|
1
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rahib L, Smith BD, Aizenberg R, Rosenzweig
AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and
deaths to 2030: The unexpected burden of thyroid, liver, and
pancreas cancers in the United States. Cancer Res. 74:2913–2921.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
DeLeo AB and Appella E: The p53 saga:
Early steps in the development of tumor immunotherapy. J Immunol.
204:2321–2328. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Iwanaga N and Kolls JK: Updates on T
helper type 17 immunity in respiratory disease. Immunology.
156:3–8. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
McGeachy MJ, Cua DJ and Gaffen SL: The
IL-17 family of cytokines in health and disease. Immunity.
50:892–906. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pacha O, Sallman MA and Evans SE:
COVID-19: A case for inhibiting IL-17? Nat Rev Immunol. 20:345–346.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chen X, Zhao J, Herjan T, Hong L, Liao Y,
Liu C, Vasu K, Wang H, Thompson A, Fox PL, et al: IL-17-induced
HIF1α drives resistance to anti-PD-L1 via fibroblast-mediated
immune exclusion. J Exp Med. 219:e202106932022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liu C, Cheng H, Luo G, Lu Y, Jin K, Guo M,
Ni Q and Yu X: Circulating regulatory T cell subsets predict
overall survival of patients with unresectable pancreatic cancer.
Int J Oncol. 51:686–694. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mucciolo G, Curcio C, Roux C, Li WY,
Capello M, Curto R, Chiarle R, Giordano D, Satolli MA, Lawlor R, et
al: IL17A critically shapes the transcriptional program of
fibroblasts in pancreatic cancer and switches on their
protumorigenic functions. Proc Natl Acad Sci USA.
118:e20203951182021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Feng WQ, Zhang YC, Xu ZQ, Yu SY, Huo JT,
Tuersun A, Zheng MH, Zhao JK, Zong YP and Lu AG: IL-17A-mediated
mitochondrial dysfunction induces pyroptosis in colorectal cancer
cells and promotes CD8 + T-cell tumour infiltration. J Transl Med.
21:3352023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gu K, Li MM, Shen J, Liu F, Cao JY, Jin S
and Yu Y: Interleukin-17-induced EMT promotes lung cancer cell
migration and invasion via NF-κB/ZEB1 signal pathway. Am J Cancer
Res. 5:1169–1179. 2015.PubMed/NCBI
|
|
12
|
Zhang Y, Chandra V, Riquelme Sanchez E,
Dutta P, Quesada PR, Rakoski A, Zoltan M, Arora N, Baydogan S,
Horne W, et al: Interleukin-17-induced neutrophil extracellular
traps mediate resistance to checkpoint blockade in pancreatic
cancer. J Exp Med. 217:e201903542020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Liu S, Song X, Chrunyk BA, Shanker S, Hoth
LR, Marr ES and Griffor MC: Crystal structures of interleukin 17A
and its complex with IL-17 receptor A. Nat Commun. 4:18882013.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rouvier E, Luciani MF, Mattéi MG, Denizot
F and Golstein P: CTLA-8, cloned from an activated T cell, bearing
AU-rich messenger RNA instability sequences, and homologous to a
herpesvirus saimiri gene. J Immunol. 150:5445–5456. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Marques HS, de Brito BB, da Silva FAF,
Santos MLC, de Souza JCB, Correia TML, Lopes LW, Neres NSM, Dórea
RSDM, Dantas ACS, et al: Relationship between Th17 immune response
and cancer. World J Clin Oncol. 12:845–867. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lückel C, Picard FSR and Huber M: Tc17
biology and function: Novel concepts. Eur J Immunol. 50:1257–1267.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kuwabara T, Ishikawa F, Kondo M and
Kakiuchi T: The role of IL-17 and related cytokines in inflammatory
autoimmune diseases. Mediators Inflamm. 2017:39080612017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yu Z, Yu Q, Xu H, Dai X, Yu Y, Cui L, Chen
Y, Gu J, Zhang X, Guo C and Shi Y: IL-17A promotes
psoriasis-associated keratinocyte proliferation through
ACT1-dependent activation of YAP-AREG axis. J Invest Dermatol.
142:2343–2352. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hot A and Miossec P: Effects of
interleukin (IL)-17A and IL-17F in human rheumatoid arthritis
synoviocytes. Ann Rheum Dis. 70:727–732. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kolbinger F, Huppertz C, Mir A and Padova
FD: IL-17A and multiple sclerosis: Signaling pathways, producing
cells and target cells in the central nervous system. Curr Drug
Targets. 17:1882–1893. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen X, Wan J, Liu J, Xie W, Diao X, Xu J,
Zhu B and Chen Z: Increased IL-17-producing cells correlate with
poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer.
69:348–354. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bian Z, Wu X, Chen Q, Gao Q, Xue X and
Wang Y: Oct4 activates IL-17A to orchestrate M2 macrophage
polarization and cervical cancer metastasis. Cancer Immunol
Immunother. 73:732024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bastid J, Dejou C, Docquier A and Bonnefoy
N: The emerging role of the IL-17B/IL-17RB pathway in cancer. Front
Immunol. 11:7182020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Huang CK, Yang CY, Jeng YM, Chen CL, Wu
HH, Chang YC, Ma C, Kuo WH, Chang KJ, Shew JY and Lee WH:
Autocrine/paracrine mechanism of interleukin-17B receptor promotes
breast tumorigenesis through NF-κB-mediated antiapoptotic pathway.
Oncogene. 33:2968–2977. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang YF, Lee YC, Lo S, Chung YN, Hsieh YC,
Chiu WC and Yuan SF: A positive feedback loop of IL-17B-IL-17RB
activates ERK/β-catenin to promote lung cancer metastasis. Cancer
Lett. 422:44–55. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wu HH, Hwang-Verslues WW, Lee WH, Huang
CK, Wei PC, Chen CL, Shew JY, Lee EY, Jeng YM, Tien YW, et al:
Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody
blocks pancreatic cancer metastasis by silencing multiple
chemokines. J Exp Med. 212:333–349. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Al-Samadi A, Kouri VP, Salem A, Ainola M,
Kaivosoja E, Barreto G, Konttinen YT, Hietanen J and
Häyrinen-Immonen R: IL-17C and its receptor IL-17RA/IL-17RE
identify human oral epithelial cell as an inflammatory cell in
recurrent aphthous ulcer. J Oral Pathol Med. 43:117–124. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nies JF and Panzer U: IL-17C/IL-17RE:
Emergence of a unique axis in TH17 biology. Front Immunol.
11:3412020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ramirez-Carrozzi V, Sambandam A, Luis E,
Lin Z, Jeet S, Lesch J, Hackney J, Kim J, Zhou M, Lai J, et al:
IL-17C regulates the innate immune function of epithelial cells in
an autocrine manner. Nat Immunol. 12:1159–1166. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jungnickel C, Schmidt LH, Bittigkoffer L,
Wolf L, Wolf A, Ritzmann F, Kamyschnikow A, Herr C, Menger MD,
Spieker T, et al: IL-17C mediates the recruitment of
tumor-associated neutrophils and lung tumor growth. Oncogene.
36:4182–4190. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu X, Sun S and Liu D: IL-17D: A less
studied cytokine of IL-17 family. Int Arch Allergy Immunol.
181:618–623. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Borowczyk J, Shutova M, Brembilla NC and
Boehncke WH: IL-25 (IL-17E) in epithelial immunology and
pathophysiology. J Allergy Clin Immunol. 148:40–52. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xu M and Dong C: IL-25 in allergic
inflammation. Immunol Rev. 278:185–191. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Gaffen SL: Structure and signalling in the
IL-17 receptor family. Nat Rev Immunol. 9:556–567. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Qian Y, Liu C, Hartupee J, Altuntas CZ,
Gulen MF, Jane-Wit D, Xiao J, Lu Y, Giltiay N, Liu J, et al: The
adaptor Act1 is required for interleukin 17-dependent signaling
associated with autoimmune and inflammatory disease. Nat Immunol.
8:247–256. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
36
|
Herjan T, Hong L, Bubenik J, Bulek K, Qian
W, Liu C, Li X, Chen X, Yang H, Ouyang S, et al:
IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to
mediate IL-17 inflammatory signaling. Nat Immunol. 19:354–365.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Song X, Zhu S, Shi P, Liu Y, Shi Y, Levin
SD and Qian Y: IL-17RE is the functional receptor for IL-17C and
mediates mucosal immunity to infection with intestinal pathogens.
Nat Immunol. 12:1151–1158. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tsai LH, Hsu KW, Chiang CM, Yang HJ, Liu
YH, Yang SF, Peng PH, Cheng WC and Wu HH: Targeting interleukin-17
receptor B enhances gemcitabine sensitivity through downregulation
of mucins in pancreatic cancer. Sci Rep. 10:178172020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu HH, Tsai LH, Huang CK, Hsu PH, Chen MY,
Chen YI, Hu CM, Shen CN, Lee CC, Chang MC, et al: Characterization
of initial key steps of IL-17 receptor B oncogenic signaling for
targeted therapy of pancreatic cancer. Sci Transl Med.
13:eabc28232021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ho AW and Gaffen SL: IL-17RC: A partner in
IL-17 signaling and beyond. Semin Immunopathol. 32:33–42. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rodriguez C, Araujo Furlan CL, Tosello
Boari J, Bossio SN, Boccardo S, Fozzatti L, Canale FP, Beccaria CG,
Nuñez NG, Ceschin DG, et al: Interleukin-17 signaling influences
CD8+ T cell immunity and tumor progression according to the IL-17
receptor subunit expression pattern in cancer cells.
Oncoimmunology. 12:22613262023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Su Y, Huang J, Zhao X, Lu H, Wang W, Yang
XO, Shi Y, Wang X, Lai Y and Dong C: Interleukin-17 receptor D
constitutes an alternative receptor for interleukin-17A important
in psoriasis-like skin inflammation. Sci Immunol. 4:eaau96572019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pande S, Yang X and Friesel R:
Interleukin-17 receptor D (Sef) is a multi-functional regulator of
cell signaling. Cell Commun Signal. 19:62021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Vella G, Lunding L, Ritzmann F, Honecker
A, Herr C, Wegmann M, Bals R and Beisswenger C: The IL-17 receptor
IL-17RE mediates polyIC-induced exacerbation of experimental
allergic asthma. Respir Res. 21:1762020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pätzold L, Stark A, Ritzmann F, Meier C,
Tschernig T, Reichrath J, Bals R, Bischoff M and Beisswenger C:
IL-17C and IL-17RE promote wound closure in a Staphylococcus
aureus-Based murine wound infection model. Microorganisms.
9:18212021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liao R, Sun J, Wu H, Yi Y, Wang JX, He HW,
Cai XY, Zhou J, Cheng YF, Fan J and Qiu SJ: High expression of
IL-17 and IL-17RE associate with poor prognosis of hepatocellular
carcinoma. J Exp Clin Cancer Res. 32:32013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gu C, Wu L and Li X: IL-17 family:
Cytokines, receptors and signaling. Cytokine. 64:477–485. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Schwandner R, Yamaguchi K and Cao Z:
Requirement of tumor necrosis factor receptor-associated factor
(TRAF)6 in interleukin 17 signal transduction. J Exp Med.
191:1233–1240. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Napetschnig J and Wu H: Molecular basis of
NF-κB signaling. Annu Rev Biophys. 42:443–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mitchell S, Vargas J and Hoffmann A:
Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med.
8:227–241. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Oeckinghaus A, Hayden MS and Ghosh S:
Crosstalk in NF-κB signaling pathways. Nat Immunol. 12:695–708.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wu NL, Huang DY, Tsou HN, Lin YC and Lin
WW: Syk mediates IL-17-induced CCL20 expression by targeting
Act1-dependent K63-linked ubiquitination of TRAF6. J Invest
Dermatol. 135:490–498. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tanaka H, Arima Y, Kamimura D, Tanaka Y,
Takahashi N, Uehata T, Maeda K, Satoh T, Murakami M and Akira S:
Phosphorylation-dependent Regnase-1 release from endoplasmic
reticulum is critical in IL-17 response. J Exp Med. 216:1431–1449.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Amatya N, Childs EE, Cruz JA, Aggor FEY,
Garg AV, Berman AJ, Gudjonsson JE, Atasoy U and Gaffen SL: IL-17
integrates multiple self-reinforcing, feed-forward mechanisms
through the RNA binding protein Arid5a. Sci Signal.
11:eaat46172018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gaffen SL, Jain R, Garg AV and Cua DJ: The
IL-23-IL-17 immune axis: From mechanisms to therapeutic testing.
Nat Rev Immunol. 14:585–600. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang L, Yi T, Kortylewski M, Pardoll DM,
Zeng D and Yu H: IL-17 can promote tumor growth through an
IL-6-Stat3 signaling pathway. J Exp Med. 206:1457–1464. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gu FM, Li QL, Gao Q, Jiang JH, Zhu K,
Huang XY, Pan JF, Yan J, Hu JH, Wang Z, et al: IL-17 induces
AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in
hepatocellular carcinoma. Mol Cancer. 10:1502011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Picard FSR, Lutz V, Brichkina A, Neuhaus
F, Ruckenbrod T, Hupfer A, Raifer H, Klein M, Bopp T, Pfefferle PI,
et al: IL-17A-producing CD8+ T cells promote PDAC via induction of
inflammatory cancer-associated fibroblasts. Gut. 72:1510–1522.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lu L, Pan K, Zheng HX, Li JJ, Qiu HJ, Zhao
JJ, Weng DS, Pan QZ, Wang DD, Jiang SS, et al: IL-17A promotes
immune cell recruitment in human esophageal cancers and the
infiltrating dendritic cells represent a positive prognostic marker
for patient survival. J Immunother. 36:451–458. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ankathatti Munegowda M, Deng Y, Mulligan
SJ and Xiang J: Th17 and Th17-stimulated CD8+ T cells
play a distinct role in Th17-induced preventive and therapeutic
antitumor immunity. Cancer Immunol Immunother. 60:1473–1484. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Guéry L, Dubrot J, Lippens C, Brighouse D,
Malinge P, Irla M, Pot C, Reith W, Waldburger JM and Hugues S:
Ag-presenting CpG-activated pDCs prime Th17 cells that induce tumor
regression. Cancer Res. 74:6430–6440. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kryczek I, Wei S, Szeliga W, Vatan L and
Zou W: Endogenous IL-17 contributes to reduced tumor growth and
metastasis. Blood. 114:357–359. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Storz P: Acinar cell plasticity and
development of pancreatic ductal adenocarcinoma. Nat Rev
Gastroenterol Hepatol. 14:296–304. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
He S, Fei M, Wu Y, Zheng D, Wan D, Wang L
and Li D: Distribution and clinical significance of Th17 cells in
the tumor microenvironment and peripheral blood of pancreatic
cancer patients. Int J Mol Sci. 12:7424–7437. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
McAllister F, Bailey JM, Alsina J, Nirschl
CJ, Sharma R, Fan H, Rattigan Y, Roeser JC, Lankapalli RH, Zhang H,
et al: Oncogenic Kras activates a hematopoietic-to-epithelial IL-17
signaling axis in preinvasive pancreatic neoplasia. Cancer Cell.
25:621–637. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
McAllister F and Leach SD: Targeting IL-17
for pancreatic cancer prevention. Oncotarget. 5:9530–9531. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang X, Wang L, Mo Q, Dong Y, Wang G and
Ji A: Changes of Th17/Treg cell and related cytokines in pancreatic
cancer patients. Int J Clin Exp Pathol. 8:5702–5708.
2015.PubMed/NCBI
|
|
68
|
Loncle C, Bonjoch L, Folch-Puy E,
Lopez-Millan MB, Lac S, Molejon MI, Chuluyan E, Cordelier P, Dubus
P, Lomberk G, et al: IL17 Functions through the Novel
REG3β-JAK2-STAT3 inflammatory pathway to promote the transition
from chronic pancreatitis to pancreatic cancer. Cancer Res.
75:4852–4862. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang Y, Zoltan M, Riquelme E, Xu H, Sahin
I, Castro-Pando S, Montiel MF, Chang K, Jiang Z, Ling J, et al:
Immune cell production of interleukin 17 induces stem cell features
of pancreatic intraepithelial neoplasia cells. Gastroenterology.
155:210–223.e3. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xiang T, Long H, He L, Han X, Lin K, Liang
Z, Zhuo W, Xie R and Zhu B: Interleukin-17 produced by tumor
microenvironment promotes self-renewal of CD133+ cancer stem-like
cells in ovarian cancer. Oncogene. 34:165–176. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wu Y, Konaté MM, Lu J, Makhlouf H, Chuaqui
R, Antony S, Meitzler JL, Difilippantonio MJ, Liu H, Juhasz A, et
al: IL-4 and IL-17A cooperatively promote hydrogen peroxide
production, oxidative DNA damage, and upregulation of dual oxidase
2 in human colon and pancreatic cancer cells. J Immunol.
203:2532–2544. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li J, Wu X, Schiffmann L, MacVicar T, Zhou
C, Wang Z, Li D, Camacho OV, Heuchel R, Odenthal M, et al:
IL-17B/RB activation in pancreatic stellate cells promotes
pancreatic cancer metabolism and growth. Cancers (Basel).
13:53382021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hegde S, Krisnawan VE, Herzog BH, Zuo C,
Breden MA, Knolhoff BL, Hogg GD, Tang JP, Baer JM, Mpoy C, et al:
Dendritic cell paucity leads to dysfunctional immune surveillance
in pancreatic cancer. Cancer Cell. 37:289–307.e9. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sherman MH and Beatty GL: Tumor
microenvironment in pancreatic cancer pathogenesis and therapeutic
resistance. Annu Rev Pathol. 18:123–148. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hosein AN, Brekken RA and Maitra A:
Pancreatic cancer stroma: An update on therapeutic targeting
strategies. Nat Rev Gastroenterol Hepatol. 17:487–505. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Barilla RM, Diskin B, Caso RC, Lee KB,
Mohan N, Buttar C, Adam S, Sekendiz Z, Wang J, Salas RD, et al:
Specialized dendritic cells induce tumor-promoting IL-10+IL-17+
FoxP3neg regulatory CD4+ T cells in pancreatic carcinoma. Nat
Commun. 10:14242019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mensurado S, Rei M, Lança T, Ioannou M,
Gonçalves-Sousa N, Kubo H, Malissen M, Papayannopoulos V, Serre K
and Silva-Santos B: Tumor-associated neutrophils suppress
pro-tumoral IL-17+γδ T cells through induction of oxidative stress.
PLoS Biol. 16:e20049902018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Castro-Pando S, Howell RM, Li L, Mascaro
M, Faraoni EY, Le Roux O, Romanin D, Tahan V, Riquelme E, Zhang Y,
Kolls JK, Allison JP, Lozano G, Moghaddam SJ and McAllister F:
Pancreatic epithelial IL-17/IL-17RA signaling drives B7-H4
expression to promote tumorigenesis. Cancer Immunol Res. doi:
10.1158/2326-6066.CIR-23-0527, Published online June 6. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Roux C, Mucciolo G, Kopecka J, Novelli F,
Riganti C and Cappello P: IL17A depletion affects the metabolism of
macrophages treated with gemcitabine. Antioxidants (Basel).
10:4222021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang W, Marinis JM, Beal AM, Savadkar S,
Wu Y, Khan M, Taunk PS, Wu N, Su W, Wu J, et al: RIP1 kinase drives
macrophage-mediated adaptive immune tolerance in pancreatic cancer.
Cancer Cell. 34:757–774.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wong-Rolle A, Wei HK, Zhao C and Jin C:
Unexpected guests in the tumor microenvironment: Microbiome in
cancer. Protein Cell. 12:426–435. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chandra V, Li L, Le Roux O, Zhang Y,
Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino
J, et al: Gut epithelial Interleukin-17 receptor a signaling can
modulate distant tumors growth through microbial regulation. Cancer
Cell. 42:85–100.e6. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sethi V, Kurtom S, Tarique M, Lavania S,
Malchiodi Z, Hellmund L, Zhang L, Sharma U, Giri B, Garg B, et al:
Gut Microbiota promotes tumor growth in mice by modulating immune
response. Gastroenterology. 155:33–37.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ivanov II, Frutos R de L, Manel N,
Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB and Littman DR:
Specific microbiota direct the differentiation of IL-17-producing
T-helper cells in the mucosa of the small intestine. Cell Host
Microbe. 4:337–349. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Grossberg AJ, Chu LC, Deig CR, Fishman EK,
Hwang WL, Maitra A, Marks DL, Mehta A, Nabavizadeh N, Simeone DM,
et al: Multidisciplinary standards of care and recent progress in
pancreatic ductal adenocarcinoma. CA Cancer J Clin. 70:375–403.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Amrutkar M and Gladhaug IP: Pancreatic
cancer chemoresistance to gemcitabine. Cancers (Basel). 9:1572017.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Senthebane DA, Rowe A, Thomford NE,
Shipanga H, Munro D, Mazeedi MAMA, Almazyadi HAM, Kallmeyer K,
Dandara C, Pepper MS, et al: The role of tumor microenvironment in
chemoresistance: To survive, keep your enemies closer. Int J Mol
Sci. 18:15862017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cochaud S, Giustiniani J, Thomas C,
Laprevotte E, Garbar C, Savoye AM, Curé H, Mascaux C, Alberici G,
Bonnefoy N, et al: IL-17A is produced by breast cancer TILs and
promotes chemoresistance and proliferation through ERK1/2. Sci Rep.
3:34562013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Song Y, Ji B, Jiang CX, Chen ZM, Yao NH,
Mukaida N and Huang H: IL17RB expression might predict prognosis
and benefit from gemcitabine in patients with resectable pancreatic
cancer. Pathol Res Pract. 215:1526502019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Innocenti F, Owzar K, Cox NL, Evans P,
Kubo M, Zembutsu H, Jiang C, Hollis D, Mushiroda T, Li L, et al: A
genome-wide association study of overall survival in pancreatic
cancer patients treated with gemcitabine in CALGB 80303. Clin
Cancer Res. 18:577–584. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Morrison AH, Byrne KT and Vonderheide RH:
Immunotherapy and prevention of pancreatic cancer. Trends Cancer.
4:418–428. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Han X, Ye J, Huang R, Li Y, Liu J, Meng T
and Song D: Pan-cancer analysis reveals interleukin-17 family
members as biomarkers in the prediction for immune checkpoint
inhibitor curative effect. Front Immunol. 13:9002732022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Moaaz M, Lotfy H, Motawea MA and Fadali G:
The interplay of interleukin-17A and breast cancer tumor
microenvironment as a novel immunotherapeutic approach to increase
tumor immunogenicity. Immunobiology. 226:1520682021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu C, Liu R, Wang B, Lian J, Yao Y, Sun
H, Zhang C, Fang L, Guan X, Shi J, et al: Blocking IL-17A enhances
tumor response to anti-PD-1 immunotherapy in microsatellite stable
colorectal cancer. J Immunother Cancer. 9:e0018952021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lang C, Wang J and Chen L: CD25-expressing
Th17 cells mediate CD8+ T cell suppression in CTLA-4 dependent
mechanisms in pancreatic ductal adenocarcinoma. Exp Cell Res.
360:384–389. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li Y, Hong YK, Wang X, Pandit H, Zheng Q,
Yu Y, Shi X, Chen Y, Tan M, Pulliam Z, et al: Epigenetic modulation
enhances immunotherapy for pancreatic ductal adenocarcinoma. Clin
Transl Immunol. 11:e14302022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Du W, Menjivar RE, Donahue KL, Kadiyala P,
Velez-Delgado A, Brown KL, Watkoske HR, He X, Carpenter ES, Angeles
CV, et al: WNT signaling in the tumor microenvironment promotes
immunosuppression in murine pancreatic cancer. J Exp Med.
220:e202205032023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chen J, Madina BR, Ahmadi E, Yarovinsky
TO, Krady MM, Meehan EV, Wang IC, Ye X, Pitmon E, Ma XY, et al:
Cancer immunotherapy with enveloped self-amplifying mRNA CARG-2020
that modulates IL-12, IL-17 and PD-L1 pathways to prevent tumor
recurrence. Acta Pharm Sin B. 14:335–349. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G,
Soares K, Solt S, Dorman A, Wamwea A, Yager A, et al: Immunotherapy
converts nonimmunogenic pancreatic tumors into immunogenic foci of
immune regulation. Cancer Immunol Res. 2:616–631. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Grogan JL and Ouyang W: A role for Th17
cells in the regulation of tertiary lymphoid follicles. Eur J
Immunol. 42:2255–2262. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shalapour S and Karin M: Cruel to be kind:
Epithelial, microbial, and immune cell interactions in
gastrointestinal cancers. Annu Rev Immunol. 38:649–671. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gasmi I, Machou C, Rodrigues A, Brouillet
A, Nguyen TC, Rousseau B, Guillot A, Rodriguez C, Demontant V,
Ait-Ahmed Y, et al: Interleukin-17 programs liver progenitor cell
transformation into cancer stem cells through miR-122
downregulation with increased risk of primary liver cancer
initiation. Int J Biol Sci. 18:1944–1960. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang X, Chen H, Jiang R, Hong X, Peng J,
Chen W, Jiang J, Li J, Huang D, Dai H, et al: Interleukin-17
activates and synergizes with the notch signaling pathway in the
progression of pancreatic ductal adenocarcinoma. Cancer Lett.
508:1–12. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bu J, Yan W, Huang Y and Lin K: Activation
of the IL-17 signalling pathway by the CXCL17-GPR35 axis affects
drug resistance and colorectal cancer tumorigenesis. Am J Cancer
Res. 13:2172–2187. 2023.PubMed/NCBI
|
|
105
|
Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D,
Ji X, Wu Y, Guo Q, Wang S and Xu H: Non-tumor tissue derived
interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance
the stemness of gastric cancer. Sci Rep. 6:254472016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Duan Z, Miller HD, Fu X, Ge D, Jin B,
Moustafa AA, Lan R, Zhang K, Chen Z and You Z: Th17 cells promote
tumor growth in an immunocompetent orthotopic mouse model of
prostate cancer. Am J Clin Exp Urol. 7:249–261. 2019.PubMed/NCBI
|
|
107
|
Yu T, Tang Q, Chen X, Fan W, Zhou Z, Huang
W and Liang F: TGF-β1 and IL-17A comediate the protumor phenotype
of neutrophils to regulate the epithelial-mesenchymal transition in
oral squamous cell carcinoma. J Oral Pathol Med. 50:353–361. 2021.
View Article : Google Scholar : PubMed/NCBI
|