|
1
|
Michod D and Widmann C: DNA-damage
sensitizers: Potential new therapeutical tools to improve
chemotherapy. Crit Rev Oncol Hematol. 63:160–171. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Arrighetti N, Corbo C, Evangelopoulos M,
Pasto A, Zuco V and Tasciotti E: Exosome-like nanovectors for drug
delivery in cancer. Curr Med Chem. 26:6132–6148. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Trajkovic K, Hsu C, Chiantia S, Rajendran
L, Wenzel D, Wieland F, Schwille P, Brügger B and Simons M:
Ceramide triggers budding of exosome vesicles into multivesicular
endosomes. Science. 319:1244–1247. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hossen S, Hossain MK, Basher MK, Mia MNH,
Rahman MT and Uddin MJ: Smart nanocarrier-based drug delivery
systems for cancer therapy and toxicity studies: A review. J Adv
Res. 15:1–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
van den Boorn JG, Schlee M, Coch C and
Hartmann G: SiRNA delivery with exosome nanoparticles. Nat
Biotechnol. 29:325–326. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wu JY, Li YJ, Hu XB, Huang S, Luo S, Tang
T and Xiang DX: Exosomes and biomimetic nanovesicles-mediated
anti-glioblastoma therapy: A head-to-head comparison. J Control
Release. 336:510–521. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Woodburn JR: The epidermal growth factor
receptor and its inhibition in cancer therapy. Pharmacol Ther.
82:241–250. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ohno S, Takanashi M, Sudo K, Ueda S,
Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, et
al: Systemically injected exosomes targeted to EGFR deliver
antitumor microRNA to breast cancer cells. Mol Ther. 21:185–191.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Li Z, Zhao R, Wu X, Sun Y, Yao M, Li J, Xu
Y and Gu J: Identification and characterization of a novel peptide
ligand of epidermal growth factor receptor for targeted delivery of
therapeutics. FASEB J. 19:1978–1985. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fang Y, Yang W, Cheng L, Meng F, Zhang J
and Zhong Z: EGFR-targeted multifunctional polymersomal doxorubicin
induces selective and potent suppression of orthotopic human liver
cancer in vivo. Acta Biomater. 64:323–333. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Guo Z, Sui J, Li Y, Wei Q, Wei C, Xiu L,
Zhu R, Sun Y, Hu J and Li JL: GE11 peptide-decorated
acidity-responsive micelles for improved drug delivery and enhanced
combination therapy of metastatic breast cancer. J Mater Chem B.
10:9266–9279. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zou Y, Xia Y, Meng F, Zhang J and Zhong Z:
GE11-Directed functional polymersomal doxorubicin as an advanced
alternative to clinical liposomal formulation for ovarian cancer
treatment. Mol Pharm. 15:3664–3671. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang P, Wang H, Huang Q, Peng C, Yao L,
Chen H, Qiu Z, Wu Y, Wang L and Chen W: Exosomes from M1-Polarized
macrophages enhance paclitaxel antitumor activity by activating
macrophages-mediated inflammation. Theranostics. 9:1714–1727. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang Y, Zhang L, Du LS, Liu CL and Chen
YY: Distributed energy-efficient target tracking algorithm based on
event-triggered strategy for sensor networks. Iet Control Theory
Appl. 13:1564–1570. 2019. View Article : Google Scholar
|
|
15
|
Hui B, Lu C, Wang J, Xu Y, Yang Y, Ji H,
Li X, Xu L, Wang J, Tang W, et al: Engineered exosomes for
co-delivery of PGM5-AS1 and oxaliplatin to reverse drug resistance
in colon cancer. J Cell Physiol. 237:911–933. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang
W, Lv S and Li W: Targeted exosome-encapsulated erastin induced
ferroptosis in triple negative breast cancer cells. Cancer Sci.
110:3173–3182. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Duan WR, Garner DS, Williams SD,
Funckes-Shippy CL, Spath IS and Blomme EA: Comparison of
immunohistochemistry for activated caspase-3 and cleaved
cytokeratin 18 with the TUNEL method for quantification of
apoptosis in histological sections of PC-3 subcutaneous xenografts.
J Pathol. 199:221–228. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kang PM and Izumo S: Apoptosis in heart
failure: Is there light at the end of the tunnel (TUNEL)? J Card
Fail. 6:43–46. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sharma R, Iovine C, Agarwal A and Henkel
R: TUNEL assay-Standardized method for testing sperm DNA
fragmentation. Andrologia. 53:e137382021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Short B: TUNEL vision spots apoptotic
cells. J Cell Biol. 208:72015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Stickney Z, Losacco J, McDevitt S, Zhang Z
and Lu B: Development of exosome surface display technology in
living human cells. Biochem Biophys Res Commun. 472:53–59. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Debbi L, Guo S, Safina D and Levenberg S:
Boosting extracellular vesicle secretion. Biotechnol Adv.
59:1079832022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang J, Tang W, Yang M, Yin Y, Li H, Hu F,
Tang L, Ma X, Zhang Y and Wang Y: Inflammatory tumor
microenvironment responsive neutrophil exosomes-based drug delivery
system for targeted glioma therapy. Biomaterials. 273:1207842021.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lin B, Ziebro J, Smithberger E, Skinner
KR, Zhao E, Cloughesy TF, Binder ZA, O'Rourke DM, Nathanson DA,
Furnari FB and Miller CR: EGFR, the Lazarus target for precision
oncology in glioblastoma. Neuro Oncol. 24:2035–2062. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Salomon DS, Brandt R, Ciardiello F and
Normanno N: Epidermal growth factor-related peptides and their
receptors in human malignancies. Crit Rev Oncol Hematol.
19:183–232. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Qi Y, Liu B, Sun Q, Xiong X and Chen Q:
Immune checkpoint targeted therapy in glioma: Status and hopes.
Front Immunol. 11:5788772020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yuan D, Zhao Y, Banks WA, Bullock KM,
Haney M, Batrakova E and Kabanov AV: Macrophage exosomes as natural
nanocarriers for protein delivery to inflamed brain. Biomaterials.
142:1–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wei T, Xiaojun X and Peilong C:
Magnoflorine improves sensitivity to doxorubicin (DOX) of breast
cancer cells via inducing apoptosis and autophagy through AKT/mTOR
and p38 signaling pathways. Biomed Pharmacother. 121:1091392020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zheng P, Chen Q, Tian X, Qian N, Chai P,
Liu B, Hu J, Blackstone C, Zhu D, Teng J and Chen J: DNA damage
triggers tubular endoplasmic reticulum extension to promote
apoptosis by facilitating ER-mitochondria signaling. Cell Res.
28:833–854. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gao S, Tan H and Gang J: Inhibition of
hepatocellular carcinoma cell proliferation through regulation of
the Cell Cycle, AGE-RAGE, and Leptin signaling pathways by a
compound formulation comprised of andrographolide, wogonin, and
oroxylin A derived from Andrographis Paniculata(Burm.f.) Nees. J
Ethnopharmacol. 329:1180012024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gao SY, Tan HX and Li D: Oridonin
suppresses gastric cancer SGC-7901 cell proliferation by targeting
the TNF-alpha/androgen receptor/TGF-beta signalling pathway axis. J
Cell Mol Med. 27:2661–2674. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mondal J, Pillarisetti S, Junnuthula V,
Saha M, Hwang SR, Park IK and Lee YK: Hybrid exosomes, exosome-like
nanovesicles and engineered exosomes for therapeutic applications.
J Control Release. 353:1127–1149. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bagalkot V, Farokhzad OC, Langer R and Jon
S: An aptamer-doxorubicin physical conjugate as a novel targeted
drug-delivery platform. Angew Chem Int Ed Engl. 45:8149–8152. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang C, Song J, Lou L, Qi X, Zhao L, Fan
B, Sun G, Lv Z, Fan Z, Jiao B and Yang J: Doxorubicin-loaded
nanoparticle coated with endothelial cells-derived exosomes for
immunogenic chemotherapy of glioblastoma. Bioeng Transl Med.
6:e102032020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liang GF, Zhu YL, Ali DJ, Tian T, Xu H, Si
K, Sun B, Chen B and Xiao Z: Engineered exosomes for targeted
co-delivery of miR-21 inhibitor and chemotherapeutics to reverse
drug resistance in colon cancer. J Nanobiotechnol. 18:102020.
View Article : Google Scholar
|
|
36
|
Rayamajhi S, Nguyen TDT, Marasini R and
Aryal S: Macrophage-derived exosome-mimetic hybrid vesicles for
tumor targeted drug delivery. Acta Biomater. 94:482–494. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou X, Zhuang Y, Liu X, Gu Y, Wang J, Shi
Y, Zhang L, Li R, Zhao Y, Chen H, et al: Study on tumour
cell-derived hybrid exosomes as dasatinib nanocarriers for
pancreatic cancer therapy. Artif Cells Nanomed Biotechnol.
51:532–546. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gao S, Gang J, Yu M, Xin G and Tan H:
Computational analysis for identification of early diagnostic
biomarkers and prognostic biomarkers of liver cancer based on GEO
and TCGA databases and studies on pathways and biological functions
affecting the survival time of liver cancer. BMC Cancer.
21:7912021. View Article : Google Scholar : PubMed/NCBI
|