Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2024 Volume 52 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2024 Volume 52 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Progress of research on γδ T cells in colorectal cancer (Review)

  • Authors:
    • Lijuan Pan
    • Yiru Zhou
    • Yeye Kuang
    • Chan Wang
    • Weimin Wang
    • Xiaotong Hu
    • Xiabin Chen
  • View Affiliations / Copyright

    Affiliations: School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China, Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
    Copyright: © Pan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 160
    |
    Published online on: October 4, 2024
       https://doi.org/10.3892/or.2024.8819
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Colorectal cancer (CRC) ranks as the third most prevalent malignancy and second leading cause of cancer‑related fatalities worldwide. Immunotherapy alone or in combination with chemotherapy has a favorable survival benefit for patients with CRC. Unlike αβ T cells, which are prone to drug resistance, γδ T cells do not exhibit major histocompatibility complex restriction and can target tumor cells through diverse mechanisms. Recent research has demonstrated the widespread involvement of Vδ1T, Vδ2T, and γδ T17 cells in tumorigenesis and progression. In the present review, the influence of different factors, including immune checkpoint molecules, the tumor microenvironment and microorganisms, was summarized on the antitumor/protumor effects of these cells, aiming to provide insights for the development of more efficient and less toxic immunotherapy‑based anticancer drugs.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Golshani G and Zhang Y: Advances in immunotherapy for colorectal cancer: A review. Therap Adv Gastroenterol. 13:17562848209175272020. View Article : Google Scholar : PubMed/NCBI

3 

Morazan-Fernandez D, Mora J and Molina-Mora JA: In Silico pipeline to identify Tumor-specific antigens for cancer immunotherapy using exome sequencing data. Phenomics. 3:130–137. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Wu X, Li T, Jiang R, Yang X, Guo H and Yang R: Targeting MHC-I molecules for cancer: Function, mechanism, and therapeutic prospects. Mol Cancer. 22:1942023. View Article : Google Scholar : PubMed/NCBI

5 

Rodrigues NV, Correia DV, Mensurado S, Nobrega-Pereira S, deBarros A, Kyle-Cezar F, Tutt A, Hayday AC, Norell H, Silva-Santos B and Dias S: Low-Density lipoprotein uptake inhibits the activation and antitumor functions of human Vgamma9Vdelta2 T cells. Cancer Immunol Res. 6:448–457. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Suzuki T, Hayman L, Kilbey A, Edwards J and Coffelt SB: Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev. 298:198–217. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Todaro M, Orlando V, Cicero G, Caccamo N, Meraviglia S, Stassi G and Dieli F: Chemotherapy sensitizes colon cancer initiating cells to Vγ9Vδ2 T Cell-mediated cytotoxicity. PLoS One. 8:e651452013. View Article : Google Scholar : PubMed/NCBI

8 

Lo Presti E, Pizzolato G, Gulotta E, Cocorullo G, Gulotta G, Dieli F and Meraviglia S: Current advances in γδ T Cell-based tumor immunotherapy. Front Immunol. 8:14012017. View Article : Google Scholar : PubMed/NCBI

9 

Arias-Badia M, Chang R and Fong L: γδ T cells as critical Anti-tumor immune effectors. Nat Cancer. 5:1145–1157. 2024. View Article : Google Scholar : PubMed/NCBI

10 

de Vries NL, van de Haar J, Veninga V, Chalabi M, Ijsselsteijn ME, van der Ploeg M, van den Bulk J, Ruano D, van den Berg JG, Haanen JB, et al: γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature. 613:743–750. 2023. View Article : Google Scholar : PubMed/NCBI

11 

Lu H, Ma Y, Wang M, Shen J, Wu H, Li J, Gao N, Gu Y, Zhang X, Zhang G, et al: B7-H3 confers resistance to Vγ9Vδ2 T cell-mediated cytotoxicity in human colon cancer cells via the STAT3/ULBP2 axis. Cancer Immunol Immunother. 70:1213–1226. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Lo Presti E, Pizzolato G, Corsale AM, Caccamo N, Sireci G, Dieli F and Meraviglia S: γδ T cells and tumor microenvironment: From immunosurveillance to tumor evasion. Front Immunol. 9:13952018. View Article : Google Scholar : PubMed/NCBI

13 

Lin P, Yan Y, Zhang Z, Dong Q, Yi J, Li Q, Zhang A and Kong X: The γδ T cells dual function and crosstalk with intestinal flora in treating colorectal cancer is a promising area of study. Int Immunopharmacol. 123:1107332023. View Article : Google Scholar : PubMed/NCBI

14 

Zhu LQ, Zhang L, Zhang J, Chang GL, Liu G, Yu DD, Yu XM, Zhao MS and Ye B: Evodiamine inhibits high-fat Diet-induced Colitis-associated cancer in mice through regulating the gut microbiota. J Integr Med. 19:56–65. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Rong L, Li K, Li R, Liu HM, Sun R and Liu XY: Analysis of tumor-infiltrating gamma delta T cells in rectal cancer. World J Gastroenterol. 22:3573–3580. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Ma R, Yuan D, Guo Y, Yan R and Li K: Immune effects of γδ T cells in colorectal cancer: A review. Front Immunol. 11:16002020. View Article : Google Scholar : PubMed/NCBI

17 

Wu D, Wu P, Wu X, Ye J, Wang Z, Zhao S, Ni C, Hu G, Xu J, Han Y, et al: Ex vivo expanded human circulating Vδ1 γδT cells exhibit favorable therapeutic potential for colon cancer. Oncoimmunology. 4:e9927492015. View Article : Google Scholar : PubMed/NCBI

18 

Mikulak J, Oriolo F, Bruni E, Roberto A, Colombo FS, Villa A, Bosticardo M, Bortolomai I, Lo Presti E, Meraviglia S, et al: NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight. 4:e1258842019. View Article : Google Scholar : PubMed/NCBI

19 

Bruni E, Cimino MM, Donadon M, Carriero R, Terzoli S, Piazza R, Ravens S, Prinz I, Cazzetta V, Marzano P, et al: Intrahepatic CD69+Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progressionn. J Immunother Cancer. 10:e0045792022. View Article : Google Scholar : PubMed/NCBI

20 

Devaud C, Rousseau B, Netzer S, Pitard V, Paroissin C, Khairallah C, Costet P, Moreau JF, Couillaud F, Dechanet-Merville J and Capone M: Anti-metastatic potential of human Vδ1(+) γδ T cells in an orthotopic mouse xenograft model of colon carcinoma. Cancer Immunol Immunother. 62:1199–1210. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Bernard NJ: Expanding Vδ1 T cells. Nat Immunol. 24:13962023. View Article : Google Scholar : PubMed/NCBI

22 

Lo Presti E, Mocciaro F, Mitri RD, Corsale AM, Di Simone M, Vieni S, Scibetta N, Unti E, Dieli F and Meraviglia S: Analysis of colon-infiltrating γδ T cells in chronic inflammatory bowel disease and in colitis-associated cancer. J Leukoc Biol. 108:749–760. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Bouet-Toussaint F, Cabillic F, Toutirais O, Le Gallo M, Thomas de la Pintiere C, Daniel P, Genetet N, Meunier B, Dupont-Bierre E, Boudjema K, et al: Vgamma9Vdelta2 T cell-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol Immunother. 57:531–539. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Iovino F, Meraviglia S, Spina M, Orlando V, Saladino V, Dieli F, Stassi G and Todaro M: Immunotherapy targeting colon cancer stem cells. Immunotherapy. 3:97–106. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Adams EJ, Strop P, Shin S, Chien YH and Garcia KC: An autonomous CDR3delta is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by gammadelta T cells. Nat Immunol. 9:777–784. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Zhao H, Xi X, Cui L and He W: CDR3δ-grafted γ9δ2T cells mediate effective antitumor reactivity. Cell Mol Immunol. 9:147–154. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Vyborova A, Janssen A, Gatti L, Karaiskaki F, Yonika A, van Dooremalen S, Sanders J, Beringer DX, Straetemans T, Sebestyen Z and Kuball J: γ9δ2 T-Cell expansion and phenotypic profile are reflected in the CDR3δ repertoire of healthy adults. Front Immunol. 13:9153662022. View Article : Google Scholar : PubMed/NCBI

28 

Silva-Santos B and Strid J: Working in ‘NK Mode’: Natural Killer Group 2 Member D and natural cytotoxicity receptors in Stress-surveillance by γδ T cells. Front Immunol. 9:8512018. View Article : Google Scholar : PubMed/NCBI

29 

Kong Y, Cao W, Xi X, Ma C, Cui L and He W: The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood. 114:310–317. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Todaro M, D'Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, et al: Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol. 182:7287–7296. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Hoeres T, Smetak M, Pretscher D and Wilhelm M: Improving the efficiency of Vγ9Vδ2 T-Cell immunotherapy in cancer. Front Immunol. 9:8002018. View Article : Google Scholar : PubMed/NCBI

32 

Zocchi MR, Costa D, Vene R, Tosetti F, Ferrari N, Minghelli S, Benelli R, Scabini S, Romairone E, Catellani S, et al: Zoledronate can induce colorectal cancer microenvironment expressing BTN3A1 to stimulate effector γδ T cells with antitumor activity. Oncoimmunology. 6:e12780992017. View Article : Google Scholar : PubMed/NCBI

33 

Park JH and Lee HK: Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med. 53:318–327. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Ramutton T, Buccheri S, Dieli F, Todaro M, Stassi G and Meraviglia S: γδ T cells as a potential tool in colon cancer immunotherapy. Immunotherapy. 6:989–999. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A, Sayers TJ and Hayakawa Y: NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med. 200:1325–1335. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Pei Y, Xiang Z, Wen K, Tu CR, Wang X, Zhang Y, Mu X, Liu Y and Tu W: CD137 costimulation enhances the antitumor activity of Vγ9Vδ2-T cells in IL-10-Mediated immunosuppressive tumor microenvironment. Front Immunol. 13:8721222022. View Article : Google Scholar : PubMed/NCBI

37 

Zhang T, Wang J, Zhao A, Xia L, Jin H, Xia S and Shi T: The way of interaction between Vγ9Vδ2 T cells and tumor cells. Cytokine. 162:1561082023. View Article : Google Scholar : PubMed/NCBI

38 

Mattarollo SR, Kenna T, Nieda M and Nicol AJ: Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol Immunother. 56:1285–1297. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Ma Y, Aymeric L, Locher C, Mattarollo SR, Delahaye NF, Pereira P, Boucontet L, Apetoh L, Ghiringhelli F, Casares N, et al: Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J Exp Med. 208:491–503. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR and Dranoff G: MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA. 105:1285–1290. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Vales-Gomez M, Chisholm SE, Cassady-Cain RL, Roda-Navarro P and Reyburn HT: Selective induction of expression of a ligand for the NKG2D receptor by proteasome inhibitors. Cancer Res. 68:1546–1554. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J, Gratwohl A, Tichelli A, Paluszewska M, et al: NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood. 111:1428–1436. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, Kaiser S, Jobst J, Smirnow I, Wagner A, et al: Natural killer Cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 65:6321–6329. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Jones AB, Rocco A, Lamb LS, Friedman GK and Hjelmeland AB: Regulation of NKG2D stress ligands and its relevance in cancer progression. Cancers (Basel). 14:23392022. View Article : Google Scholar : PubMed/NCBI

45 

Benelli R, Costa D, Salvini L, Tardito S, Tosetti F, Villa F, Zocchi MR and Poggi A: Targeting of colorectal cancer organoids with zoledronic acid conjugated to the anti-EGFR antibody cetuximab. J Immunother Cancer. 10:e0056602022. View Article : Google Scholar : PubMed/NCBI

46 

Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang Z, Wang C, Zhang Z, Xia W, et al: gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 40:785–800. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Corsale AM, Di Simone M, Lo Presti E, Dieli F and Meraviglia S: γδ T cells and their clinical application in colon cancer. Front Immunol. 14:10988472023. View Article : Google Scholar : PubMed/NCBI

48 

Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 491:254–258. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C, Chen Y, Blumenschein WM, Judo M, Ayanoglu G, McClanahan TK, et al: Interleukin-23-Independent IL-17 production regulates intestinal epithelial permeability. Immunity. 43:727–738. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Reis BS, Darcy PW, Khan IZ, Moon CS, Kornberg AE, Schneider VS, Alvarez Y, Eleso O, Zhu C, Schernthanner M, et al: TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science. 377:276–284. 2022. View Article : Google Scholar : PubMed/NCBI

51 

Mu X, Xiang Z, Xu Y, He J, Lu J, Chen Y, Wang X, Tu CR, Zhang Y, Zhang W, et al: Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol Immunol. 19:944–956. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Agerholm R and Bekiaris V: Evolved to protect, designed to destroy: IL-17-producing γδ T cells in infection, inflammation, and cancer. Eur J Immunol. 51:2164–2177. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Lopes N, McIntyre C, Martin S, Raverdeau M, Sumaria N, Kohlgruber AC, Fiala GJ, Agudelo LZ, Dyck L, Kane H, et al: Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat Immunol. 22:179–192. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Mensurado S and Silva-Santos B: Battle of the γδ T cell subsets in the gut. Trends Cancer. 8:881–883. 2022. View Article : Google Scholar : PubMed/NCBI

55 

Silva-Santos B, Mensurado S and Coffelt SB: γδ T cells: Pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer. 19:392–404. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Cai L, Chen A and Tang D: A new strategy for immunotherapy of Microsatellite-stable (MSS)-type advanced colorectal cancer: Multi-pathway combination therapy with PD-1/PD-L1 inhibitors. Immunology. Mar 22–2024.doi: 10.1111/imm.13785 (Epub ahead of print). View Article : Google Scholar

57 

Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI

58 

Postow MA, Sidlow R and Hellmann MD: Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 378:158–168. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus chemotherapy for PD-L1-positive Non-Small-Cell lung cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Tie G, Messina KE, Yan J, Messina JA and Messina LM: Hypercholesterolemia induces oxidant stress that accelerates the ageing of hematopoietic stem cells. J Am Heart Assoc. 3:e0002412014. View Article : Google Scholar : PubMed/NCBI

62 

Tie G, Yan J, Khair L, Messina JA, Deng A, Kang J, Fazzio T and Messina LM: Hypercholesterolemia increases colorectal cancer incidence by reducing production of NKT and γδ T cells from hematopoietic stem cells. Cancer Res. 77:2351–2362. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Lu H, Shi T, Wang M, Li X, Gu Y, Zhang X, Zhang G and Chen W: B7-H3 inhibits the IFN-γ-dependent cytotoxicity of Vγ9Vδ2 T cells against colon cancer cells. Oncoimmunology. 9:17489912020. View Article : Google Scholar : PubMed/NCBI

64 

Bas A, Swamy M, Abeler-Dorner L, Williams G, Pang DJ, Barbee SD and Hayday AC: Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes. Proc Natl Acad Sci USA. 108:4376–4381. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R, Iannitto ML, et al: Epithelia use Butyrophilin-like molecules to shape organ-Specific γδ T cell compartments. Cell. 167:203–218.e17. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Du Y, Peng Q, Cheng D, Pan T, Sun W, Wang H, Ma X, He R, Zhang H, Cui Z, et al: Cancer Cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells. Nat Commun. 13:2312022. View Article : Google Scholar : PubMed/NCBI

67 

Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J, Li J, Kuball J, Adams EJ, Netzer S, et al: Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood. 120:2269–2279. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Chen S, Li Z, Huang W, Wang Y and Fan S: Prognostic and therapeutic significance of BTN3A proteins in tumors. J Cancer. 12:4505–4512. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Palakodeti A, Sandstrom A, Sundaresan L, Harly C, Nedellec S, Olive D, Scotet E, Bonneville M and Adams EJ: The molecular basis for modulation of human Vγ9Vδ2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. J Biol Chem. 287:32780–32790. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Cano CE, Pasero C, De Gassart A, Kerneur C, Gabriac M, Fullana M, Granarolo E, Hoet R, Scotet E, Rafia C, et al: BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cell Rep. 36:1093592021. View Article : Google Scholar : PubMed/NCBI

71 

De Gassart A, Le KS, Brune P, Agaugue S, Sims J, Goubard A, Castellano R, Joalland N, Scotet E, Collette Y, et al: Development of ICT01, a first-in-class, anti-BTN3A antibody for activating Vγ9Vδ2 T cell-mediated antitumor immune response. Sci Transl Med. 13:eabj08352021. View Article : Google Scholar : PubMed/NCBI

72 

Blazquez JL, Benyamine A, Pasero C and Olive D: New insights into the regulation of γδ T cells by BTN3A and Other BTN/BTNL in tumor immunity. Front Immunol. 9:16012018. View Article : Google Scholar : PubMed/NCBI

73 

Seiwert N, Adam J, Steinberg P, Wirtz S, Schwerdtle T, Adams-Quack P, Hovelmeyer N, Kaina B, Foersch S and Fahrer J: Chronic intestinal inflammation drives colorectal tumor formation triggered by dietary heme iron in vivo. Arch Toxicol. 95:2507–2522. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Santiago L, Castro M, Sanz-Pamplona R, Garzon M, Ramirez-Labrada A, Tapia E, Moreno V, Layunta E, Gil-Gomez G, Garrido M, et al: Extracellular granzyme A promotes colorectal cancer development by enhancing gut inflammation. Cell Rep. 32:1078472020. View Article : Google Scholar : PubMed/NCBI

75 

Lebrero-Fernandez C, Wenzel UA, Akeus P, Wang Y, Strid H, Simren M, Gustavsson B, Borjesson LG, Cardell SL, Ohman L, et al: Altered expression of Butyrophilin (BTN) and BTN-like (BTNL) genes in intestinal inflammation and colon cancer. Immun Inflamm Dis. 4:191–200. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Liu J, Wu M, Yang Y, Wang Z, He S, Tian X and Wang H: γδ T cells and the PD-1/PD-L1 axis: A love-hate relationship in the tumor microenvironment. J Transl Med. 22:5532024. View Article : Google Scholar : PubMed/NCBI

77 

Wu K, Feng J, Xiu Y, Li Z, Lin Z, Zhao H, Zeng H, Xia W, Yu L and Xu B: Vδ2 T cell subsets, defined by PD-1 and TIM-3 expression, present varied cytokine responses in acute myeloid leukemia patients. Int Immunopharmacol. 80:1061222020. View Article : Google Scholar : PubMed/NCBI

78 

Pan T, Yang H, Wang WY, Rui YY, Deng ZJ, Chen YC, Liu C and Hu H: Neoadjuvant immunotherapy with ipilimumab plus nivolumab in mismatch repair Deficient/Microsatellite Instability-High colorectal cancer: A preliminary report of case series. Clin Colorectal Cancer. 23:104–110. 2024. View Article : Google Scholar : PubMed/NCBI

79 

Li X, Lu H, Gu Y, Zhang X, Zhang G, Shi T and Chen W: Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression. Exp Cell Res. 386:1117192020. View Article : Google Scholar : PubMed/NCBI

80 

Guo C, Dai X, Du Y, Xiong X and Gui X: Preclinical development of a novel CCR8/CTLA-4 bispecific antibody for cancer treatment by disrupting CTLA-4 signaling on CD8 T cells and specifically depleting tumor-resident Tregs. Cancer Immunol Immunother. 73:2102024. View Article : Google Scholar : PubMed/NCBI

81 

Aggarwal V, Workman CJ and Vignali DAA: LAG-3 as the third checkpoint inhibitor. Nat Immunol. 24:1415–1422. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Perales O, Jilaveanu L, Adeniran A, Su DG, Hurwitz M, Braun DA, Kluger HM and Schoenfeld DA: TIGIT expression in renal cell carcinoma infiltrating T cells is variable and inversely correlated with PD-1 and LAG3. Cancer Immunol Immunother. 73:1922024. View Article : Google Scholar : PubMed/NCBI

83 

Bhat AA, Nisar S, Singh M, Ashraf B, Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, et al: Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond). 42:689–715. 2022. View Article : Google Scholar : PubMed/NCBI

84 

Shu Y and Zheng S: The current status and prospect of immunotherapy in colorectal cancer. Clin Transl Oncol. 26:39–51. 2024. View Article : Google Scholar : PubMed/NCBI

85 

Chen DS and Mellman I: Elements of cancer immunity and the Cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Yi Y, He HW, Wang JX, Cai XY, Li YW, Zhou J, Cheng YF, Jin JJ, Fan J and Qiu SJ: The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner. J Hepatol. 58:977–983. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Hu G, Wu P, Cheng P, Zhang Z, Wang Z, Yu X, Shao X, Wu D, Ye J, Zhang T, et al: Tumor-infiltrating CD39+γδ Tregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology. 6:e12773052017. View Article : Google Scholar : PubMed/NCBI

88 

Zhan Y, Zheng L, Liu J, Hu D, Wang J, Liu K, Guo J, Zhang T and Kong D: PLA2G4A promotes Right-sided colorectal cancer progression by inducing CD39+γδ Treg polarization. JCI Insight. 6:e1480282021. View Article : Google Scholar : PubMed/NCBI

89 

Chen Z, Han F, Du Y, Shi H and Zhou W: Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8:702023. View Article : Google Scholar : PubMed/NCBI

90 

Li L, Cao B, Liang X, Lu S, Luo H, Wang Z, Wang S, Jiang J, Lang J and Zhu G: Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene. 38:2830–2843. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Allen J and Sears CL: Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: Contributions to colorectal cancer development. Genome Med. 11:112019. View Article : Google Scholar : PubMed/NCBI

92 

Li Y, Wang Y, Shi F, Zhang X, Zhang Y, Bi K, Chen X, Li L and Diao H: Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells. Gut Microbes. 14:20969942022. View Article : Google Scholar : PubMed/NCBI

93 

Casanova MR, Azevedo-Silva J, Rodrigues LR and Preto A: Colorectal cancer cells increase the production of short chain fatty acids by propionibacterium freudenreichii impacting on cancer cells survival. Front Nutr. 5:442018. View Article : Google Scholar : PubMed/NCBI

94 

Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, et al: Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 36:1093322021. View Article : Google Scholar : PubMed/NCBI

95 

Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, Song A, Wasen C, Tauhid S, Chu R, et al: Gut microbiome in progressive multiple sclerosis. Ann Neurol. 89:1195–1211. 2021. View Article : Google Scholar : PubMed/NCBI

96 

Sandstrom A, Peigne CM, Leger A, Crooks JE, Konczak F, Gesnel MC, Breathnach R, Bonneville M, Scotet E and Adams EJ: The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity. 40:490–500. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Roselli M, Finamore A, Nuccitelli S, Carnevali P, Brigidi P, Vitali B, Nobili F, Rami R, Garaguso I and Mengheri E: Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of gammadeltaT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm Bowel Dis. 15:1526–1536. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Ustjanzew A, Sencio V, Trottein F, Faber J, Sandhoff R and Paret C: Interaction between bacteria and the immune system for cancer immunotherapy: The α-GalCer alliance. Int J Mol Sci. 23:58962022. View Article : Google Scholar : PubMed/NCBI

99 

Baxter NT, Ruffin MT, Rogers MAM and Schloss PD: Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Medicine. 8:372016. View Article : Google Scholar : PubMed/NCBI

100 

Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, Brim H, Ashktorab H, Ng SC, Ng SSM, et al: Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res. 23:2061–2070. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, et al: Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 66:70–78. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Ooki A, Shinozaki E and Yamaguchi K: Immunotherapy in colorectal cancer: Current and future strategies. J Anus Rectum Colon. 5:11–24. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Heregger R, Huemer F, Steiner M, Gonzalez-Martinez A, Greil R and Weiss L: Unraveling resistance to immunotherapy in MSI-High colorectal cancer. Cancers (Basel). 15:50902023. View Article : Google Scholar : PubMed/NCBI

104 

Stary V, Pandey RV, List J, Kleissl L, Deckert F, Kabiljo J, Laengle J, Gerakopoulos V, Oehler R, Watzke L, et al: Dysfunctional tumor-infiltrating Vδ1 + T lymphocytes in microsatellite-stable colorectal cancer. Nat Commun. 15:69492024. View Article : Google Scholar : PubMed/NCBI

105 

Wu Z, Lamao Q, Gu M, Jin X, Liu Y, Tian F, Yu Y, Yuan P, Gao S, Fulford TS, et al: Unsynchronized butyrophilin molecules dictate cancer cell evasion of Vγ9Vδ2 T-cell killing. Cell Mol Immunol. 21:362–373. 2024. View Article : Google Scholar : PubMed/NCBI

106 

Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He J, Yang J, Hu Y, Chen Y, Lin L, et al: Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol. 18:427–439. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Yang XM, Lin XD, Shi W, Xie SX, Huang XN, Yin SH, Jiang XB, Hammock BD, Xu ZP and Lu XL: Nanobody-based bispecific T-cell engager (Nb-BiTE): A new platform for enhanced T-cell immunotherapy. Signal Transduct Target Ther. 8:3282023. View Article : Google Scholar : PubMed/NCBI

108 

Magee MS, Abraham TS, Baybutt TR, Flickinger JC Jr, Ridge NA, Marszalowicz GP, Prajapati P, Hersperger AR, Waldman SA and Snook AE: Human GUCY2C-targeted chimeric antigen receptor (CAR)-expressing T cells eliminate colorectal cancer metastases. Cancer Immunol Res. 6:509–516. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Li M, Li S, Zhao R, Lv J, Zheng D, Qin L, Li S, Wu Q, Long Y, Tang Z, et al: CD318 is a target of chimeric antigen receptor T cells for the treatment of colorectal cancer. Clin Exp Med. 23:2409–2419. 2023. View Article : Google Scholar : PubMed/NCBI

110 

Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K and Nieda M: Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer. 105:778–786. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Kamrani A, Nasiri H, Hassanzadeh A, Ahmadian Heris J, Mohammadinasab R, Sadeghvand S, Sadeghi M, Valedkarimi Z, Hosseinzadeh R, Shomali N, et al: New immunotherapy approaches for colorectal cancer: Focusing on CAR-T cell, BiTE, and oncolytic viruses. Cell Commun Signal. 22:562024. View Article : Google Scholar : PubMed/NCBI

112 

Van De Vyver AJ, Marrer-Berger E, Wang K, Lehr T and Walz AC: Cytokine release syndrome by T-cell-Redirecting therapies: Can we predict and modulate patient risk? Clin Cancer Res. 27:6083–6094. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Pan L, Zhou Y, Kuang Y, Wang C, Wang W, Hu X and Chen X: Progress of research on γδ T cells in colorectal cancer (Review). Oncol Rep 52: 160, 2024.
APA
Pan, L., Zhou, Y., Kuang, Y., Wang, C., Wang, W., Hu, X., & Chen, X. (2024). Progress of research on γδ T cells in colorectal cancer (Review). Oncology Reports, 52, 160. https://doi.org/10.3892/or.2024.8819
MLA
Pan, L., Zhou, Y., Kuang, Y., Wang, C., Wang, W., Hu, X., Chen, X."Progress of research on γδ T cells in colorectal cancer (Review)". Oncology Reports 52.6 (2024): 160.
Chicago
Pan, L., Zhou, Y., Kuang, Y., Wang, C., Wang, W., Hu, X., Chen, X."Progress of research on γδ T cells in colorectal cancer (Review)". Oncology Reports 52, no. 6 (2024): 160. https://doi.org/10.3892/or.2024.8819
Copy and paste a formatted citation
x
Spandidos Publications style
Pan L, Zhou Y, Kuang Y, Wang C, Wang W, Hu X and Chen X: Progress of research on γδ T cells in colorectal cancer (Review). Oncol Rep 52: 160, 2024.
APA
Pan, L., Zhou, Y., Kuang, Y., Wang, C., Wang, W., Hu, X., & Chen, X. (2024). Progress of research on γδ T cells in colorectal cancer (Review). Oncology Reports, 52, 160. https://doi.org/10.3892/or.2024.8819
MLA
Pan, L., Zhou, Y., Kuang, Y., Wang, C., Wang, W., Hu, X., Chen, X."Progress of research on γδ T cells in colorectal cancer (Review)". Oncology Reports 52.6 (2024): 160.
Chicago
Pan, L., Zhou, Y., Kuang, Y., Wang, C., Wang, W., Hu, X., Chen, X."Progress of research on γδ T cells in colorectal cancer (Review)". Oncology Reports 52, no. 6 (2024): 160. https://doi.org/10.3892/or.2024.8819
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team