|
1
|
Liu J, Zhang M, Deng D and Zhu X: The
function, mechanisms, and clinical applications of metformin:
Potential drug, unlimited potentials. Arch Pharm Res. 46:389–407.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Goodwin PJ, Chen BE, Gelmon KA, Whelan TJ,
Ennis M, Lemieux J, Ligibel JA, Hershman DL, Mayer IA, Hobday TJ,
et al: Effect of metformin vs. placebo on invasive Disease-Free
survival in patients with breast cancer: The MA.32 randomized
clinical trial. JAMA. 327:1963–1973. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H,
Alouch S and Aljada A: Metformin: A Dual-role player in cancer
treatment and prevention. Int J Mol Sci. 25:40832024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
García Rubiño ME, Carrillo E, Ruiz Alcalá
G, Domínguez-Martín A, A Marchal J and Boulaiz H: Phenformin as an
anticancer agent: Challenges and prospects. Int J Mol Sci.
20:33162019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bridges HR, Blaza JN, Yin Z, Chung I,
Pollak MN and Hirst J: Structural basis of mammalian respiratory
complex I inhibition by medicinal biguanides. Science. 379:351–357.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo
C, Lee JH, Shen CH, Bosenberg MW, McMahon M, Cantley LC and Zheng
B: Phenformin enhances the therapeutic benefit of BRAF(V600E)
inhibition in melanoma. Proc Natl Acad Sci USA. 110:18226–18231.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhao H, Swanson KD and Zheng B:
Therapeutic repurposing of biguanides in cancer. Trends Cancer.
7:714–730. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Di Magno L, Manni S, Di Pastena F, Coni S,
Macone A, Cairoli S, Sambucci M, Infante P, Moretti M, Petroni M,
et al: Phenformin inhibits Hedgehog-dependent tumor growth through
a Complex I-independent redox/corepressor module. Cell Rep.
30:1735–1752.e7. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kalender A, Selvaraj A, Kim SY, Gulati P,
Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, et
al: Metformin, independent of AMPK, inhibits mTORC1 in a rag
GTPase-dependent manner. Cell Metab. 11:390–401. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kim SH, Li M, Trousil S, Zhang Y, Pasca di
Magliano M, Swanson KD and Zheng B: Phenformin inhibits
Myeloid-derived suppressor cells and enhances the Anti-tumor
activity of PD-1 blockade in melanoma. J Invest Dermatol.
137:1740–1748. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhuang D, Wang S, Liu G, Liu P, Deng H,
Sun J, Liu C, Leng X, Zhang Q, Bai F, et al: Phenformin suppresses
angiogenesis through the regulation of exosomal microRNA-1246 and
microRNA-205 levels derived from oral squamous cell carcinoma
cells. Front Oncol. 12:9434772022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jiang W, Finniss S, Cazacu S, Xiang C,
Brodie Z, Mikkelsen T, Poisson L, Shackelford DB and Brodie C:
Repurposing phenformin for the targeting of glioma stem cells and
the treatment of glioblastoma. Oncotarget. 7:56456–56470. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhuang D, Wang S, Deng H, Shi Y, Liu C,
Leng X, Zhang Q, Bai F, Zheng B, Guo J, et al: Phenformin activates
ER stress to promote autophagic cell death via NIBAN1 and DDIT4 in
oral squamous cell carcinoma independent of AMPK. Int J Oral Sci.
16:352024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nussinov R, Tsai CJ and Jang H: Anticancer
drug resistance: An update and perspective. Drug Resist Updat.
59:1007962021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan
T, Yang W, Tian C, Miao Z, Wang T, et al: Small molecules in
targeted cancer therapy: Advances, challenges, and future
perspectives. Signal Transduct Target Ther. 6:2012021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lee S, Lee JS, Seo J, Lee SH, Kang JH,
Song J and Kim SY: Targeting mitochondrial oxidative
phosphorylation abrogated irinotecan resistance in NSCLC. Sci Rep.
8:157072018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Peng M, Deng J, Zhou S, Xiao D, Long J,
Zhang N, He C, Mo M and Yang X: Dual inhibition of
Pirarubicin-induced AKT and ERK activations by phenformin
sensitively suppresses bladder cancer growth. Front Pharmacol.
10:11592019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang J, Xia S and Zhu Z: Synergistic
effect of phenformin in non-small cell lung cancer (NSCLC) ionizing
radiation treatment. Cell Biochem Biophys. 71:513–518. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Martin MJ, Eberlein C, Taylor M, Ashton S,
Robinson D and Cross D: Inhibition of oxidative phosphorylation
suppresses the development of osimertinib resistance in a
preclinical model of EGFR-driven lung adenocarcinoma. Oncotarget.
7:86313–86325. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang L, Xiao D, Wu T, Hu X, Deng J, Yan
X, Wu J, Xu S, Yang X and Li G: Phenformin synergistically
sensitizes liver cancer cells to sorafenib by downregulating
CRAF/ERK and PI3K/AKT/mTOR pathways. Am J Transl Res. 13:7508–7523.
2021.PubMed/NCBI
|
|
21
|
Chapman PB, Klang M, Postow MA, Shoushtari
AN, Sullivan RJ, Wolchok JD, Merghoub T, Budhu S, Wong P, Callahan
MK, et al: Phase Ib trial of phenformin in patients with
V600-mutated melanoma receiving dabrafenib and trametinib. Cancer
Res Commun. 3:2447–2454. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nattrass M and Alberti KG: Biguanides.
Diabetologia. 14:71–74. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Stang M, Wysowski DK and Butler-Jones D:
Incidence of lactic acidosis in metformin users. Diabetes Care.
22:925–927. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lea MA, Chacko J, Bolikal S, Hong JY,
Chung R, Ortega A and Desbordes C: Addition of 2-deoxyglucose
enhances growth inhibition but reverses acidification in colon
cancer cells treated with phenformin. Anticancer Res. 31:421–426.
2011.PubMed/NCBI
|
|
25
|
Altinoz MA and Ozpinar A: Oxamate
targeting aggressive cancers with special emphasis to brain tumors.
Biomed Pharmacother. 147:1126862022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Appleyard MV, Murray KE, Coates PJ,
Wullschleger S, Bray SE, Kernohan NM, Fleming S, Alessi DR and
Thompson AM: Phenformin as prophylaxis and therapy in breast cancer
xenografts. Br J Cancer. 106:1117–1122. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chowdhury TA: Diabetes and cancer. QJM.
103:905–915. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Anari F, Ramamurthy C and Zibelman M:
Impact of tumor microenvironment composition on therapeutic
responses and clinical outcomes in cancer. Future Oncol.
14:1409–1421. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kim HJ, Ji YR and Lee YM: Crosstalk
between angiogenesis and immune regulation in the tumor
microenvironment. Arch Pharm Res. 45:401–416. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gabrilovich DI: Myeloid-derived suppressor
cells. Cancer Immunol Res. 5:3–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Toh B, Wang X, Keeble J, Sim WJ, Khoo K,
Wong WC, Kato M, Prevost-Blondel A, Thiery JP and Abastado JP:
Mesenchymal transition and dissemination of cancer cells is driven
by myeloid-derived suppressor cells infiltrating the primary tumor.
PLoS Biol. 9:e10011622011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shrihari GT: Innate and adaptive immune
cells in Tumor microenvironment. Gulf J Oncolog. 1:77–81. 2021.
|
|
33
|
Li Q and Xiang M: Metabolic reprograming
of MDSCs within tumor microenvironment and targeting for cancer
immunotherapy. Acta Pharmacol Sin. 43:1337–1348. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mathieu M, Martin-Jaular L, Lavieu G and
Théry C: Specificities of secretion and uptake of exosomes and
other extracellular vesicles for cell-to-cell communication. Nat
Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tkach M and Théry C: Communication by
extracellular vesicles: Where we are and where we need to go. Cell.
164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao Y, Dong Q, Li J, Zhang K, Qin J, Zhao
J, Sun Q, Wang Z, Wartmann T, Jauch KW, et al: Targeting cancer
stem cells and their niche: Perspectives for future therapeutic
targets and strategies. Semin Cancer Biol. 53:139–155. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Petrachi T, Romagnani A, Albini A, Longo
C, Argenziano G, Grisendi G, Dominici M, Ciarrocchi A and Dallaglio
K: Therapeutic potential of the metabolic modulator phenformin in
targeting the stem cell compartment in melanoma. Oncotarget.
8:6914–6928. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Luo Y, Dallaglio K, Chen Y, Robinson WA,
Robinson SE, McCarter MD, Wang J, Gonzalez R, Thompson DC, Norris
DA, et al: ALDH1A isozymes are markers of human melanoma stem cells
and potential therapeutic targets. Stem Cells. 30:2100–2113. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sarvi S, Crispin R, Lu Y, Zeng L, Hurley
TD, Houston DR, von Kriegsheim A, Chen CH, Mochly-Rosen D, Ranzani
M, et al: ALDH1 Bio-activates nifuroxazide to eradicate ALDH(High)
Melanoma-Initiating cells. Cell Chem Biol. 25:1456–1469.e6. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kültz D: Molecular and evolutionary basis
of the cellular stress response. Annu Rev Physiol. 67:225–257.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xiao W, Wang RS, Handy DE and Loscalzo J:
NAD(H) and NADP(H) redox couples and cellular energy metabolism.
Antioxid Redox Signal. 28:251–272. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Contenti J, Guo Y, Mazzu A, Irondelle M,
Rouleau M, Lago C, Leva G, Tiberi L, Ben-Sahra I, Bost F, et al:
The mitochondrial NADH shuttle system is a targetable vulnerability
for Group 3 medulloblastoma in a hypoxic microenvironment. Cell
Death Dis. 14:7842023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kim S, Im JH, Kim WK, Choi YJ, Lee JY, Kim
SK, Kim SJ, Kwon SW and Kang KW: Enhanced sensitivity of nonsmall
cell lung cancer with acquired resistance to epidermal growth
factor Receptor-Tyrosine kinase inhibitors to phenformin: The roles
of a metabolic shift to oxidative phosphorylation and redox
balance. Oxid Med Cell Longev. 2021:54283642021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta
P, Wei L, Ashby CR Jr, Yang DH and Chen ZS: Modulating ROS to
overcome multidrug resistance in cancer. Drug Resist Updat.
41:1–25. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Moloney JN and Cotter TG: ROS signalling
in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Miskimins WK, Ahn HJ, Kim JY, Ryu S, Jung
YS and Choi JY: Synergistic anti-cancer effect of phenformin and
oxamate. PLoS One. 9:e855762014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Totten SP, Im YK, Cepeda Cañedo E, Najyb
O, Nguyen A, Hébert S, Ahn R, Lewis K, Lebeau B, La Selva R, et al:
STAT1 potentiates oxidative stress revealing a targetable
vulnerability that increases phenformin efficacy in breast cancer.
Nat Commun. 12:32992021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang Y, Meng Y, Zhang S, Wu H, Yang D, Nie
C and Hu Q: Phenformin and metformin inhibit growth and migration
of LN229 glioma cells in vitro and in vivo. Onco Targets Ther.
11:6039–6048. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Di Conza G and Ho PC: ER Stress responses:
An emerging modulator for innate immunity. Cells. 9:6952020.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cubillos-Ruiz JR, Bettigole SE and
Glimcher LH: Tumorigenic and immunosuppressive effects of
endoplasmic reticulum stress in cancer. Cell. 168:692–706. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cairns RA, Harris IS and Mak TW:
Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cheng C, Geng F, Cheng X and Guo D: Lipid
metabolism reprogramming and its potential targets in cancer.
Cancer Commun (Lond). 38:272018.PubMed/NCBI
|
|
53
|
Laplante M and Sabatini DM: mTOR signaling
in growth control and disease. Cell. 149:274–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kim YC and Guan KL: mTOR: A pharmacologic
target for autophagy regulation. J Clin Invest. 125:25–32. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang Q, Liu S, Zhai A, Zhang B and Tian G:
AMPK-Mediated regulation of lipid metabolism by phosphorylation.
Biol Pharm Bull. 41:985–993. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jackson AL, Sun W, Kilgore J, Guo H, Fang
Z, Yin Y, Jones HM, Gilliam TP, Zhou C and Bae-Jump VL: Phenformin
has anti-tumorigenic effects in human ovarian cancer cells and in
an orthotopic mouse model of serous ovarian cancer. Oncotarget.
8:100113–100127. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lettieri Barbato D, Vegliante R, Desideri
E and Ciriolo MR: Managing lipid metabolism in proliferating cells:
New perspective for metformin usage in cancer therapy. Biochim
Biophys Acta. 1845:317–324. 2014.PubMed/NCBI
|
|
58
|
Khan H, Anshu A, Prasad A, Roy S, Jeffery
J, Kittipongdaja W, Yang DT and Schieke SM: Metabolic rewiring in
response to biguanides is mediated by mROS/HIF-1a in malignant
lymphocytes. Cell Rep. 29:3009–3018.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Masoud R, Reyes-Castellanos G, Lac S,
Garcia J, Dou S, Shintu L, Abdel Hadi N, Gicquel T, El Kaoutari A,
Diémé B, et al: Targeting mitochondrial complex I overcomes
chemoresistance in high OXPHOS pancreatic cancer. Cell Rep Med.
17:1001432020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bridges HR, Sirviö VA, Agip AN and Hirst
J: Molecular features of biguanides required for targeting of
mitochondrial respiratory complex I and activation of AMP-kinase.
BMC Biol. 14:652016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shackelford DB, Abt E, Gerken L, Vasquez
DS, Seki A, Leblanc M, Wei L, Fishbein MC, Czernin J, Mischel PS
and Shaw RJ: LKB1 inactivation dictates therapeutic response of
non-small cell lung cancer to the metabolism drug phenformin.
Cancer Cell. 23:143–158. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Momcilovic M, McMickle R, Abt E, Seki A,
Simko SA, Magyar C, Stout DB, Fishbein MC, Walser TC, Dubinett SM
and Shackelford DB: Heightening energetic stress selectively
targets LKB1-Deficient non-small cell lung cancers. Cancer Res.
75:4910–4922. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Izreig S, Gariepy A, Kaymak I, Bridges HR,
Donayo AO, Bridon G, DeCamp LM, Kitchen-Goosen SM, Avizonis D,
Sheldon RD, et al: Repression of LKB1 by miR-17~92 Sensitizes
MYC-Dependent lymphoma to biguanide treatment. Cell Rep Med.
1:1000142020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hardie DG and Alessi DR: LKB1 and AMPK and
the cancer-metabolism link-ten years after. BMC Biol. 11:362013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Dalton KM, Lochmann TL, Floros KV, Calbert
ML, Kurupi R, Stein GT, McClanaghan J, Murchie E, Egan RK,
Greninger P, et al: Catastrophic ATP loss underlies a metabolic
combination therapy tailored for MYCN-amplified neuroblastoma. Proc
Natl Acad Sci USA. 118:e20096201182021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Singh S, De Carlo F, Ibrahim MA, Penfornis
P, Mouton AJ, Tripathi SK, Agarwal AK, Eastham L, Pasco DS,
Balachandran P and Claudio PP: The oligostilbene Gnetin H is a
Novel glycolysis inhibitor that regulates thioredoxin interacting
protein expression and synergizes with OXPHOS inhibitor in cancer
cells. Int J Mol Sci. 24:77412023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Suski JM, Braun M, Strmiska V and Sicinski
P: Targeting cell-cycle machinery in cancer. Cancer Cell.
39:759–778. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Caraci F, Chisari M, Frasca G, Chiechio S,
Salomone S, Pinto A, Sortino MA and Bianchi A: Effects of
phenformin on the proliferation of human tumor cell lines. Life
Sci. 74:643–650. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liu Z, Ren L, Liu C, Xia T, Zha X and Wang
S: Phenformin induces cell cycle change, apoptosis, and
Mesenchymal-Epithelial transition and regulates the
AMPK/mTOR/p70s6k and MAPK/ERK pathways in breast cancer cells. PLoS
One. 10:e01312072015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Viallard C and Larrivée B: Tumor
angiogenesis and vascular normalization: Alternative therapeutic
targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ramjiawan RR, Griffioen AW and Duda DG:
Anti-angiogenesis for cancer revisited: Is there a role for
combinations with immunotherapy? Angiogenesis. 20:185–204. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dodd KM, Yang J, Shen MH, Sampson JR and
Tee AR: mTORC1 drives HIF-1α and VEGF-A signalling via multiple
mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene.
34:2239–2250. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jaidee R, Kongpetch S, Senggunprai L,
Prawan A, Kukongviriyapan U and Kukongviriyapan V: Phenformin
inhibits proliferation, invasion, and angiogenesis of
cholangiocarcinoma cells via AMPK-mTOR and HIF-1A pathways. Naunyn
Schmiedebergs Arch Pharmacol. 393:1681–1690. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang ZD, Wei SQ and Wang QY: Targeting
oncogenic KRAS in non-small cell lung cancer cells by phenformin
inhibits growth and angiogenesis. Am J Cancer Res. 5:3339–3349.
2015.PubMed/NCBI
|
|
75
|
Pastushenko I and Blanpain C: EMT
transition states during tumor progression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Guo Z, Zhao M, Howard EW, Zhao Q, Parris
AB, Ma Z and Yang X: Phenformin inhibits growth and
epithelial-mesenchymal transition of ErbB2-overexpressing breast
cancer cells through targeting the IGF1R pathway. Oncotarget.
8:60342–60357. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Walsh LA and Damjanovski S: IGF-1
increases invasive potential of MCF 7 breast cancer cells and
induces activation of latent TGF-β1 resulting in epithelial to
mesenchymal transition. Cell Commun Signal. 9:102011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lin H, Li N, He H, Ying Y, Sunkara S, Luo
L, Lv N, Huang D and Luo Z: AMPK Inhibits the Stimulatory Effects
of TGF-β on Smad2/3 Activity, Cell Migration, and
Epithelial-to-Mesenchymal Transition. Mol Pharmacol. 88:1062–1071.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Park JH, Kim YH, Park EH, Lee SJ, Kim H,
Kim A, Lee SB, Shim S, Jang H, Myung JK, et al: Effects of
metformin and phenformin on apoptosis and epithelial-mesenchymal
transition in chemoresistant rectal cancer. Cancer Sci.
110:2834–2845. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chuang CH, Dorsch M, Dujardin P, Silas S,
Ueffing K, Hölken JM, Yang D, Winslow MM and Grüner BM: Altered
mitochondria functionality defines a metastatic cell state in lung
cancer and creates an exploitable vulnerability. Cancer Res.
81:567–579. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Pereira-Nunes A, Ferreira H, Abreu S,
Guedes M, Neves NM, Baltazar F and Granja S: Combination therapy
with CD147-Targeted nanoparticles carrying phenformin decreases
lung cancer growth. Adv Biol (Weinh). 7:e23000802023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tong X, Chen Y, Zhu X, Ye Y, Xue Y, Wang
R, Gao Y, Zhang W, Gao W, Xiao L, et al: Nanog maintains stemness
of Lkb1-deficient lung adenocarcinoma and prevents gastric
differentiation. EMBO Mol Med. 13:e126272021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhou Q, Kim SH, Pérez-Lorenzo R, Liu C,
Huang M, Dotto GP, Zheng B and Wu X: Phenformin promotes
keratinocyte differentiation via the Calcineurin/NFAT pathway. J
Invest Dermatol. 141:152–163. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wu T, Zhou S, Qin M, Tang J, Yan X, Huang
L, Huang M, Deng J, Xiao D, Hu X, et al: Phenformin and
ataxia-telangiectasia mutated inhibitors synergistically
co-suppress liver cancer cell growth by damaging mitochondria. FEBS
Open Bio. 11:1440–1451. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Rajeshkumar NV, Yabuuchi S, Pai SG, De
Oliveira E, Kamphorst JJ, Rabinowitz JD, Tejero H, Al-Shahrour F,
Hidalgo M, Maitra A, et al: Treatment of pancreatic cancer
Patient-Derived xenograft panel with metabolic inhibitors reveals
efficacy of phenformin. Clin Cancer Res. 23:5639–5647. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gunaydin B, Yigitturk G and Elbe H:
Cytotoxic effects of Phenformin on ovarian cancer cells: Expression
of HIF-1α and PDK1 in the hypoxic microenvironment. Rom J Morphol
Embryol. 64:355–361. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Jiménez-Vacas JM, Herrero-Aguayo V,
Montero-Hidalgo AJ, Sáez-Martínez P, Gómez-Gómez E, León-González
AJ, Fuentes-Fayos AC, Yubero-Serrano EM, Requena-Tapia MJ, López M,
et al: Clinical, cellular, and molecular evidence of the additive
antitumor effects of biguanides and statins in prostate cancer. J
Clin Endocrinol Metab. 106:e696–e710. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lee B, Lee C, Moon HM, Jo SY, Jang SJ and
Suh YA: Repurposing metabolic inhibitors in the treatment of colon
adenocarcinoma Patient-Derived Models. Cells. 12:28592023.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wu L, Leng D, Cun D, Foged C and Yang M:
Advances in combination therapy of lung cancer: Rationales,
delivery technologies and dosage regimens. J Control Release.
260:78–91. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Thai AA, Solomon BJ, Sequist LV, Gainor JF
and Heist RS: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Recondo G, Facchinetti F, Olaussen KA,
Besse B and Friboulet L: Making the first move in EGFR-driven or
ALK-driven NSCLC: First-generation or next-generation TKI? Nat Rev
Clin Oncol. 15:694–708. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mondal A, Roberge J, Gilleran J, Peng Y,
Jia D, Akel M, Patel Y, Zoltowski H, Doraiswamy A and Langenfeld J:
Bone morphogenetic protein inhibitors and mitochondria targeting
agents synergistically induce apoptosis-inducing factor (AIF)
caspase-independent cell death in lung cancer cells. Cell Commun
Signal. 20:992022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Román M, Baraibar I, López I, Nadal E,
Rolfo C, Vicent S and Gil-Bazo I: KRAS oncogene in non-small cell
lung cancer: Clinical perspectives on the treatment of an old
target. Mol Cancer. 17:332018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lee SH, Jeon Y, Kang JH, Jang H, Lee H and
Kim SY: The combination of loss of ALDH1L1 function and phenformin
treatment decreases tumor growth in KRAS-Driven lung cancer.
Cancers (Basel). 12:13822020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang J, Nannapaneni S, Wang D, Liu F,
Wang X, Jin R, Liu X, Rahman MA, Peng X, Qian G, et al: Phenformin
enhances the therapeutic effect of selumetinib in KRAS-mutant
non-small cell lung cancer irrespective of LKB1 status. Oncotarget.
8:59008–59022. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Dildar M, Akram S, Irfan M, Khan HU,
Ramzan M, Mahmood AR, Alsaiari SA, Saeed AHM, Alraddadi MO and
Mahnashi MH: Skin cancer detection: A review using deep learning
techniques. Int J Environ Res Public Health. 18:54792021.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang AX and Qi XY: Targeting
RAS/RAF/MEK/ERK signaling in metastatic melanoma. IUBMB Life.
65:748–758. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Petti C, Vegetti C, Molla A, Bersani I,
Cleris L, Mustard KJ, Formelli F, Hardie GD, Sensi M and Anichini
A: AMPK activators inhibit the proliferation of human melanomas
bearing the activated MAPK pathway. Melanoma Res. 22:341–350. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Trousil S, Chen S, Mu C, Shaw FM, Yao Z,
Ran Y, Shakuntala T, Merghoub T, Manstein D, Rosen N, et al:
Phenformin enhances the efficacy of ERK Inhibition in NF1-Mutant
melanoma. J Invest Dermatol. 137:1135–1143. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Pollak M: Targeting oxidative
phosphorylation: Why, when, and how. Cancer Cell. 23:263–264. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bertuccio P, Turati F, Carioli G,
Rodriguez T, La Vecchia C, Malvezzi M and Negri E: Global trends
and predictions in hepatocellular carcinoma mortality. J Hepatol.
67:302–309. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Veiga SR, Ge X, Mercer CA,
Hernández-Álvarez MI, Thomas HE, Hernandez-Losa J, Ramón Y Cajal S,
Zorzano A, Thomas G and Kozma SC: Phenformin-Induced mitochondrial
dysfunction sensitizes hepatocellular carcinoma for dual inhibition
of mTOR. Clin Cancer Res. 24:3767–3780. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Libson S and Lippman M: A review of
clinical aspects of breast cancer. Int Rev Psychiatry. 26:4–15.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Orecchioni S, Reggiani F, Talarico G,
Mancuso P, Calleri A, Gregato G, Labanca V, Noonan DM, Dallaglio K,
Albini A and Bertolini F: The biguanides metformin and phenformin
inhibit angiogenesis, local and metastatic growth of breast cancer
by targeting both neoplastic and microenvironment cells. Int J
Cancer. 136:E534–E544. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kong H, Reczek CR, McElroy GS, Steinert
EM, Wang T, Sabatini DM and Chandel NS: Metabolic determinants of
cellular fitness dependent on mitochondrial reactive oxygen
species. Sci Adv. 6:eabb72722020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Rosilio C, Lounnas N, Nebout M, Imbert V,
Hagenbeek T, Spits H, Asnafi V, Pontier-Bres R, Reverso J, Michiels
JF, et al: The metabolic perturbators metformin, phenformin and
AICAR interfere with the growth and survival of murine
PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells.
Cancer Lett. 336:114–126. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Park HH, Park J, Cho HJ, Shim JK, Moon JH,
Kim EH, Chang JH, Kim SY and Kang SG: Combinatorial therapeutic
effect of inhibitors of aldehyde dehydrogenase and mitochondrial
complex I, and the chemotherapeutic drug, temozolomide against
glioblastoma tumorspheres. Molecules. 26:2822021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lee JS, Lee H, Woo SM, Jang H, Jeon Y, Kim
HY, Song J, Lee WJ, Hong EK, Park SJ, et al: Overall survival of
pancreatic ductal adenocarcinoma is doubled by Aldh7a1 deletion in
the KPC mouse. Theranostics. 11:3472–3488. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Park J, Shim JK, Kang JH, Choi J, Chang
JH, Kim SY and Kang SG: Regulation of bioenergetics through dual
inhibition of aldehyde dehydrogenase and mitochondrial complex I
suppresses glioblastoma tumorspheres. Neuro Oncol. 20:954–965.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Alhourani A, Førde JL, Nasrollahzadeh M,
Eichacker LA, Herfindal L and Hagland HR: Graphene-based phenformin
carriers for cancer cell treatment: A comparative study between
oxidized and pegylated pristine graphene in human cells and
zebrafish. Nanoscale Adv. 4:1668–1680. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Narise K, Okuda K, Enomoto Y, Hirayama T
and Nagasawa H: Optimization of biguanide derivatives as selective
antitumor agents blocking adaptive stress responses in the tumor
microenvironment. Drug Des Devel Ther. 8:701–717. 2014.PubMed/NCBI
|
|
113
|
Oh-Hashi K, Irie N, Sakai T, Okuda K,
Nagasawa H, Hirata Y and Kiuchi K: Elucidation of a novel
phenformin derivative on glucose-deprived stress responses in HT-29
cells. Mol Cell Biochem. 419:29–40. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Oh-Hashi K, Matsumoto S, Sakai T, Nomura
Y, Okuda K, Nagasawa H and Hirata Y: Elucidating the rapid action
of 2-(2-chlorophenyl)ethylbiguanide on HT-29 cells under a serum-
and glucose-deprived condition. Cell Biol Toxicol. 34:279–290.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Janku F, Beom SH, Moon YW, Kim TW, Shin
YG, Yim DS, Kim GM, Kim HS, Kim SY, Cheong JH, et al:
First-in-human study of IM156, a novel potent biguanide oxidative
phosphorylation (OXPHOS) inhibitor, in patients with advanced solid
tumors. Invest New Drugs. 40:1001–1010. 2022. View Article : Google Scholar : PubMed/NCBI
|