|
1
|
Erber J and Herndler-Brandstetter D:
Regulation of T cell differentiation and function by long noncoding
RNAs in homeostasis and cancer. Front Immunol. 14:11814992023.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Liu X, Li Y, Jiang X, Deng Y, Ma C, Yu Q
and Gao D: Long non-coding RNA: Multiple effects on the
differentiation, maturity and cell function of dendritic cells.
Clin Immunol. 245:1091672022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mattick JS, Amaral PP, Carninci P,
Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME,
Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions,
challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fan J, Li H, Xie R, Zhang X, Nie X, Shi X,
Zhan J, Yin Z, Zhao Y, Dai B, et al: LncRNA ZNF593-AS alleviates
contractile dysfunction in dilated cardiomyopathy. Circ Res.
128:1708–1723. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Huang H, Yan J, Lan X, Guo Y, Sun M, Zhao
Y, Zhang F, Sun J and Lu S: LncRNA WDR11-AS1 promotes extracellular
matrix synthesis in osteoarthritis by directly interacting with
RNA-binding protein PABPC1 to stabilize SOX9 expression. Int J Mol
Sci. 24:8172023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu F, Cao Y, Zhang C and Su H: Decreased
DANCR contributes to high glucose-induced extracellular matrix
accumulation in human renal mesangial cell via regulating the
TGF-β/Smad signaling. FASEB J. 37:e229262023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yang Z, Wan J, Ma L, Li Z, Yang R, Yang H,
Li J, Zhou F and Ming L: Long non-coding RNA HOXC-AS1 exerts its
oncogenic effects in esophageal squamous cell carcinoma by
interaction with IGF2BP2 to stabilize SIRT1 expression. J Clin Lab
Anal. 37:e248012023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cai Z, Shi Q, Li Y, Jin L, Li S, Wong LL,
Wang J, Jiang X, Zhu M, Lin J, et al: LncRNA EILA promotes CDK4/6
inhibitor resistance in breast cancer by stabilizing cyclin E1
protein. Sci Adv. 9:eadi38212023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu M, Li H, Li X, Pan B, Zhang J, Pan Y,
Shen M and Liu L: A novel lncRNA FUAT1/TNS4 axis confers
chemoresistance by suppressing reactive oxygen species-mediated
apoptosis in gastric cancer. Antioxid Redox Signal. 41:24–41. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zheng Z, Wu M, Li H, Xu W, Yang M, Pan K,
Ni Y, Jiang T, Zheng H, Jin X, et al: Downregulation of AC092894.1
promotes oxaliplatin resistance in colorectal cancer via the
USP3/AR/RASGRP3 axis. BMC Med. 21:1322023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bae H and Coller J: Codon
optimality-mediated mRNA degradation: Linking translational
elongation to mRNA stability. Mol Cell. 82:1467–1476. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Schuster SL, Arora S, Wladyka CL, Itagi P,
Corey L, Young D, Stackhouse BL, Kollath L, Wu QV, Corey E, et al:
Multi-level functional genomics reveals molecular and cellular
oncogenicity of patient-based 3′ untranslated region mutations.
Cell Rep. 42:1128402023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jia L, Mao Y, Ji Q, Dersh D, Yewdell JW
and Qian SB: Decoding mRNA translatability and stability from the
5′ UTR. Nat Struct Mol Biol. 27:814–821. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Passmore LA and Coller J: Roles of mRNA
poly(A) tails in regulation of eukaryotic gene expression. Nat Rev
Mol Cell Biol. 23:93–106. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bednarek S, Madan V, Sikorski PJ,
Bartenschlager R, Kowalska J and Jemielity J: mRNAs biotinylated
within the 5′ cap and protected against decapping: New tools to
capture RNA-protein complexes. Philos Trans R Soc Lond B Biol Sci.
373:201801672018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Korn SM, Ulshöfer CJ, Schneider T and
Schlundt A: Structures and target RNA preferences of the
RNA-binding protein family of IGF2BPs: An overview. Structure.
29:787–803. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mushtaq A, Mir US and Altaf M:
Multifaceted functions of RNA-binding protein vigilin in gene
silencing, genome stability, and autism-related disorders. J Biol
Chem. 299:1029882023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yao ZT, Yang YM, Sun MM, He Y, Liao L,
Chen KS and Li B: New insights into the interplay between long
non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun
(Lond). 42:117–140. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li W, Deng X and Chen J: RNA-binding
proteins in regulating mRNA stability and translation: Roles and
mechanisms in cancer. Semin Cancer Biol. 86:664–677. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X and
Zheng L: RNA-binding proteins in tumor progression. J Hematol
Oncol. 13:902020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ouyang J, Zhong Y, Zhang Y, Yang L, Wu P,
Hou X, Xiong F, Li X, Zhang S, Gong Z, et al: Long non-coding RNAs
are involved in alternative splicing and promote cancer
progression. Br J Cancer. 126:1113–1124. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Schmitt AM and Chang HY: Long noncoding
RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shaath H, Vishnubalaji R, Elango R,
Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR and Alajez NM:
Long non-coding RNA and RNA-binding protein interactions in cancer:
Experimental and machine learning approaches. Semin Cancer Biol.
86:325–345. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ramesh-Kumar D and Guil S: The IGF2BP
family of RNA binding proteins links epitranscriptomics to cancer.
Semin Cancer Biol. 86:18–31. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Miao W, Porter DF, Lopez-Pajares V,
Siprashvili Z, Meyers RM, Bai Y, Nguyen DT, Ko LA, Zarnegar BJ,
Ferguson ID, et al: Glucose dissociates DDX21 dimers to regulate
mRNA splicing and tissue differentiation. Cell. 186:80–97.e26.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gebauer F, Schwarzl T, Valcárcel J and
Hentze MW: RNA-binding proteins in human genetic disease. Nat Rev
Genet. 22:185–198. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Herman AB, Tsitsipatis D and Gorospe M:
Integrated lncRNA function upon genomic and epigenomic regulation.
Mol Cell. 82:2252–2266. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nojima T and Proudfoot NJ: Mechanisms of
lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev
Mol Cell Biol. 23:389–406. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Knott GJ, Bond CS and Fox AH: The DBHS
proteins SFPQ, NONO and PSPC1: A multipurpose molecular scaffold.
Nucleic Acids Res. 44:3989–4004. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen Y, Lu Y, Yang L, Ma W, Dong Y, Zhou
S, Liu N, Gan W and Li D: LncRNA like NMRK2 mRNA functions as a key
molecular scaffold to enhance mitochondrial respiration of
NONO-TFE3 rearranged renal cell carcinoma in an NAD+
kinase-independent manner kinase-independent manner. J Exp Clin
Cancer Res. 42:2522023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhao P, Ji MM, Fang Y, Li X, Yi HM, Yan
ZX, Cheng S, Xu PP, Janin A, Wang CF, et al: A novel lncRNA TCLlnc1
promotes peripheral T cell lymphoma progression through acting as a
modular scaffold of HNRNPD and YBX1 complexes. Cell Death Dis.
12:3212021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Feng Y, Zhang T, Zhang Z, Liang Y, Wang H,
Chen Y, Yu X, Song X, Mao Q, Xia W, et al: The
super-enhancer-driven lncRNA LINC00880 acts as a scaffold between
CDK1 and PRDX1 to sustain the malignance of lung adenocarcinoma.
Cell Death Dis. 14:5512023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang W, Zhao J, Deng L, Ishimwe N, Pauli
J, Wu W, Shan S, Kempf W, Ballantyne MD, Kim D, et al: INKILN is a
novel long noncoding RNA promoting vascular smooth muscle
inflammation via scaffolding MKL1 and USP10. Circulation.
148:47–67. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang Y, Zhang H, Zhang X and Liu B:
CBR3-AS1 accelerates the malignant proliferation of gestational
choriocarcinoma cells by stabilizing SETD4. Dis Markers.
2022:71555252022.PubMed/NCBI
|
|
35
|
Xie M, Ma T, Xue J, Ma H, Sun M, Zhang Z,
Liu M, Liu Y, Ju S, Wang Z and De W: The long intergenic
non-protein coding RNA 707 promotes proliferation and metastasis of
gastric cancer by interacting with mRNA stabilizing protein HuR.
Cancer Lett. 443:67–79. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ni T, Guo D, Tan L, Xiao Z and Shi Y:
NPSR1-AS1 activates the MAPK pathway to facilitate thyroid cancer
cell malignant behaviors via recruiting ELAVL1 to stabilize NPSR1
mRNA. Cell Cycle. 21:439–449. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jalali S, Gandhi S and Scaria V: Distinct
and modular organization of protein interacting sites in long
non-coding RNAs. Front Mol Biosci. 5:272018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang C, Yang Y, Zhang G, Li J, Wu X, Ma X,
Shan G and Mei Y: Long noncoding RNA EMS connects c-Myc to cell
cycle control and tumorigenesis. Proc Natl Acad Sci USA.
116:14620–14629. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pan L, Li Y, Jin L, Li J and Xu A:
TRPM2-AS promotes cancer cell proliferation through control of
TAF15. Int J Biochem Cell Biol. 120:1056832020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang L, Ye S, Wang J, Gu Z, Zhang Y, Zhang
C and Ma X: HuR stabilizes lnc-Sox5 mRNA to promote tongue
carcinogenesis. Biochemistry (Mosc). 82:438–445. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang A, Bao Y, Wu Z, Zhao T, Wang D, Shi
J, Liu B, Sun S, Yang F, Wang L and Qu L: Long noncoding RNA
EGFR-AS1 promotes cell growth and metastasis via affecting HuR
mediated mRNA stability of EGFR in renal cancer. Cell Death Dis.
10:1542019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wu D, He X, Wang W, Hu X, Wang K and Wang
M: Long noncoding RNA SNHG12 induces proliferation, migration,
epithelial-mesenchymal transition, and stemness of esophageal
squamous cell carcinoma cells via post-transcriptional regulation
of BMI1 and CTNNB1. Mol Oncol. 14:2332–2351. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen B, Xu X, Wu W, Zheng K and Yu Y:
LINC00659 inhibits hepatocellular carcinoma malignant progression
by blocking aerobic glycolysis through FUS recruitment and SLC10A1
modulation. Anal Cell Pathol (Amst). 2023:58529632023.PubMed/NCBI
|
|
44
|
Tuo H, Liu R, Wang Y, Yang W and Liu Q:
Hypoxia-induced lncRNA MRVI1-AS1 accelerates hepatocellular
carcinoma progression by recruiting RNA-binding protein CELF2 to
stabilize SKA1 mRNA. World J Surg Oncol. 21:1112023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tian C, Abudoureyimu M, Lin X, Chu X and
Wang R: Linc-ROR facilitates progression and angiogenesis of
hepatocellular carcinoma by modulating DEPDC1 expression. Cell
Death Dis. 12:10472021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ren L, Fang X, Shrestha SM, Ji Q, Ye H,
Liang Y, Liu Y, Feng Y, Dong J and Shi R: LncRNA SNHG16 promotes
development of oesophageal squamous cell carcinoma by interacting
with EIF4A3 and modulating RhoU mRNA stability. Cell Mol Biol Lett.
27:892022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang Z and Hu T: Long noncoding RNA
HOXC-AS3 facilitates the progression of invasive mucinous
adenocarcinomas of the lung via modulating FUS/FOXM1. In Vitro Cell
Dev Biol Anim. 56:15–23. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhu L, Liu Y, Tang H and Wang P: FOXP3
activated-LINC01232 accelerates the stemness of non-small cell lung
carcinoma by activating TGF-β signaling pathway and recruiting
IGF2BP2 to stabilize TGFBR1. Exp Cell Res. 413:1130242022.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi
K, Gu Y and Fang G: Long non-coding RNA GHET1 promotes gastric
carcinoma cell proliferation by increasing c-Myc mRNA stability.
FEBS J. 281:802–813. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Luo N, Zhang K, Li X and Hu Y: ZEB1
induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the
progression of triple negative breast cancer by binding with ELAVL1
to maintain the stability of ZEB1 mRNA. J Cell Biochem.
121:4176–4187. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ning X, Zhao J, He F, Yuan Y, Li B and
Ruan J: lncRNA NUTM2A-AS1 targets the SRSF1/Trim37 signaling
pathway to promote the proliferation and invasion of breast cancer.
Comput Math Methods Med. 2022:32993362022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wen D, Huang Z, Li Z, Tang X, Wen X, Liu J
and Li M: LINC02535 co-functions with PCBP2 to regulate DNA damage
repair in cervical cancer by stabilizing RRM1 mRNA. J Cell Physiol.
235:7592–7603. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang L, Ruan Y, Wu X and Zhou X: lncRNA
ZFAS1 promotes HMGCR mRNA stabilization via binding U2AF2 to
modulate pancreatic carcinoma lipometabolism. J Immunol Res.
2022:41631982022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chen R, Zhang X and Wang C: LncRNA
HOXB-AS1 promotes cell growth in multiple myeloma via FUT4 mRNA
stability by ELAVL1. J Cell Biochem. 121:4043–4051. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lu X, Qiao L and Liu Y: Long noncoding RNA
LEF1-AS1 binds with HNRNPL to boost the proliferation, migration,
and invasion in osteosarcoma by enhancing the mRNA stability of
LEF1. J Cell Biochem. 121:4064–4073. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang M, Sun Y, Huang CP, Luo J, Zhang L,
Meng J, Liang C and Chang C: Targeting the Lnc-OPHN1-5/androgen
receptor/hnRNPA1 complex increases enzalutamide sensitivity to
better suppress prostate cancer progression. Cell Death Dis.
12:8552021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dos Santos AF, Fazeli G, Xavier da Silva
TN and Friedmann Angeli JP: Ferroptosis: Mechanisms and
implications for cancer development and therapy response. Trends
Cell Biol. 33:1062–1076. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tang D, Chen X, Kang R and Kroemer G:
Ferroptosis: Molecular mechanisms and health implications. Cell
Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E,
Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts
suppress ferroptosis and induce gemcitabine resistance in
pancreatic cancer cells by secreting exosome-derived
ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang Q, Deng T, Zhang H, Zuo D, Zhu Q,
Bai M, Liu R, Ning T, Zhang L, Yu Z, et al: Adipocyte-derived
exosomal MTTP suppresses ferroptosis and promotes chemoresistance
in colorectal cancer. Adv Sci (Weinh). 9:e22033572022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang C, Liu X, Jin S, Chen Y and Guo R:
Ferroptosis in cancer therapy: A novel approach to reversing drug
resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang Y, Wu X, Ren Z, Li Y, Zou W, Chen J
and Wang H: Overcoming cancer chemotherapy resistance by the
induction of ferroptosis. Drug Resist Updat. 66:1009162023.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Luo J, Bai R, Liu Y, Bi H, Shi X and Qu C:
Long non-coding RNA ATXN8OS promotes ferroptosis and inhibits the
temozolomide-resistance of gliomas through the ADAR/GLS2 pathway.
Brain Res Bull. 186:27–37. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gowravaram M, Schwarz J, Khilji SK, Urlaub
H and Chakrabarti S: Insights into the assembly and architecture of
a Staufen-mediated mRNA decay (SMD)-competent mRNP. Nat Commun.
10:50542019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yadav DK, Zigáčková D, Zlobina M, Klumpler
T, Beaumont C, Kubíčková M, Vaňáčová Š and Lukavsky PJ: Staufen1
reads out structure and sequence features in ARF1 dsRNA for target
recognition. Nucleic Acids Res. 48:2091–2106. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lu D, Di S, Zhuo S, Zhou L, Bai R, Ma T,
Zou Z, Chen C, Sun M, Tang J and Zhang Z: The long noncoding RNA
TINCR promotes breast cancer cell proliferation and migration by
regulating OAS1. Cell Death Discov. 7:412021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhao L, Jiang L, Zhang M, Zhang Q, Guan Q,
Li Y, He M, Zhang J and Wei M: NF-κB-activated SPRY4-IT1 promotes
cancer cell metastasis by downregulating TCEB1 mRNA via
Staufen1-mediated mRNA decay. Oncogene. 40:4919–4929. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Eken JA, Koning MT, Kupcova K, Sepúlveda
Yáñez JH, de Groen RAL, Quinten E, Janssen J, van Bergen CAM,
Vermaat JSP, Cleven A, et al: Antigen-independent, autonomous B
cell receptor signaling drives activated B cell DLBCL. J Exp Med.
221:e202309412024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Schmitz R, Wright GW, Huang DW, Johnson
CA, Phelan JD, Wang JQ, Roulland S, Kasbekar M, Young RM, Shaffer
AL, et al: Genetics and pathogenesis of diffuse large B-cell
lymphoma. N Engl J Med. 378:1396–1407. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu QH, Dai GR, Wu Y, Wang XN, Song MY, Li
XD, Wu Z and Xia RX: LncRNA FIRRE stimulates PTBP1-induced Smurf2
decay, stabilizes B-cell receptor, and promotes the development of
diffuse large B-cell lymphoma. Hematol Oncol. 40:554–566. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Nag S, Goswami B, Das Mandal S and Ray PS:
Cooperation and competition by RNA-binding proteins in cancer.
Semin Cancer Biol. 86:286–297. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu Y, Xue M, Du S, Feng W, Zhang K, Zhang
L, Liu H, Jia G, Wu L, Hu X, et al: Competitive endogenous RNA is
an intrinsic component of EMT regulatory circuits and modulates
EMT. Nat Commun. 10:16372019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhou L, Jiang J, Huang Z, Jin P, Peng L,
Luo M, Zhang Z, Chen Y, Xie N, Gao W, et al: Hypoxia-induced lncRNA
STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal
cancer progression by preventing m6A-mediated
degradation of STEAP3 mRNA. Mol Cancer. 21:1682022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tao W, Ma J, Zheng J, Liu X, Liu Y, Ruan
X, Shen S, Shao L, Chen J and Xue Y: Silencing SCAMP1-TV2 inhibited
the malignant biological behaviors of breast cancer cells by
interaction with PUM2 to facilitate INSM1 mRNA degradation. Front
Oncol. 10:6132020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang H, Ma P, Liu P, Guo D, Liu Z and
Zhang Z: lncRNA SNHG6 promotes hepatocellular carcinoma progression
by interacting with HNRNPL/PTBP1 to facilitate SETD7/LZTFL1 mRNA
destabilization. Cancer Lett. 520:121–131. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
He J, Zuo Q, Hu B, Jin H, Wang C, Cheng Z,
Deng X, Yang C, Ruan H, Yu C, et al: A novel, liver-specific long
noncoding RNA LINC01093 suppresses HCC progression by interaction
with IGF2BP1 to facilitate decay of GLI1 mRNA. Cancer Lett.
450:98–109. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Puertollano R, Ferguson SM, Brugarolas J
and Ballabio A: The complex relationship between TFEB transcription
factor phosphorylation and subcellular localization. EMBO J.
37:e988042018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shen Y, Zou Y, Li J, Chen F, Li H and Cai
Y: CDK5RAP3, a novel nucleoplasmic shuttle, deeply regulates
hsf1-mediated heat stress response and protects mammary epithelial
cells from heat injury. Int J Mol Sci. 21:84002020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chen J, Liu L, Wei G, Wu W, Luo H, Yuan J,
Luo J and Chen R: The long noncoding RNA ASNR regulates degradation
of Bcl-2 mRNA through its interaction with AUF1. Sci Rep.
6:321892016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang Y, Li Z, Xu S, Li W, Chen M, Jiang M
and Fan X: LncRNA FIRRE functions as a tumor promoter by
interaction with PTBP1 to stabilize BECN1 mRNA and facilitate
autophagy. Cell Death Dis. 13:982022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
He PC, Wei J, Dou X, Harada BT, Zhang Z,
Ge R, Liu C, Zhang LS, Yu X, Wang S, et al: Exon architecture
controls mRNA m6A suppression and gene expression.
Science. 379:677–682. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Deng X, Qing Y, Horne D, Huang H and Chen
J: The roles and implications of RNA m6A modification in
cancer. Nat Rev Clin Oncol. 20:507–526. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Uzonyi A, Dierks D, Nir R, Kwon OS, Toth
U, Barbosa I, Burel C, Brandis A, Rossmanith W, Le Hir H, et al:
Exclusion of m6A from splice-site proximal regions by the exon
junction complex dictates m6A topologies and mRNA stability. Mol
Cell. 83:237–251.e7. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chen J, Zhang H, Xiu C, Gao C, Wu S, Bai
J, Shen Q and Yin T: METTL3 promotes pancreatic cancer
proliferation and stemness by increasing stability of ID2 mRNA in a
m6A-dependent manner. Cancer Lett. 565:2162222023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Fagre C and Gilbert W: Beyond reader
proteins: RNA binding proteins and RNA modifications in
conversation to regulate gene expression. Wiley Interdiscip Rev
RNA. 15:e18342024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Elcheva IA, Gowda CP, Bogush D,
Gornostaeva S, Fakhardo A, Sheth N, Kokolus KM, Sharma A, Dovat S,
Uzun Y, et al: IGF2BP family of RNA-binding proteins regulate
innate and adaptive immune responses in cancer cells and tumor
microenvironment. Front Immunol. 14:12245162023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Stowell JAW, Webster MW, Kögel A, Wolf J,
Shelley KL and Passmore LA: Reconstitution of targeted
deadenylation by the Ccr4-not complex and the YTH domain protein
Mmi1. Cell Rep. 17:1978–1989. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sikorski V, Selberg S, Lalowski M,
Karelson M and Kankuri E: The structure and function of YTHDF
epitranscriptomic m6A readers. Trends Pharmacol Sci.
44:335–353. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yang J, Qian X, Qiu Q, Xu L, Pan M, Li J,
Ren J, Lu B, Qiu T, Chen E, et al: LCAT1 is an oncogenic LncRNA by
stabilizing the IGF2BP2-CDC6 axis. Cell Death Dis. 13:8772022.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhu P, He F, Hou Y, Tu G, Li Q, Jin T,
Zeng H, Qin Y, Wan X, Qiao Y, et al: A novel hypoxic long noncoding
RNA KB-1980E6.3 maintains breast cancer stem cell stemness via
interacting with IGF2BP1 to facilitate c-Myc mRNA stability.
Oncogene. 40:1609–1627. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang Y and Chen Z: Long noncoding RNA
UBA6-AS1 inhibits the malignancy of ovarian cancer cells via
suppressing the decay of UBA6 mRNA. Bioengineered. 13:178–189.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yang H, Hu Y, Weng M, Liu X, Wan P, Hu Y,
Ma M, Zhang Y, Xia H and Lv K: Hypoxia inducible lncRNA-CBSLR
modulates ferroptosis through m6A-YTHDF2-dependent modulation of
CBS in gastric cancer. J Adv Res. 37:91–106. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Afrin H, Geetha Bai R, Kumar R, Ahmad SS,
Agarwal SK and Nurunnabi M: Oral delivery of RNAi for cancer
therapy. Cancer Metastasis Rev. 42:699–724. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chan YT, Lu Y, Wu J, Zhang C, Tan HY, Bian
ZX, Wang N and Feng Y: CRISPR-Cas9 library screening approach for
anti-cancer drug discovery: Overview and perspectives.
Theranostics. 12:3329–3344. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Fan J, Xu Y, Wen X, Ge S, Jia R, Zhang H
and Fan X: A cohesin-mediated intrachromosomal loop drives
oncogenic ROR lncRNA to accelerate tumorigenesis. Mol Ther.
27:2182–2194. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang R, Sun Y, Li L, Niu Y, Lin W, Lin C,
Antonarakis ES, Luo J, Yeh S and Chang C: Preclinical study using
Malat1 small interfering RNA or androgen receptor splicing variant
7 degradation enhancer ASC-J9® to suppress
enzalutamide-resistant prostate cancer progression. Eur Urol.
72:835–844. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wu X, Ramesh R, Wang J, Zheng Y, Armaly
AM, Wei L, Xing M, Roy S, Lan L, Gao FP, et al: Small molecules
targeting the RNA-binding protein HuR inhibit tumor growth in
xenografts. J Med Chem. 66:2032–2053. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Weng H, Huang F, Yu Z, Chen Z, Prince E,
Kang Y, Zhou K, Li W, Hu J, Fu C, et al: The m6A reader
IGF2BP2 regulates glutamine metabolism and represents a therapeutic
target in acute myeloid leukemia. Cancer Cell. 40:1566–1582.e10.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Xu F, Li J, Ni M, Cheng J, Zhao H, Wang S,
Zhou X and Wu X: FBW7 suppresses ovarian cancer development by
targeting the N6-methyladenosine binding protein YTHDF2.
Mol Cancer. 20:452021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Katsushima K, Lee B, Kunhiraman H, Zhong
C, Murad R, Yin J, Liu B, Garancher A, Gonzalez-Gomez I, Monforte
HL, et al: The long noncoding RNA lnc-HLX-2-7 is oncogenic in group
3 medulloblastomas. Neuro Oncol. 23:572–585. 2021. View Article : Google Scholar : PubMed/NCBI
|