liu W, Qiu Y and
Zhu QG: Expression and clinical value of the soluble major
histocompatibility complex class I-related chain A molecule in the
serum of patients with renal tumors. Genet Mol Res. 14:7233–7240.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Samuels S, Ferns DM, Meijer D, van
Straalen JP, Buist MR, Zijlmans HJ, Kenter GG and Jordanova ES:
High levels of soluble MICA are significantly related to increased
disease-free and disease-specific survival in patients with
cervical adenocarcinoma. Tissue Antigens. 85:476–483. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Märten A, von Lilienfeld-Toal M, Büchler
MW and Schmidt J: Soluble MIC is elevated in the serum of patients
with pancreatic carcinoma diminishing gammadelta T cell
cytotoxicity. Int J Cancer. 119:2359–2365. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Chen J, Xu H and Zhu XX: Abnormal
expression levels of sMICA and NKG2D are correlated with poor
prognosis in pancreatic cancer. Ther Clin Risk Manag. 12:11–18.
2015.PubMed/NCBI
|
|
109
|
Duan X, Deng L, Chen X, Lu Y, Zhang Q,
Zhang K, Hu Y, Zeng J and Sun W: Clinical significance of the
immunostimulatory MHC class I chain-related molecule A and NKG2D
receptor on NK cells in pancreatic cancer. Med Oncol. 28:466–474.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ben Chaaben A, Ouni N, Douik H, Ayari F,
Abaza H, Mamoghli T, Harzallah L, Fortier C, Boukouaci W,
Krishnamoorthy R, et al: Soluble MICA and anti-MICA antibodies as
biomarkers of nasopharyngeal carcinoma disease. Immunol Invest.
49:498–509. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Tamaki S, Sanefuzi N, Kawakami M, Aoki K,
Imai Y, Yamanaka Y, Yamamoto K, Ishitani A, Hatake K and Kirita T:
Association between soluble MICA levels and disease stage IV oral
squamous cell carcinoma in Japanese patients. Hum Immunol.
69:88–93. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Arreygue-Garcia NA, Daneri-Navarro A, del
Toro-Arreola A, Cid-Arregui A, Gonzalez-Ramella O, Jave-Suarez LF,
Aguilar-Lemarroy A, Troyo-Sanroman R, Bravo-Cuellar A, Delgado-Rizo
V, et al: Augmented serum level of major histocompatibility complex
class I-related chain A (MICA) protein and reduced NKG2D expression
on NK and T cells in patients with cervical cancer and precursor
lesions. BMC Cancer. 8:162008. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Nückel H, Switala M, Sellmann L, Horn PA,
Dürig J, Dührsen U, Küppers R, Grosse-Wilde H and Rebmann V: The
prognostic significance of soluble NKG2D ligands in B-cell chronic
lymphocytic leukemia. Leukemia. 24:1152–1159. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Maccalli C, Giannarelli D, Capocefalo F,
Pilla L, Fonsatti E, Di Giacomo AM, Parmiani G and Maio M:
Immunological markers and clinical outcome of advanced melanoma
patients receiving ipilimumab plus fotemustine in the NIBIT-M1
study. Oncoimmunology. 5:e10710072015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Rebmann V, Schütt P, Brandhorst D, Opalka
B, Moritz T, Nowrousian MR and Grosse-Wilde H: Soluble MICA as an
independent prognostic factor for the overall survival and
progression-free survival of multiple myeloma patients. Clin
Immunol. 123:114–120. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang T, Barber A and Sentman CL:
Generation of antitumor responses by genetic modification of
primary human T cells with a chimeric NKG2D receptor. Cancer Res.
66:5927–5933. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Baumeister SH, Murad J, Werner L, Daley H,
Trebeden-Negre H, Gicobi JK, Schmucker A, Reder J, Sentman CL,
Gilham DE, et al: Phase I trial of autologous CAR T cells targeting
NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer
Immunol Res. 7:100–112. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liu R, Luo Q, Luo W, Wan L, Zhu Q, Yin X,
Lu X, Song Z, Wei L, Xiang Z and Zou Y: A soluble NK-CAR mediates
the specific cytotoxicity of NK cells toward the target
CD20+ lymphoma cells. Aging Dis. 13:1576–1588. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ferrari de Andrade L, Tay RE, Pan D, Luoma
AM, Ito Y, Badrinath S, Tsoucas D, Franz B, May KF Jr, Harvey CJ,
et al: Antibody-mediated inhibition of MICA and MICB shedding
promotes NK cell-driven tumor immunity. Science. 359:1537–1542.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Du C, Bevers J III, Cook R, Lombana TN,
Rajasekaran K, Matsumoto M, Spiess C, Kim JM and Ye Z: MICA immune
complex formed with alpha 3 domain-specific antibody activates
human NK cells in a Fc-dependent manner. J Immunother Cancer.
7:2072019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Alves da Silva PH, Xing S, Kotini AG,
Papapetrou EP, Song X, Wucherpfennig KW, Mascarenhas J and Ferrari
de Andrade L: MICA/B antibody induces macrophage-mediated immunity
against acute myeloid leukemia. Blood. 139:205–216. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ferrari de Andrade L, Kumar S, Luoma AM,
Ito Y, Alves da Silva PH, Pan D, Pyrdol JW, Yoon CH and
Wucherpfennig KW: Inhibition of MICA and MICB shedding elicits
NK-cell-mediated immunity against tumors resistant to cytotoxic T
cells. Cancer Immunol Res. 8:769–780. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Badrinath S, Dellacherie MO, Li A, Zheng
S, Zhang X, Sobral M, Pyrdol JW, Smith KL, Lu Y, Haag S, et al: A
vaccine targeting resistant tumours by dual T cell plus NK cell
attack. Nature. 606:992–998. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lu S, Zhang J, Liu D, Li G,
Staveley-O'Carroll KF, Li Z and Wu JD: Nonblocking monoclonal
antibody targeting soluble MIC revamps endogenous innate and
adaptive antitumor responses and eliminates primary and metastatic
tumors. Clin Cancer Res. 21:4819–4830. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Basher F, Dhar P, Wang X, Wainwright DA,
Zhang B, Sosman J, Ji Z and Wu JD: Antibody targeting tumor-derived
soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival
and function and enhances melanoma response to PDL1 blockade
therapy. J Hematol Oncol. 13:742020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Narni-Mancinelli E and Vivier E: Shed
NKG2D ligand boosts NK cell immunity. Cell Res. 25:651–652. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Yamanegi K, Yamane J, Kobayashi K, Ohyama
H, Nakasho K, Yamada N, Hata M, Fukunaga S, Futani H, Okamura H and
Terada N: Downregulation of matrix metalloproteinase-9 mRNA by
valproic acid plays a role in inhibiting the shedding of MHC class
I-related molecules A and B on the surface of human osteosarcoma
cells. Oncol Rep. 28:1585–1590. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Miyashita T, Miki K, Kamigaki T, Makino I,
Tajima H, Nakanuma S, Hayashi H, Takamura H, Fushida S, Ahmed AK,
et al: Low-dose valproic acid with low-dose gemcitabine augments
MHC class I-related chain A/B expression without inducing the
release of soluble MHC class I-related chain A/B. Oncol Lett.
14:5918–5926. 2017.PubMed/NCBI
|
|
129
|
Diermayr S, Himmelreich H, Durovic B,
Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J,
Gratwohl A, Tichelli A, Paluszewska M, et al: NKG2D ligand
expression in AML increases in response to HDAC inhibitor valproic
acid and contributes to allorecognition by NK-cell lines with
single KIR-HLA class I specificities. Blood. 111:1428–1436. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Ho TCS, Chan AHY and Ganesan A: Thirty
years of HDAC inhibitors: 2020 Insight and hindsight. J Med Chem.
63:12460–12484. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Camodeca C, Nuti E, Tepshi L, Boero S,
Tuccinardi T, Stura EA, Poggi A, Zocchi MR and Rossello A:
Discovery of a new selective inhibitor of A disintegrin and
metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D
ligands in Hodgkin's lymphoma cell models. Eur J Med Chem.
111:193–201. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Sekiba K, Otsuka M, Seimiya T, Tanaka E,
Funato K, Miyakawa Y and Koike K: The fatty-acid amide hydrolase
inhibitor URB597 inhibits MICA/B shedding. Sci Rep. 10:155562020.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Liu J and Khalil RA: Matrix
metalloproteinase inhibitors as investigational and therapeutic
tools in unrestrained tissue remodeling and pathological disorders.
Prog Mol Biol Transl Sci. 148:355–420. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Huang B, Sikorski R, Sampath P and Thorne
SH: Modulation of NKG2D-ligand cell surface expression enhances
immune cell therapy of cancer. J Immunother. 34:289–296. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Nwangwu CA, Weiher H and Schmidt-Wolf IGH:
Increase of CIK cell efficacy by upregulating cell surface MICA and
inhibition of NKG2D ligand shedding in multiple myeloma. Hematol
Oncol. 35:719–725. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Fuertes MB, Domaica CI and Zwirner NW:
Leveraging NKG2D ligands in immuno-oncology. Front Immunol.
12:7131582021. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Xie X, Zhou Y, Wang X, Guo J, Li J, Fan H,
Dou J, Shen B and Zhou C: Enhanced antitumor activity of
gemcitabine by polysaccharide-induced NK cell activation and immune
cytotoxicity reduction in vitro/vivo. Carbohydr Polym. 173:360–371.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Goto K, Arai J, Stephanou A and Kato N:
Novel therapeutic features of disulfiram against hepatocellular
carcinoma cells with inhibitory effects on a disintegrin and
metalloproteinase 10. Oncotarget. 9:18821–18831. 2018. View Article : Google Scholar : PubMed/NCBI
|