Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November-2024 Volume 52 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 52 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review)

  • Authors:
    • Nianjie Zhang
    • Kunming Wen
  • View Affiliations / Copyright

    Affiliations: Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 142
    |
    Published online on: August 23, 2024
       https://doi.org/10.3892/or.2024.8801
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is a disease that poses a serious threat to human health, the occurrence and development of which involves complex molecular mechanisms. Long non‑coding RNAs (lncRNAs) and RNA‑binding proteins (RBPs) are important regulatory molecules within cells, which have garnered extensive attention in cancer research in recent years. The binding of lncRNAs and RBPs plays a crucial role in the post‑transcriptional regulation of mRNA, affecting the synthesis of proteins related to cancer by regulating the stability of mRNA. This, in turn, regulates the malignant biological behaviors of tumor cells, such as proliferation and metastasis, and serves an important role in therapeutic resistance. The present study reviewed the role of lncRNA‑RBP interactions in the regulation of mRNA stability in various malignant tumors, with a focus on the molecular mechanisms underlying this regulatory interaction. The aim of the present review was to gain a deeper understanding of these molecular mechanisms to provide new strategies and insights for the precise treatment of cancer.
View Figures

Figure 1

Figure 2

View References

1 

Erber J and Herndler-Brandstetter D: Regulation of T cell differentiation and function by long noncoding RNAs in homeostasis and cancer. Front Immunol. 14:11814992023. View Article : Google Scholar : PubMed/NCBI

2 

Liu X, Li Y, Jiang X, Deng Y, Ma C, Yu Q and Gao D: Long non-coding RNA: Multiple effects on the differentiation, maturity and cell function of dendritic cells. Clin Immunol. 245:1091672022. View Article : Google Scholar : PubMed/NCBI

3 

Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Fan J, Li H, Xie R, Zhang X, Nie X, Shi X, Zhan J, Yin Z, Zhao Y, Dai B, et al: LncRNA ZNF593-AS alleviates contractile dysfunction in dilated cardiomyopathy. Circ Res. 128:1708–1723. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Huang H, Yan J, Lan X, Guo Y, Sun M, Zhao Y, Zhang F, Sun J and Lu S: LncRNA WDR11-AS1 promotes extracellular matrix synthesis in osteoarthritis by directly interacting with RNA-binding protein PABPC1 to stabilize SOX9 expression. Int J Mol Sci. 24:8172023. View Article : Google Scholar : PubMed/NCBI

6 

Liu F, Cao Y, Zhang C and Su H: Decreased DANCR contributes to high glucose-induced extracellular matrix accumulation in human renal mesangial cell via regulating the TGF-β/Smad signaling. FASEB J. 37:e229262023. View Article : Google Scholar : PubMed/NCBI

7 

Yang Z, Wan J, Ma L, Li Z, Yang R, Yang H, Li J, Zhou F and Ming L: Long non-coding RNA HOXC-AS1 exerts its oncogenic effects in esophageal squamous cell carcinoma by interaction with IGF2BP2 to stabilize SIRT1 expression. J Clin Lab Anal. 37:e248012023. View Article : Google Scholar : PubMed/NCBI

8 

Cai Z, Shi Q, Li Y, Jin L, Li S, Wong LL, Wang J, Jiang X, Zhu M, Lin J, et al: LncRNA EILA promotes CDK4/6 inhibitor resistance in breast cancer by stabilizing cyclin E1 protein. Sci Adv. 9:eadi38212023. View Article : Google Scholar : PubMed/NCBI

9 

Liu M, Li H, Li X, Pan B, Zhang J, Pan Y, Shen M and Liu L: A novel lncRNA FUAT1/TNS4 axis confers chemoresistance by suppressing reactive oxygen species-mediated apoptosis in gastric cancer. Antioxid Redox Signal. 41:24–41. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Zheng Z, Wu M, Li H, Xu W, Yang M, Pan K, Ni Y, Jiang T, Zheng H, Jin X, et al: Downregulation of AC092894.1 promotes oxaliplatin resistance in colorectal cancer via the USP3/AR/RASGRP3 axis. BMC Med. 21:1322023. View Article : Google Scholar : PubMed/NCBI

11 

Bae H and Coller J: Codon optimality-mediated mRNA degradation: Linking translational elongation to mRNA stability. Mol Cell. 82:1467–1476. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Schuster SL, Arora S, Wladyka CL, Itagi P, Corey L, Young D, Stackhouse BL, Kollath L, Wu QV, Corey E, et al: Multi-level functional genomics reveals molecular and cellular oncogenicity of patient-based 3′ untranslated region mutations. Cell Rep. 42:1128402023. View Article : Google Scholar : PubMed/NCBI

13 

Jia L, Mao Y, Ji Q, Dersh D, Yewdell JW and Qian SB: Decoding mRNA translatability and stability from the 5′ UTR. Nat Struct Mol Biol. 27:814–821. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Passmore LA and Coller J: Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol. 23:93–106. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Bednarek S, Madan V, Sikorski PJ, Bartenschlager R, Kowalska J and Jemielity J: mRNAs biotinylated within the 5′ cap and protected against decapping: New tools to capture RNA-protein complexes. Philos Trans R Soc Lond B Biol Sci. 373:201801672018. View Article : Google Scholar : PubMed/NCBI

16 

Korn SM, Ulshöfer CJ, Schneider T and Schlundt A: Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure. 29:787–803. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Mushtaq A, Mir US and Altaf M: Multifaceted functions of RNA-binding protein vigilin in gene silencing, genome stability, and autism-related disorders. J Biol Chem. 299:1029882023. View Article : Google Scholar : PubMed/NCBI

18 

Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS and Li B: New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (Lond). 42:117–140. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Li W, Deng X and Chen J: RNA-binding proteins in regulating mRNA stability and translation: Roles and mechanisms in cancer. Semin Cancer Biol. 86:664–677. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X and Zheng L: RNA-binding proteins in tumor progression. J Hematol Oncol. 13:902020. View Article : Google Scholar : PubMed/NCBI

21 

Ouyang J, Zhong Y, Zhang Y, Yang L, Wu P, Hou X, Xiong F, Li X, Zhang S, Gong Z, et al: Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br J Cancer. 126:1113–1124. 2022. View Article : Google Scholar : PubMed/NCBI

22 

Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR and Alajez NM: Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol. 86:325–345. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Ramesh-Kumar D and Guil S: The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol. 86:18–31. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Miao W, Porter DF, Lopez-Pajares V, Siprashvili Z, Meyers RM, Bai Y, Nguyen DT, Ko LA, Zarnegar BJ, Ferguson ID, et al: Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation. Cell. 186:80–97.e26. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Gebauer F, Schwarzl T, Valcárcel J and Hentze MW: RNA-binding proteins in human genetic disease. Nat Rev Genet. 22:185–198. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Herman AB, Tsitsipatis D and Gorospe M: Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 82:2252–2266. 2022. View Article : Google Scholar : PubMed/NCBI

28 

Nojima T and Proudfoot NJ: Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 23:389–406. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Knott GJ, Bond CS and Fox AH: The DBHS proteins SFPQ, NONO and PSPC1: A multipurpose molecular scaffold. Nucleic Acids Res. 44:3989–4004. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Chen Y, Lu Y, Yang L, Ma W, Dong Y, Zhou S, Liu N, Gan W and Li D: LncRNA like NMRK2 mRNA functions as a key molecular scaffold to enhance mitochondrial respiration of NONO-TFE3 rearranged renal cell carcinoma in an NAD+ kinase-independent manner kinase-independent manner. J Exp Clin Cancer Res. 42:2522023. View Article : Google Scholar : PubMed/NCBI

31 

Zhao P, Ji MM, Fang Y, Li X, Yi HM, Yan ZX, Cheng S, Xu PP, Janin A, Wang CF, et al: A novel lncRNA TCLlnc1 promotes peripheral T cell lymphoma progression through acting as a modular scaffold of HNRNPD and YBX1 complexes. Cell Death Dis. 12:3212021. View Article : Google Scholar : PubMed/NCBI

32 

Feng Y, Zhang T, Zhang Z, Liang Y, Wang H, Chen Y, Yu X, Song X, Mao Q, Xia W, et al: The super-enhancer-driven lncRNA LINC00880 acts as a scaffold between CDK1 and PRDX1 to sustain the malignance of lung adenocarcinoma. Cell Death Dis. 14:5512023. View Article : Google Scholar : PubMed/NCBI

33 

Zhang W, Zhao J, Deng L, Ishimwe N, Pauli J, Wu W, Shan S, Kempf W, Ballantyne MD, Kim D, et al: INKILN is a novel long noncoding RNA promoting vascular smooth muscle inflammation via scaffolding MKL1 and USP10. Circulation. 148:47–67. 2023. View Article : Google Scholar : PubMed/NCBI

34 

Zhang Y, Zhang H, Zhang X and Liu B: CBR3-AS1 accelerates the malignant proliferation of gestational choriocarcinoma cells by stabilizing SETD4. Dis Markers. 2022:71555252022.PubMed/NCBI

35 

Xie M, Ma T, Xue J, Ma H, Sun M, Zhang Z, Liu M, Liu Y, Ju S, Wang Z and De W: The long intergenic non-protein coding RNA 707 promotes proliferation and metastasis of gastric cancer by interacting with mRNA stabilizing protein HuR. Cancer Lett. 443:67–79. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Ni T, Guo D, Tan L, Xiao Z and Shi Y: NPSR1-AS1 activates the MAPK pathway to facilitate thyroid cancer cell malignant behaviors via recruiting ELAVL1 to stabilize NPSR1 mRNA. Cell Cycle. 21:439–449. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Jalali S, Gandhi S and Scaria V: Distinct and modular organization of protein interacting sites in long non-coding RNAs. Front Mol Biosci. 5:272018. View Article : Google Scholar : PubMed/NCBI

38 

Wang C, Yang Y, Zhang G, Li J, Wu X, Ma X, Shan G and Mei Y: Long noncoding RNA EMS connects c-Myc to cell cycle control and tumorigenesis. Proc Natl Acad Sci USA. 116:14620–14629. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Pan L, Li Y, Jin L, Li J and Xu A: TRPM2-AS promotes cancer cell proliferation through control of TAF15. Int J Biochem Cell Biol. 120:1056832020. View Article : Google Scholar : PubMed/NCBI

40 

Wang L, Ye S, Wang J, Gu Z, Zhang Y, Zhang C and Ma X: HuR stabilizes lnc-Sox5 mRNA to promote tongue carcinogenesis. Biochemistry (Mosc). 82:438–445. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Wang A, Bao Y, Wu Z, Zhao T, Wang D, Shi J, Liu B, Sun S, Yang F, Wang L and Qu L: Long noncoding RNA EGFR-AS1 promotes cell growth and metastasis via affecting HuR mediated mRNA stability of EGFR in renal cancer. Cell Death Dis. 10:1542019. View Article : Google Scholar : PubMed/NCBI

42 

Wu D, He X, Wang W, Hu X, Wang K and Wang M: Long noncoding RNA SNHG12 induces proliferation, migration, epithelial-mesenchymal transition, and stemness of esophageal squamous cell carcinoma cells via post-transcriptional regulation of BMI1 and CTNNB1. Mol Oncol. 14:2332–2351. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Chen B, Xu X, Wu W, Zheng K and Yu Y: LINC00659 inhibits hepatocellular carcinoma malignant progression by blocking aerobic glycolysis through FUS recruitment and SLC10A1 modulation. Anal Cell Pathol (Amst). 2023:58529632023.PubMed/NCBI

44 

Tuo H, Liu R, Wang Y, Yang W and Liu Q: Hypoxia-induced lncRNA MRVI1-AS1 accelerates hepatocellular carcinoma progression by recruiting RNA-binding protein CELF2 to stabilize SKA1 mRNA. World J Surg Oncol. 21:1112023. View Article : Google Scholar : PubMed/NCBI

45 

Tian C, Abudoureyimu M, Lin X, Chu X and Wang R: Linc-ROR facilitates progression and angiogenesis of hepatocellular carcinoma by modulating DEPDC1 expression. Cell Death Dis. 12:10472021. View Article : Google Scholar : PubMed/NCBI

46 

Ren L, Fang X, Shrestha SM, Ji Q, Ye H, Liang Y, Liu Y, Feng Y, Dong J and Shi R: LncRNA SNHG16 promotes development of oesophageal squamous cell carcinoma by interacting with EIF4A3 and modulating RhoU mRNA stability. Cell Mol Biol Lett. 27:892022. View Article : Google Scholar : PubMed/NCBI

47 

Yang Z and Hu T: Long noncoding RNA HOXC-AS3 facilitates the progression of invasive mucinous adenocarcinomas of the lung via modulating FUS/FOXM1. In Vitro Cell Dev Biol Anim. 56:15–23. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Zhu L, Liu Y, Tang H and Wang P: FOXP3 activated-LINC01232 accelerates the stemness of non-small cell lung carcinoma by activating TGF-β signaling pathway and recruiting IGF2BP2 to stabilize TGFBR1. Exp Cell Res. 413:1130242022. View Article : Google Scholar : PubMed/NCBI

49 

Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi K, Gu Y and Fang G: Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J. 281:802–813. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Luo N, Zhang K, Li X and Hu Y: ZEB1 induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the progression of triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA. J Cell Biochem. 121:4176–4187. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Ning X, Zhao J, He F, Yuan Y, Li B and Ruan J: lncRNA NUTM2A-AS1 targets the SRSF1/Trim37 signaling pathway to promote the proliferation and invasion of breast cancer. Comput Math Methods Med. 2022:32993362022. View Article : Google Scholar : PubMed/NCBI

52 

Wen D, Huang Z, Li Z, Tang X, Wen X, Liu J and Li M: LINC02535 co-functions with PCBP2 to regulate DNA damage repair in cervical cancer by stabilizing RRM1 mRNA. J Cell Physiol. 235:7592–7603. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Wang L, Ruan Y, Wu X and Zhou X: lncRNA ZFAS1 promotes HMGCR mRNA stabilization via binding U2AF2 to modulate pancreatic carcinoma lipometabolism. J Immunol Res. 2022:41631982022. View Article : Google Scholar : PubMed/NCBI

54 

Chen R, Zhang X and Wang C: LncRNA HOXB-AS1 promotes cell growth in multiple myeloma via FUT4 mRNA stability by ELAVL1. J Cell Biochem. 121:4043–4051. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Lu X, Qiao L and Liu Y: Long noncoding RNA LEF1-AS1 binds with HNRNPL to boost the proliferation, migration, and invasion in osteosarcoma by enhancing the mRNA stability of LEF1. J Cell Biochem. 121:4064–4073. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Zhang M, Sun Y, Huang CP, Luo J, Zhang L, Meng J, Liang C and Chang C: Targeting the Lnc-OPHN1-5/androgen receptor/hnRNPA1 complex increases enzalutamide sensitivity to better suppress prostate cancer progression. Cell Death Dis. 12:8552021. View Article : Google Scholar : PubMed/NCBI

57 

Dos Santos AF, Fazeli G, Xavier da Silva TN and Friedmann Angeli JP: Ferroptosis: Mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 33:1062–1076. 2023. View Article : Google Scholar : PubMed/NCBI

58 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E, Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023. View Article : Google Scholar : PubMed/NCBI

62 

Zhang Q, Deng T, Zhang H, Zuo D, Zhu Q, Bai M, Liu R, Ning T, Zhang L, Yu Z, et al: Adipocyte-derived exosomal MTTP suppresses ferroptosis and promotes chemoresistance in colorectal cancer. Adv Sci (Weinh). 9:e22033572022. View Article : Google Scholar : PubMed/NCBI

63 

Zhang C, Liu X, Jin S, Chen Y and Guo R: Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI

64 

Wang Y, Wu X, Ren Z, Li Y, Zou W, Chen J and Wang H: Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 66:1009162023. View Article : Google Scholar : PubMed/NCBI

65 

Luo J, Bai R, Liu Y, Bi H, Shi X and Qu C: Long non-coding RNA ATXN8OS promotes ferroptosis and inhibits the temozolomide-resistance of gliomas through the ADAR/GLS2 pathway. Brain Res Bull. 186:27–37. 2022. View Article : Google Scholar : PubMed/NCBI

66 

Gowravaram M, Schwarz J, Khilji SK, Urlaub H and Chakrabarti S: Insights into the assembly and architecture of a Staufen-mediated mRNA decay (SMD)-competent mRNP. Nat Commun. 10:50542019. View Article : Google Scholar : PubMed/NCBI

67 

Yadav DK, Zigáčková D, Zlobina M, Klumpler T, Beaumont C, Kubíčková M, Vaňáčová Š and Lukavsky PJ: Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition. Nucleic Acids Res. 48:2091–2106. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Lu D, Di S, Zhuo S, Zhou L, Bai R, Ma T, Zou Z, Chen C, Sun M, Tang J and Zhang Z: The long noncoding RNA TINCR promotes breast cancer cell proliferation and migration by regulating OAS1. Cell Death Discov. 7:412021. View Article : Google Scholar : PubMed/NCBI

69 

Zhao L, Jiang L, Zhang M, Zhang Q, Guan Q, Li Y, He M, Zhang J and Wei M: NF-κB-activated SPRY4-IT1 promotes cancer cell metastasis by downregulating TCEB1 mRNA via Staufen1-mediated mRNA decay. Oncogene. 40:4919–4929. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Eken JA, Koning MT, Kupcova K, Sepúlveda Yáñez JH, de Groen RAL, Quinten E, Janssen J, van Bergen CAM, Vermaat JSP, Cleven A, et al: Antigen-independent, autonomous B cell receptor signaling drives activated B cell DLBCL. J Exp Med. 221:e202309412024. View Article : Google Scholar : PubMed/NCBI

71 

Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, Roulland S, Kasbekar M, Young RM, Shaffer AL, et al: Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 378:1396–1407. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Liu QH, Dai GR, Wu Y, Wang XN, Song MY, Li XD, Wu Z and Xia RX: LncRNA FIRRE stimulates PTBP1-induced Smurf2 decay, stabilizes B-cell receptor, and promotes the development of diffuse large B-cell lymphoma. Hematol Oncol. 40:554–566. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Nag S, Goswami B, Das Mandal S and Ray PS: Cooperation and competition by RNA-binding proteins in cancer. Semin Cancer Biol. 86:286–297. 2022. View Article : Google Scholar : PubMed/NCBI

74 

Liu Y, Xue M, Du S, Feng W, Zhang K, Zhang L, Liu H, Jia G, Wu L, Hu X, et al: Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun. 10:16372019. View Article : Google Scholar : PubMed/NCBI

75 

Zhou L, Jiang J, Huang Z, Jin P, Peng L, Luo M, Zhang Z, Chen Y, Xie N, Gao W, et al: Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m6A-mediated degradation of STEAP3 mRNA. Mol Cancer. 21:1682022. View Article : Google Scholar : PubMed/NCBI

76 

Tao W, Ma J, Zheng J, Liu X, Liu Y, Ruan X, Shen S, Shao L, Chen J and Xue Y: Silencing SCAMP1-TV2 inhibited the malignant biological behaviors of breast cancer cells by interaction with PUM2 to facilitate INSM1 mRNA degradation. Front Oncol. 10:6132020. View Article : Google Scholar : PubMed/NCBI

77 

Wang H, Ma P, Liu P, Guo D, Liu Z and Zhang Z: lncRNA SNHG6 promotes hepatocellular carcinoma progression by interacting with HNRNPL/PTBP1 to facilitate SETD7/LZTFL1 mRNA destabilization. Cancer Lett. 520:121–131. 2021. View Article : Google Scholar : PubMed/NCBI

78 

He J, Zuo Q, Hu B, Jin H, Wang C, Cheng Z, Deng X, Yang C, Ruan H, Yu C, et al: A novel, liver-specific long noncoding RNA LINC01093 suppresses HCC progression by interaction with IGF2BP1 to facilitate decay of GLI1 mRNA. Cancer Lett. 450:98–109. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Puertollano R, Ferguson SM, Brugarolas J and Ballabio A: The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 37:e988042018. View Article : Google Scholar : PubMed/NCBI

80 

Shen Y, Zou Y, Li J, Chen F, Li H and Cai Y: CDK5RAP3, a novel nucleoplasmic shuttle, deeply regulates hsf1-mediated heat stress response and protects mammary epithelial cells from heat injury. Int J Mol Sci. 21:84002020. View Article : Google Scholar : PubMed/NCBI

81 

Chen J, Liu L, Wei G, Wu W, Luo H, Yuan J, Luo J and Chen R: The long noncoding RNA ASNR regulates degradation of Bcl-2 mRNA through its interaction with AUF1. Sci Rep. 6:321892016. View Article : Google Scholar : PubMed/NCBI

82 

Wang Y, Li Z, Xu S, Li W, Chen M, Jiang M and Fan X: LncRNA FIRRE functions as a tumor promoter by interaction with PTBP1 to stabilize BECN1 mRNA and facilitate autophagy. Cell Death Dis. 13:982022. View Article : Google Scholar : PubMed/NCBI

83 

He PC, Wei J, Dou X, Harada BT, Zhang Z, Ge R, Liu C, Zhang LS, Yu X, Wang S, et al: Exon architecture controls mRNA m6A suppression and gene expression. Science. 379:677–682. 2023. View Article : Google Scholar : PubMed/NCBI

84 

Deng X, Qing Y, Horne D, Huang H and Chen J: The roles and implications of RNA m6A modification in cancer. Nat Rev Clin Oncol. 20:507–526. 2023. View Article : Google Scholar : PubMed/NCBI

85 

Uzonyi A, Dierks D, Nir R, Kwon OS, Toth U, Barbosa I, Burel C, Brandis A, Rossmanith W, Le Hir H, et al: Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol Cell. 83:237–251.e7. 2023. View Article : Google Scholar : PubMed/NCBI

86 

Chen J, Zhang H, Xiu C, Gao C, Wu S, Bai J, Shen Q and Yin T: METTL3 promotes pancreatic cancer proliferation and stemness by increasing stability of ID2 mRNA in a m6A-dependent manner. Cancer Lett. 565:2162222023. View Article : Google Scholar : PubMed/NCBI

87 

Fagre C and Gilbert W: Beyond reader proteins: RNA binding proteins and RNA modifications in conversation to regulate gene expression. Wiley Interdiscip Rev RNA. 15:e18342024. View Article : Google Scholar : PubMed/NCBI

88 

Elcheva IA, Gowda CP, Bogush D, Gornostaeva S, Fakhardo A, Sheth N, Kokolus KM, Sharma A, Dovat S, Uzun Y, et al: IGF2BP family of RNA-binding proteins regulate innate and adaptive immune responses in cancer cells and tumor microenvironment. Front Immunol. 14:12245162023. View Article : Google Scholar : PubMed/NCBI

89 

Stowell JAW, Webster MW, Kögel A, Wolf J, Shelley KL and Passmore LA: Reconstitution of targeted deadenylation by the Ccr4-not complex and the YTH domain protein Mmi1. Cell Rep. 17:1978–1989. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Sikorski V, Selberg S, Lalowski M, Karelson M and Kankuri E: The structure and function of YTHDF epitranscriptomic m6A readers. Trends Pharmacol Sci. 44:335–353. 2023. View Article : Google Scholar : PubMed/NCBI

91 

Yang J, Qian X, Qiu Q, Xu L, Pan M, Li J, Ren J, Lu B, Qiu T, Chen E, et al: LCAT1 is an oncogenic LncRNA by stabilizing the IGF2BP2-CDC6 axis. Cell Death Dis. 13:8772022. View Article : Google Scholar : PubMed/NCBI

92 

Zhu P, He F, Hou Y, Tu G, Li Q, Jin T, Zeng H, Qin Y, Wan X, Qiao Y, et al: A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene. 40:1609–1627. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Wang Y and Chen Z: Long noncoding RNA UBA6-AS1 inhibits the malignancy of ovarian cancer cells via suppressing the decay of UBA6 mRNA. Bioengineered. 13:178–189. 2022. View Article : Google Scholar : PubMed/NCBI

94 

Yang H, Hu Y, Weng M, Liu X, Wan P, Hu Y, Ma M, Zhang Y, Xia H and Lv K: Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res. 37:91–106. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK and Nurunnabi M: Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev. 42:699–724. 2023. View Article : Google Scholar : PubMed/NCBI

96 

Chan YT, Lu Y, Wu J, Zhang C, Tan HY, Bian ZX, Wang N and Feng Y: CRISPR-Cas9 library screening approach for anti-cancer drug discovery: Overview and perspectives. Theranostics. 12:3329–3344. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Fan J, Xu Y, Wen X, Ge S, Jia R, Zhang H and Fan X: A cohesin-mediated intrachromosomal loop drives oncogenic ROR lncRNA to accelerate tumorigenesis. Mol Ther. 27:2182–2194. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Wang R, Sun Y, Li L, Niu Y, Lin W, Lin C, Antonarakis ES, Luo J, Yeh S and Chang C: Preclinical study using Malat1 small interfering RNA or androgen receptor splicing variant 7 degradation enhancer ASC-J9® to suppress enzalutamide-resistant prostate cancer progression. Eur Urol. 72:835–844. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Wu X, Ramesh R, Wang J, Zheng Y, Armaly AM, Wei L, Xing M, Roy S, Lan L, Gao FP, et al: Small molecules targeting the RNA-binding protein HuR inhibit tumor growth in xenografts. J Med Chem. 66:2032–2053. 2023. View Article : Google Scholar : PubMed/NCBI

100 

Weng H, Huang F, Yu Z, Chen Z, Prince E, Kang Y, Zhou K, Li W, Hu J, Fu C, et al: The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 40:1566–1582.e10. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Xu F, Li J, Ni M, Cheng J, Zhao H, Wang S, Zhou X and Wu X: FBW7 suppresses ovarian cancer development by targeting the N6-methyladenosine binding protein YTHDF2. Mol Cancer. 20:452021. View Article : Google Scholar : PubMed/NCBI

102 

Katsushima K, Lee B, Kunhiraman H, Zhong C, Murad R, Yin J, Liu B, Garancher A, Gonzalez-Gomez I, Monforte HL, et al: The long noncoding RNA lnc-HLX-2-7 is oncogenic in group 3 medulloblastomas. Neuro Oncol. 23:572–585. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang N and Wen K: The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review). Oncol Rep 52: 142, 2024.
APA
Zhang, N., & Wen, K. (2024). The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review). Oncology Reports, 52, 142. https://doi.org/10.3892/or.2024.8801
MLA
Zhang, N., Wen, K."The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review)". Oncology Reports 52.5 (2024): 142.
Chicago
Zhang, N., Wen, K."The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review)". Oncology Reports 52, no. 5 (2024): 142. https://doi.org/10.3892/or.2024.8801
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang N and Wen K: The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review). Oncol Rep 52: 142, 2024.
APA
Zhang, N., & Wen, K. (2024). The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review). Oncology Reports, 52, 142. https://doi.org/10.3892/or.2024.8801
MLA
Zhang, N., Wen, K."The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review)". Oncology Reports 52.5 (2024): 142.
Chicago
Zhang, N., Wen, K."The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review)". Oncology Reports 52, no. 5 (2024): 142. https://doi.org/10.3892/or.2024.8801
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team