|
1
|
Korn C and Méndez-Ferrer S: Myeloid
malignancies and the microenvironment. Blood. 129:811–822. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Arber DA, Orazi A, Hasserjian R, Thiele J,
Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW:
The 2016 revision to the World Health Organization classification
of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Munker R, Labopin M, Esteve J, Schmid C,
Mohty M and Nagler A: Mixed phenotype acute leukemia: Outcomes with
allogeneic stem cell transplantation. A retrospective study from
the Acute Leukemia Working Party of the EBMT. Haematologica.
102:2134–2140. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sas V, Blag C, Zaharie G, Puscas E,
Lisencu C, Andronic-Gorcea N, Pasca S, Petrushev B, Chis I, Marian
M, et al: Transient leukemia of Down syndrome. Crit Rev Clin Lab
Sci. 56:247–259. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dima D, Oprita L, Rosu AM, Trifa A,
Selicean C, Moisoiu V, Frinc I, Zdrenghea M and Tomuleasa C: Adult
acute megakaryoblastic leukemia: Rare association with cytopenias
of undetermined significance and p210 and p190 BCR-ABL transcripts.
Onco Targets Ther. 10:5047–5051. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gafencu GA, Tomuleasa CI and Ghiaur G:
PARP inhibitors in acute myeloid leukaemia therapy: How a synthetic
lethality approach can be a valid therapeutic alternative. Med
Hypotheses. 104:30–34. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Johnston DL, Alonzo TA, Gerbing RB, Aplenc
R, Woods WG, Meshinchi S and Gamis AS: Central nervous system
disease in pediatric acute myeloid leukemia: A report from the
Children's Oncology Group. Pediatr Blood Cancer. 64:102017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Constantinescu C, Bodolea C, Pasca S,
Teodorescu P, Dima D, Rus I, Tat T, Achimas-Cadariu P, Tanase A,
Tomuleasa C and Einsele H: Clinical Approach to the Patient in
Critical State Following Immunotherapy and/or Stem Cell
Transplantation: Guideline for the On-Call Physician. J Clin Med.
8:8842019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Goulart H, Sastow D, Moshier E, Martin L,
Mascarenhas J and Tremblay D: Systematic review and meta-analysis
evaluating clinical outcomes in adult acute myeloid leukemia
patients with central nervous system involvement. Leuk Res.
137:1074522024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Alakel N, Stölzel F, Mohr B, Kramer M,
Oelschlägel U, Röllig C, Bornhäuser M, Ehninger G and Schaich M:
Symptomatic central nervous system involvement in adult patients
with acute myeloid leukemia. Cancer Manag Res. 9:97–102. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Cheng CL, Li CC, Hou HA, Fang WQ, Chang
CH, Lin CT, Tang JL, Chou WC, Chen CY, Yao M, et al: Risk factors
and clinical outcomes of acute myeloid leukaemia with central
nervous system involvement in adults. BMC Cancer. 15:3442015.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Felix A, Leblanc T, Petit A, Nelkem B,
Bertrand Y, Gandemer V, Sirvent A, Paillard C, Schmitt C, Rohrlich
PS, et al: Acute Myeloid Leukemia With Central Nervous System
Involvement in Children: Experience From the French Protocol
Analysis ELAM02. J Pediatr Hematol Oncol. 40:43–47. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ganzel C, Lee JW, Fernandez HF, Paietta
EM, Luger SM, Lazarus HM, Cripe LD, Douer D, Wiernik PH, Rowe JM,
et al: CNS involvement in AML at diagnosis is rare and does not
affect response or survival: Data from 11 ECOG-ACRIN trials. Blood
Adv. 5:4560–4568. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jabbour E, Guastad Daver N, Short NJ,
Huang X, Chen HC, Maiti A, Ravandi F, Cortes J, Abi Aad S,
Garcia-Manero G, et al: Factors associated with risk of central
nervous system relapse in patients with non-core binding factor
acute myeloid leukemia. Am J Hematol. 92:924–928. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Del Principe MI, Buccisano F, Soddu S,
Maurillo L, Cefalo M, Piciocchi A, Consalvo MI, Paterno G, Sarlo C,
De Bellis E, et al: Involvement of central nervous system in adult
patients with acute myeloid leukemia: Incidence and impact on
outcome. Semin Hematol. 55:209–214. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bojsen-Møller M and Nielsen JL: CNS
involvement in leukaemia. An autopsy study of 100 consecutive
patients. Acta Pathol Microbiol Immunol Scand A. 91:209–216.
1983.PubMed/NCBI
|
|
17
|
Paul S and Short NJ: Central Nervous
System Involvement in Adults with Acute Leukemia: Diagnosis,
Prevention, and Management. Curr Oncol Rep. 24:427–436. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Virijevic M, Kraguljac-Kurtovic N,
Mitrovic M, Jakovic L, Bukumuric Z, Pantic N, Sabljic N, Pravdic Z,
Cvetkovic M, Knezevic V, et al: Incidence, risk factors, and
outcome of asymptomatic central nervous system involvement in adult
patients with acute myeloid leukemia. Hematol Oncol. 42:e32532024.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bar M, Tong W, Othus M, Loeb KR and Estey
EH: Central nervous system involvement in acute myeloid leukemia
patients undergoing hematopoietic cell transplantation. Biol Blood
Marrow Transplant. 21:546–551. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bento LC, Correia RP, Alexandre AM, Nosawa
ST, Pedro EC, Vaz ADC, Schimidell D, Fernandes GBP, Duarte CAS,
Barroso RS and Bacal NS: Detection of Central Nervous System
Infiltration by Myeloid and Lymphoid Hematologic Neoplasms Using
Flow Cytometry Analysis: Diagnostic Accuracy Study. Front Med
(Lausanne). 5:702018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ranta S, Palomäki M, Levinsen M, Taskinen
M, Abrahamsson J, Hasle H, Jahnukainen K, Heyman M and Harila-Saari
A; Nordic Society of Pediatric Haematology Oncology (NOPHO), :
Presenting features and imaging in childhood acute myeloid leukemia
with central nervous system involvement. Pediatr Blood Cancer.
64:2017. View Article : Google Scholar
|
|
22
|
Reid JH, Perissinotti AJ, Benitez L, Bixby
DL, Burke P, Pettit K and Marini BL: Impact of prophylactic
intrathecal chemotherapy on CNS relapse rates in AML patients
presenting with hyperleukocytosis. Leuk Lymphoma. 61:862–868. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Berg S and Nand S: Neurological
Complications of the Leukemias Across the Ages. Curr Neurol
Neurosci Rep. 17:132017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chamberlain MC, Glantz M, Groves MD and
Wilson WH: Diagnostic tools for neoplastic meningitis: Detecting
disease, identifying patient risk, and determining benefit of
treatment. Semin Oncol. 36 (4 Suppl 2):S35–S45. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Thakkar JP, Kumthekar P, Dixit KS, Stupp R
and Lukas RV: Leptomeningeal metastasis from solid tumors. J Neurol
Sci. 411:1167062020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Duzova A and Bakkaloglu A: Central nervous
system involvement in pediatric rheumatic diseases: Current
concepts in treatment. Curr Pharm Des. 14:1295–1301. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ebadi M, Morse M, Gooley T, Ermoian R,
Halasz LM, Lo SS, Yang JT, Blau MH, Percival ME, Cassaday RD, et
al: Craniospinal irradiation for CNS leukemia: Rates of response
and durability of CNS control. J Neurooncol. 166:351–357. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Siegal T, Benouaich-Amiel A and Bairey O:
Neurologic complications of acute myeloid leukemia. Diagnostic
approach and therapeutic modalities. Blood Rev. 53:1009102022.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen Q, Zhu XL, Zhao X, Liu X, Fu HX,
Zhang YY, Chen YH, Mo XD, Han W, Chen H, et al: Prognosis and risk
factors for central nervous system relapse after allogeneic
hematopoietic stem cell transplantation in acute myeloid leukemia.
Ann Hematol. 100:505–516. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hu J, Su A, Liu X, Tong Z, Jiang Q and Yu
J: Effects of D-CAG chemotherapy regimen on cognitive function in
patients with acute myeloid leukaemia: A resting-state functional
magnetic resonance imaging study. Eur J Neurosci. 59:119–131. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang C, Zhong JF and Zhang X: Revealing
the molecular mechanism of central nervous system leukemia with
single-cell technology. Crit Rev Oncol Hematol. 153:1030462020.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Si M, Jiao X, Li Y, Chen H, He P and Jiang
F: The role of cytokines and chemokines in the microenvironment of
the blood-brain barrier in leukemia central nervous system
metastasis. Cancer Manag Res. 10:305–313. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nourshargh S and Alon R: Leukocyte
migration into inflamed tissues. Immunity. 41:694–707. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ley K, Laudanna C, Cybulsky MI and
Nourshargh S: Getting to the site of inflammation: The leukocyte
adhesion cascade updated. Nat Rev Immunol. 7:678–689. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Maloney MA, Forsyth RP and Patt HM: Bone
marrow blood flow after marrow removal or nutrient vessel ligation.
Proc Soc Exp Biol Med. 135:871–873. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kusumbe AP, Ramasamy SK and Adams RH:
Coupling of angiogenesis and osteogenesis by a specific vessel
subtype in bone. Nature. 507:323–328. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tavassoli M: The marrow-blood barrier. Br
J Haematol. 41:297–302. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Petrides PE and Dittmann KH: How do normal
and leukemic white blood cells egress from the bone marrow?
Morphological facts and biochemical riddles. Blut. 61:3–13. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wight TN: Cell biology of arterial
proteoglycans. Arteriosclerosis. 9:1–20. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Owen M: Marrow stromal stem cells. J Cell
Sci Suppl. 10:63–76. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Inoue S and Osmond DG: Basement membrane
of mouse bone marrow sinusoids shows distinctive structure and
proteoglycan composition: A high resolution ultrastructural study.
Anat Rec. 264:294–304. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bentley SA and Foidart JM: Some properties
of marrow derived adherent cells in tissue culture. Blood.
56:1006–1012. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Leonardi GP, Manthos M, Orlic D and Lobue
J: Morphometric analysis of bone marrow sinus cell elements after
induction of monomyelocytic leukemia in BALB/c mice. Anat Rec.
224:331–335. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kuto F, Nagaoka T, Watanabe Y, Hayashi M,
Horasawa Y, Hirasawa Y and Tokuhiro H: Chronic myelocytic leukemia:
Ultrastructural histopathology of bone marrow from patients in the
chronic phase. Ultrastruct Pathol. 6:307–317. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nagaoka T, Kuto F, Watanabe Y, Fujino Y,
Hirasawa Y and Tokuhiro H: Bone marrow sinus and cell egress in
human leukaemia: a morphometric study of core biopsies using
wide-field electron microscopy. Br J Haematol. 63:737–747. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gordon MY: Extracellular matrix of the
marrow microenvironment. Br J Haematol. 70:1–4. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Oberlin E, Amara A, Bachelerie F, Bessia
C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM,
Clark-Lewis I, Legler DF, et al: The CXC chemokine SDF-1 is the
ligand for LESTR/fusin and prevents infection by
T-cell-line-adapted HIV-1. Nature. 382:833–835. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Möhle R, Bautz F, Rafii S, Moore MA,
Brugger W and Kanz L: The chemokine receptor CXCR-4 is expressed on
CD34+ hematopoietic progenitors and leukemic cells and mediates
transendothelial migration induced by stromal cell-derived
factor-1. Blood. 91:4523–4530. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Möhle R, Schittenhelm M, Failenschmid C,
Bautz F, Kratz-Albers K, Serve H, Brugger W and Kanz L: Functional
response of leukaemic blasts to stromal cell-derived factor-1
correlates with preferential expression of the chemokine receptor
CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Br J
Haematol. 110:563–572. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Newman PJ, Berndt MC, Gorski J, White GC
II, Lyman S, Paddock C and Muller WA: PECAM-1 (CD31) cloning and
relation to adhesion molecules of the immunoglobulin gene
superfamily. Science. 247:1219–1222. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Muller WA, Weigl SA, Deng X and Phillips
DM: PECAM-1 is required for transendothelial migration of
leukocytes. J Exp Med. 178:449–460. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Howard M, Grimaldi JC, Bazan JF, Lund FE,
Santos-Argumedo L, Parkhouse RM, Walseth TF and Lee HC: Formation
and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen
CD38. Science. 262:1056–1059. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nishina H, Inageda K, Takahashi K, Hoshino
S, Ikeda K and Katada T: Cell surface antigen CD38 identified as
ecto-enzyme of NAD glycohydrolase has hyaluronate-binding activity.
Biochem Biophys Res Commun. 203:1318–1323. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gallay N, Anani L, Lopez A, Colombat P,
Binet C, Domenech J, Weksler BB, Malavasi F and Herault O: The role
of platelet/endothelial cell adhesion molecule 1 (CD31) and CD38
antigens in marrow microenvironmental retention of acute
myelogenous leukemia cells. Cancer Res. 67:8624–8632. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Dercksen MW, Gerritsen WR, Rodenhuis S,
Dirkson MK, Slaper-Cortenbach IC, Schaasberg WP, Pinedo HM, von dem
Borne AE and van der Schoot CE: Expression of adhesion molecules on
CD34+ cells: CD34+ L-selectin+ cells predict a rapid platelet
recovery after peripheral blood stem cell transplantation. Blood.
85:3313–3319. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Torensma R, Raymakers RA, van Kooyk Y and
Figdor CG: Induction of LFA-1 on pluripotent CD34+ bone marrow
cells does not affect lineage commitment. Blood. 87:4120–4128.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Möhle R, Moore MA, Nachman RL and Rafii S:
Transendothelial migration of CD34+ and mature hematopoietic cells:
An in vitro study using a human bone marrow endothelial cell line.
Blood. 89:72–80. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yong KL, Watts M, Shaun Thomas N, Sullivan
A, Ings S and Linch DC: Transmigration of CD34+ cells across
specialized and nonspecialized endothelium requires prior
activation by growth factors and is mediated by PECAM-1 (CD31).
Blood. 91:1196–1205. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang W, Zhang X, Fan X, Li D and Qiao Z:
Effect of ICAM-1 and LFA-1 in hyperleukocytic acute myeloid
leukaemia. Clin Lab Haematol. 28:177–182. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu T, Liu X, Xiang J, Zou P, Zhou J, Chen
Y, Yu D and Li C: Study on the relationship between the expression
of adhesion molecules and the invasiveness of acute myeloid
leukemia cells. Zhonghua Xue Ye Xue Za Zhi. 18:29–31. 1997.(In
Chinese). PubMed/NCBI
|
|
61
|
Cook-Mills JM, Marchese ME and
Abdala-Valencia H: Vascular cell adhesion molecule-1 expression and
signaling during disease: Regulation by reactive oxygen species and
antioxidants. Antioxid Redox Signal. 15:1607–1638. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Meigs JB, Hu FB, Rifai N and Manson JE:
Biomarkers of endothelial dysfunction and risk of type 2 diabetes
mellitus. JAMA. 291:1978–1986. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dessein PH, Joffe BI and Singh S:
Biomarkers of endothelial dysfunction, cardiovascular risk factors
and atherosclerosis in rheumatoid arthritis. Arthritis Res Ther.
7:R634–R643. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
64
|
Watanabe T, Dave B, Heimann DG, Jackson
JD, Kessinger A and Talmadge JE: Cell adhesion molecule expression
on CD34+ cells in grafts and time to myeloid and platelet recovery
after autologous stem cell transplantation. Exp Hematol. 26:10–18.
1998.PubMed/NCBI
|
|
65
|
Jing M, Chen X, Qiu H, He W, Zhou Y, Li D,
Wang D, Jiao Y and Liu A: Insights into the immunomodulatory
regulation of matrix metalloproteinase at the maternal-fetal
interface during early pregnancy and pregnancy-related diseases.
Front Immunol. 13:10676612023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pirillo C, Birch F, Tissot FS, Anton SG,
Haltalli M, Tini V, Kong I, Piot C, Partridge B, Pospori C, et al:
Metalloproteinase inhibition reduces AML growth, prevents stem cell
loss, and improves chemotherapy effectiveness. Blood Adv.
6:3126–3141. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Song JH, Kim SH, Cho D, Lee IK, Kim HJ and
Kim TS: Enhanced invasiveness of drug-resistant acute myeloid
leukemia cells through increased expression of matrix
metalloproteinase-2. Int J Cancer. 125:1074–1081. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ismair MG, Ries C, Lottspeich F, Zang C,
Kolb HJ and Petrides PE: Autocrine regulation of matrix
metalloproteinase-9 gene expression and secretion by tumor necrosis
factor-alpha (TNF-alpha) in NB4 leukemic cells: Specific
involvement of TNF receptor type 1. Leukemia. 12:1136–1143. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Janowska-Wieczorek A, Marquez LA,
Matsuzaki A, Hashmi HR, Larratt LM, Boshkov LM, Turner AR, Zhang
MC, Edwards DR and Kossakowska AE: Expression of matrix
metalloproteinases (MMP-2 and −9) and tissue inhibitors of
metalloproteinases (TIMP-1 and −2) in acute myelogenous leukaemia
blasts: comparison with normal bone marrow cells. Br J Haematol.
105:402–411. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tavor S, Petit I, Porozov S, Goichberg P,
Avigdor A, Sagiv S, Nagler A, Naparstek E and Lapidot T: Motility,
proliferation, and egress to the circulation of human AML cells are
elastase dependent in NOD/SCID chimeric mice. Blood. 106:2120–2127.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shechter R, London A and Schwartz M:
Orchestrated leukocyte recruitment to immune-privileged sites:
Absolute barriers versus educational gates. Nat Rev Immunol.
13:206–218. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Price RA: Histopathology of CNS leukemia
and complications of therapy. Am J Pediatr Hematol Oncol. 1:21–30.
1979.PubMed/NCBI
|
|
73
|
Spadoni I, Fornasa G and Rescigno M:
Organ-specific protection mediated by cooperation between vascular
and epithelial barriers. Nat Rev Immunol. 17:761–773. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Deak D, Gorcea-Andronic N, Sas V,
Teodorescu P, Constantinescu C, Iluta S, Pasca S, Hotea I, Turcas
C, Moisoiu V, et al: A narrative review of central nervous system
involvement in acute leukemias. Ann Transl Med. 9:682021.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Cugurra A, Mamuladze T, Rustenhoven J,
Dykstra T, Beroshvili G, Greenberg ZJ, Baker W, Papadopoulos Z,
Drieu A, Blackburn S, et al: Skull and vertebral bone marrow are
myeloid cell reservoirs for the meninges and CNS parenchyma.
Science. 373:eabf78442021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Azzarelli V and Roessmann U: Pathogenesis
of central nervous system infiltration in acute leukemia. Arch
Pathol Lab Med. 101:203–205. 1977.PubMed/NCBI
|
|
77
|
Louveau A, Smirnov I, Keyes TJ, Eccles JD,
Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, et
al: Structural and functional features of central nervous system
lymphatic vessels. Nature. 523:337–341. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Aspelund A, Antila S, Proulx ST, Karlsen
TV, Karaman S, Detmar M, Wiig H and Alitalo K: A dural lymphatic
vascular system that drains brain interstitial fluid and
macromolecules. J Exp Med. 212:991–999. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Louveau A, Plog BA, Antila S, Alitalo K,
Nedergaard M and Kipnis J: Understanding the functions and
relationships of the glymphatic system and meningeal lymphatics. J
Clin Invest. 127:3210–3219. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng
W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, et
al: A paravascular pathway facilitates CSF flow through the brain
parenchyma and the clearance of interstitial solutes, including
amyloid β. Sci Transl Med. 4:147ra1112012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Guerrini MM, Okamoto K, Komatsu N, Sawa S,
Danks L, Penninger JM, Nakashima T and Takayanagi H: Inhibition of
the TNF Family Cytokine RANKL prevents autoimmune inflammation in
the central nervous system. Immunity. 43:1174–1185. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Maeda A, Kobayashi Y, Saito T, Togitani K,
Kawahigashi N, Tanosaki R, Takaue Y, Takenaka T, Iwata N and
Tobinai K: Central nervous system relapse with multiple brain
masses in an acute promyelocytic leukemia patient treated with
all-trans retinoic acid. Rinsho Ketsueki. 40:1081–1086. 1999.(In
Japanese). PubMed/NCBI
|
|
83
|
Raanani P, Shpilberg O and Ben-Bassat I:
Extramedullary disease and targeted therapies for hematological
malignancies-is the association real? Ann Oncol. 18:7–12. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang H, Zhang D, Cui X, Dai Y, Wang C,
Feng W, Lv X, Li Y, Wang L, Ru Y, et al: Loss of IRF7 accelerates
acute myeloid leukemia progression and induces VCAM1-VLA-4 mediated
intracerebral invasion. Oncogene. 41:2303–2314. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chang H, Brandwein J, Yi QL, Chun K,
Patterson B and Brien B: Extramedullary infiltrates of AML are
associated with CD56 expression, 11q23 abnormalities and inferior
clinical outcome. Leuk Res. 28:1007–1011. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yang SW, Ma RJ, Yuan XL, Jiang L, Li YL,
Dong XY, Wang Z, Zhang L, Shang BJ, Lei PC and Zhu ZM: Correlation
analysis of central nervous system relapse and cell biological
characteristics in acute promyelocytic leukemia. Zhonghua Xue Ye
Xue Za Zhi. 42:517–520. 2021.(In Chinese). PubMed/NCBI
|
|
87
|
Bergstrom CP, Dahiya S, Chen W, Zhang CC,
Zhu H, Yan J, Madanat Y, Patel P, Vusirkala M, Ramakrishnan P, et
al: The association of leukocyte immunoglobulin-like receptor
subfamily B-4 expression in acute myeloid leukemia and central
nervous system involvement. Leuk Res. 100:1064802021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Deng M, Gui X, Kim J, Xie L, Chen W, Li Z,
He L, Chen Y, Chen H, Luo W, et al: LILRB4 signalling in leukaemia
cells mediates T cell suppression and tumour infiltration. Nature.
562:605–609. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li Z, Deng M, Huang F, Jin C, Sun S, Chen
H, Liu X, He L, Sadek AH and Zhang CC: LILRB4 ITIMs mediate the T
cell suppression and infiltration of acute myeloid leukemia cells.
Cell Mol Immunol. 17:272–282. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bonoiu A, Mahajan SD, Ye L, Kumar R, Ding
H, Yong KT, Roy I, Aalinkeel R, Nair B, Reynolds JL, et al: MMP-9
gene silencing by a quantum dot-siRNA nanoplex delivery to maintain
the integrity of the blood brain barrier. Brain Res. 1282:142–55.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Stefanidakis M, Karjalainen K, Jaalouk DE,
Gahmberg CG, O'Brien S, Pasqualini R, Arap W and Koivunen E: Role
of leukemia cell invadosome in extramedullary infiltration. Blood.
114:3008–3017. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Röllig C and Ehninger G: How I treat
hyperleukocytosis in acute myeloid leukemia. Blood. 125:3246–3252.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xu J, Wang YY, Dai YJ, Zhang W, Zhang WN,
Xiong SM, Gu ZH, Wang KK, Zeng R, Chen Z and Chen SJ: DNMT3A Arg882
mutation drives chronic myelomonocytic leukemia through disturbing
gene expression/DNA methylation in hematopoietic cells. Proc Natl
Acad Sci USA. 111:2620–2625. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Xu J, Zhang W, Yan XJ, Lin XQ, Li W, Mi
JQ, Li JM, Zhu J, Chen Z and Chen SJ: DNMT3A mutation leads to
leukemic extramedullary infiltration mediated by TWIST1. J Hematol
Oncol. 9:1062016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Li ZJ, Chen ZX, Cen JN and He J:
Overexpression of tissue inhibitor of metalloprotease-2 promotes
proliferation and infiltration of human monocytic leukemia cells.
Zhonghua Yi Xue Za Zhi. 86:2409–2412. 2006.(In Chinese). PubMed/NCBI
|
|
96
|
Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y,
Shi JY, Zhu YM, Tang L, Zhang XW, et al: Exome sequencing
identifies somatic mutations of DNA methyltransferase gene DNMT3A
in acute monocytic leukemia. Nat Genet. 43:309–315. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Landry B, Gül-Uludağ H, Plianwong S,
Kucharski C, Zak Z, Parmar MB, Kutsch O, Jiang H, Brandwein J and
Uludağ H: Targeting CXCR4/SDF-1 axis by lipopolymer complexes of
siRNA in acute myeloid leukemia. J Control Release. 224:8–21. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Uy GL, Rettig MP, Motabi IH, McFarland K,
Trinkaus KM, Hladnik LM, Kulkarni S, Abboud CN, Cashen AF,
Stockerl-Goldstein KE, et al: A phase 1/2 study of
chemosensitization with the CXCR4 antagonist plerixafor in relapsed
or refractory acute myeloid leukemia. Blood. 119:3917–3924. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Peled A and Tavor S: Role of CXCR4 in the
pathogenesis of acute myeloid leukemia. Theranostics. 3:34–39.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Meng J, Ge Y, Xing H, Wei H, Xu S, Liu J,
Yan D, Wen T, Wang M, Fang X, et al: Synthetic CXCR4 antagonistic
peptide assembling with nanoscaled micelles combat acute myeloid
leukemia. Small. 16:e20018902020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yue S, An J, Zhang Y, Li J, Zhao C, Liu J,
Liang L, Sun H, Xu Y and Zhong Z: Exogenous antigen upregulation
empowers antibody targeted nanochemotherapy of leukemia. Adv Mater.
35:e22099842023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Sayitoglu EC, Luca BA, Boss AP, Thomas BC,
Freeborn RA, Uyeda MJ, Chen PP, Nakauchi Y, Waichler C, Lacayo N,
et al: AML/T cell interactomics uncover correlates of patient
outcomes and the key role of ICAM1 in T cell killing of AML.
Leukemia. 38:1246–1255. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Petit I, Karajannis MA, Vincent L, Young
L, Butler J, Hooper AT, Shido K, Steller H, Chaplin DJ, Feldman E
and Rafii S: The microtubule-targeting agent CA4P regresses
leukemic xenografts by disrupting interaction with vascular cells
and mitochondrial-dependent cell death. Blood. 111:1951–1961. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
John S, Chen H, Deng M, Gui X, Wu G, Chen
W, Li Z, Zhang N, An Z and Zhang CC: A Novel Anti-LILRB4 CAR-T Cell
for the Treatment of Monocytic AML. Mol Ther. 26:2487–2495. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Jiang H and Li H: Prognostic values of
tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic
review and meta-analysis. BMC Cancer. 21:1492021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bharadwaj S, Sahoo AK and Yadava U:
Editorial: Advances in the therapeutic targeting of human matrix
metalloproteinases in health and disease. Front Mol Biosci.
10:11504742023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Levin M, Udi Y, Solomonov I and Sagi I:
Next generation matrix metalloproteinase inhibitors-Novel
strategies bring new prospects. Biochim Biophys Acta Mol Cell Res.
1864((11 Pt A)): 1927–1939. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Winer A, Adams S and Mignatti P: Matrix
metalloproteinase inhibitors in cancer therapy: Turning past
failures into future successes. Mol Cancer Ther. 17:1147–1155.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Narla RK, Dong Y, Klis D and Uckun FM:
Bis(4,7-dimethyl-1,10-phenanthroline) sulfatooxovanadium(I.V.) as a
novel antileukemic agent with matrix metalloproteinase inhibitory
activity. Clin Cancer Res. 7:1094–1101. 2001.PubMed/NCBI
|
|
110
|
Pappalardi MB, Keenan K, Cockerill M,
Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J,
Steidel M, et al: Discovery of a first-in-class reversible
DNMT1-selective inhibitor with improved tolerability and efficacy
in acute myeloid leukemia. Nat Cancer. 2:1002–1017. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Bäumer N, Scheller A, Wittmann L, Faust A,
Apel M, Nimmagadda SC, Geyer C, Grunert K, Kellmann N, Peipp M, et
al: Electrostatic anti-CD33-antibody-protamine nanocarriers as
platform for a targeted treatment of acute myeloid leukemia. J
Hematol Oncol. 15:1712022. View Article : Google Scholar : PubMed/NCBI
|