|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Golshani G and Zhang Y: Advances in
immunotherapy for colorectal cancer: A review. Therap Adv
Gastroenterol. 13:17562848209175272020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Morazan-Fernandez D, Mora J and
Molina-Mora JA: In Silico pipeline to identify Tumor-specific
antigens for cancer immunotherapy using exome sequencing data.
Phenomics. 3:130–137. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wu X, Li T, Jiang R, Yang X, Guo H and
Yang R: Targeting MHC-I molecules for cancer: Function, mechanism,
and therapeutic prospects. Mol Cancer. 22:1942023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rodrigues NV, Correia DV, Mensurado S,
Nobrega-Pereira S, deBarros A, Kyle-Cezar F, Tutt A, Hayday AC,
Norell H, Silva-Santos B and Dias S: Low-Density lipoprotein uptake
inhibits the activation and antitumor functions of human
Vgamma9Vdelta2 T cells. Cancer Immunol Res. 6:448–457. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Suzuki T, Hayman L, Kilbey A, Edwards J
and Coffelt SB: Gut γδ T cells as guardians, disruptors, and
instigators of cancer. Immunol Rev. 298:198–217. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Todaro M, Orlando V, Cicero G, Caccamo N,
Meraviglia S, Stassi G and Dieli F: Chemotherapy sensitizes colon
cancer initiating cells to Vγ9Vδ2 T Cell-mediated cytotoxicity.
PLoS One. 8:e651452013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lo Presti E, Pizzolato G, Gulotta E,
Cocorullo G, Gulotta G, Dieli F and Meraviglia S: Current advances
in γδ T Cell-based tumor immunotherapy. Front Immunol. 8:14012017.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Arias-Badia M, Chang R and Fong L: γδ T
cells as critical Anti-tumor immune effectors. Nat Cancer.
5:1145–1157. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
de Vries NL, van de Haar J, Veninga V,
Chalabi M, Ijsselsteijn ME, van der Ploeg M, van den Bulk J, Ruano
D, van den Berg JG, Haanen JB, et al: γδ T cells are effectors of
immunotherapy in cancers with HLA class I defects. Nature.
613:743–750. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lu H, Ma Y, Wang M, Shen J, Wu H, Li J,
Gao N, Gu Y, Zhang X, Zhang G, et al: B7-H3 confers resistance to
Vγ9Vδ2 T cell-mediated cytotoxicity in human colon cancer cells via
the STAT3/ULBP2 axis. Cancer Immunol Immunother. 70:1213–1226.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lo Presti E, Pizzolato G, Corsale AM,
Caccamo N, Sireci G, Dieli F and Meraviglia S: γδ T cells and tumor
microenvironment: From immunosurveillance to tumor evasion. Front
Immunol. 9:13952018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lin P, Yan Y, Zhang Z, Dong Q, Yi J, Li Q,
Zhang A and Kong X: The γδ T cells dual function and crosstalk with
intestinal flora in treating colorectal cancer is a promising area
of study. Int Immunopharmacol. 123:1107332023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhu LQ, Zhang L, Zhang J, Chang GL, Liu G,
Yu DD, Yu XM, Zhao MS and Ye B: Evodiamine inhibits high-fat
Diet-induced Colitis-associated cancer in mice through regulating
the gut microbiota. J Integr Med. 19:56–65. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Rong L, Li K, Li R, Liu HM, Sun R and Liu
XY: Analysis of tumor-infiltrating gamma delta T cells in rectal
cancer. World J Gastroenterol. 22:3573–3580. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ma R, Yuan D, Guo Y, Yan R and Li K:
Immune effects of γδ T cells in colorectal cancer: A review. Front
Immunol. 11:16002020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wu D, Wu P, Wu X, Ye J, Wang Z, Zhao S, Ni
C, Hu G, Xu J, Han Y, et al: Ex vivo expanded human circulating Vδ1
γδT cells exhibit favorable therapeutic potential for colon cancer.
Oncoimmunology. 4:e9927492015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mikulak J, Oriolo F, Bruni E, Roberto A,
Colombo FS, Villa A, Bosticardo M, Bortolomai I, Lo Presti E,
Meraviglia S, et al: NKp46-expressing human gut-resident
intraepithelial Vδ1 T cell subpopulation exhibits high antitumor
activity against colorectal cancer. JCI Insight. 4:e1258842019.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bruni E, Cimino MM, Donadon M, Carriero R,
Terzoli S, Piazza R, Ravens S, Prinz I, Cazzetta V, Marzano P, et
al: Intrahepatic CD69+Vδ1 T cells re-circulate in the blood of
patients with metastatic colorectal cancer and limit tumor
progressionn. J Immunother Cancer. 10:e0045792022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Devaud C, Rousseau B, Netzer S, Pitard V,
Paroissin C, Khairallah C, Costet P, Moreau JF, Couillaud F,
Dechanet-Merville J and Capone M: Anti-metastatic potential of
human Vδ1(+) γδ T cells in an orthotopic mouse xenograft model of
colon carcinoma. Cancer Immunol Immunother. 62:1199–1210. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bernard NJ: Expanding Vδ1 T cells. Nat
Immunol. 24:13962023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lo Presti E, Mocciaro F, Mitri RD, Corsale
AM, Di Simone M, Vieni S, Scibetta N, Unti E, Dieli F and
Meraviglia S: Analysis of colon-infiltrating γδ T cells in chronic
inflammatory bowel disease and in colitis-associated cancer. J
Leukoc Biol. 108:749–760. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bouet-Toussaint F, Cabillic F, Toutirais
O, Le Gallo M, Thomas de la Pintiere C, Daniel P, Genetet N,
Meunier B, Dupont-Bierre E, Boudjema K, et al: Vgamma9Vdelta2 T
cell-mediated recognition of human solid tumors. Potential for
immunotherapy of hepatocellular and colorectal carcinomas. Cancer
Immunol Immunother. 57:531–539. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Iovino F, Meraviglia S, Spina M, Orlando
V, Saladino V, Dieli F, Stassi G and Todaro M: Immunotherapy
targeting colon cancer stem cells. Immunotherapy. 3:97–106. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Adams EJ, Strop P, Shin S, Chien YH and
Garcia KC: An autonomous CDR3delta is sufficient for recognition of
the nonclassical MHC class I molecules T10 and T22 by gammadelta T
cells. Nat Immunol. 9:777–784. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhao H, Xi X, Cui L and He W:
CDR3δ-grafted γ9δ2T cells mediate effective antitumor reactivity.
Cell Mol Immunol. 9:147–154. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vyborova A, Janssen A, Gatti L, Karaiskaki
F, Yonika A, van Dooremalen S, Sanders J, Beringer DX, Straetemans
T, Sebestyen Z and Kuball J: γ9δ2 T-Cell expansion and phenotypic
profile are reflected in the CDR3δ repertoire of healthy adults.
Front Immunol. 13:9153662022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Silva-Santos B and Strid J: Working in ‘NK
Mode’: Natural Killer Group 2 Member D and natural cytotoxicity
receptors in Stress-surveillance by γδ T cells. Front Immunol.
9:8512018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kong Y, Cao W, Xi X, Ma C, Cui L and He W:
The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces
cytotoxicity to tumor cells through both TCRgammadelta and NKG2D.
Blood. 114:310–317. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Todaro M, D'Asaro M, Caccamo N, Iovino F,
Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G,
Salerno A, et al: Efficient killing of human colon cancer stem
cells by gammadelta T lymphocytes. J Immunol. 182:7287–7296. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hoeres T, Smetak M, Pretscher D and
Wilhelm M: Improving the efficiency of Vγ9Vδ2 T-Cell immunotherapy
in cancer. Front Immunol. 9:8002018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zocchi MR, Costa D, Vene R, Tosetti F,
Ferrari N, Minghelli S, Benelli R, Scabini S, Romairone E,
Catellani S, et al: Zoledronate can induce colorectal cancer
microenvironment expressing BTN3A1 to stimulate effector γδ T cells
with antitumor activity. Oncoimmunology. 6:e12780992017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Park JH and Lee HK: Function of γδ T cells
in tumor immunology and their application to cancer therapy. Exp
Mol Med. 53:318–327. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ramutton T, Buccheri S, Dieli F, Todaro M,
Stassi G and Meraviglia S: γδ T cells as a potential tool in colon
cancer immunotherapy. Immunotherapy. 6:989–999. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Smyth MJ, Swann J, Kelly JM, Cretney E,
Yokoyama WM, Diefenbach A, Sayers TJ and Hayakawa Y: NKG2D
recognition and perforin effector function mediate effective
cytokine immunotherapy of cancer. J Exp Med. 200:1325–1335. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pei Y, Xiang Z, Wen K, Tu CR, Wang X,
Zhang Y, Mu X, Liu Y and Tu W: CD137 costimulation enhances the
antitumor activity of Vγ9Vδ2-T cells in IL-10-Mediated
immunosuppressive tumor microenvironment. Front Immunol.
13:8721222022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang T, Wang J, Zhao A, Xia L, Jin H, Xia
S and Shi T: The way of interaction between Vγ9Vδ2 T cells and
tumor cells. Cytokine. 162:1561082023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mattarollo SR, Kenna T, Nieda M and Nicol
AJ: Chemotherapy and zoledronate sensitize solid tumour cells to
Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol Immunother.
56:1285–1297. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ma Y, Aymeric L, Locher C, Mattarollo SR,
Delahaye NF, Pereira P, Boucontet L, Apetoh L, Ghiringhelli F,
Casares N, et al: Contribution of IL-17-producing gamma delta T
cells to the efficacy of anticancer chemotherapy. J Exp Med.
208:491–503. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jinushi M, Vanneman M, Munshi NC, Tai YT,
Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR and
Dranoff G: MHC class I chain-related protein A antibodies and
shedding are associated with the progression of multiple myeloma.
Proc Natl Acad Sci USA. 105:1285–1290. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Vales-Gomez M, Chisholm SE, Cassady-Cain
RL, Roda-Navarro P and Reyburn HT: Selective induction of
expression of a ligand for the NKG2D receptor by proteasome
inhibitors. Cancer Res. 68:1546–1554. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Diermayr S, Himmelreich H, Durovic B,
Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J,
Gratwohl A, Tichelli A, Paluszewska M, et al: NKG2D ligand
expression in AML increases in response to HDAC inhibitor valproic
acid and contributes to allorecognition by NK-cell lines with
single KIR-HLA class I specificities. Blood. 111:1428–1436. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Armeanu S, Bitzer M, Lauer UM, Venturelli
S, Pathil A, Krusch M, Kaiser S, Jobst J, Smirnow I, Wagner A, et
al: Natural killer Cell-mediated lysis of hepatoma cells via
specific induction of NKG2D ligands by the histone deacetylase
inhibitor sodium valproate. Cancer Res. 65:6321–6329. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jones AB, Rocco A, Lamb LS, Friedman GK
and Hjelmeland AB: Regulation of NKG2D stress ligands and its
relevance in cancer progression. Cancers (Basel). 14:23392022.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Benelli R, Costa D, Salvini L, Tardito S,
Tosetti F, Villa F, Zocchi MR and Poggi A: Targeting of colorectal
cancer organoids with zoledronic acid conjugated to the anti-EGFR
antibody cetuximab. J Immunother Cancer. 10:e0056602022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang
Z, Wang C, Zhang Z, Xia W, et al: gammadeltaT17 cells promote the
accumulation and expansion of myeloid-derived suppressor cells in
human colorectal cancer. Immunity. 40:785–800. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Corsale AM, Di Simone M, Lo Presti E,
Dieli F and Meraviglia S: γδ T cells and their clinical application
in colon cancer. Front Immunol. 14:10988472023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Grivennikov SI, Wang K, Mucida D, Stewart
CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung
KE, et al: Adenoma-linked barrier defects and microbial products
drive IL-23/IL-17-mediated tumour growth. Nature. 491:254–258.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF,
Cayatte C, Chen Y, Blumenschein WM, Judo M, Ayanoglu G, McClanahan
TK, et al: Interleukin-23-Independent IL-17 production regulates
intestinal epithelial permeability. Immunity. 43:727–738. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Reis BS, Darcy PW, Khan IZ, Moon CS,
Kornberg AE, Schneider VS, Alvarez Y, Eleso O, Zhu C, Schernthanner
M, et al: TCR-Vγδ usage distinguishes protumor from antitumor
intestinal γδ T cell subsets. Science. 377:276–284. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mu X, Xiang Z, Xu Y, He J, Lu J, Chen Y,
Wang X, Tu CR, Zhang Y, Zhang W, et al: Glucose metabolism controls
human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell
Mol Immunol. 19:944–956. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Agerholm R and Bekiaris V: Evolved to
protect, designed to destroy: IL-17-producing γδ T cells in
infection, inflammation, and cancer. Eur J Immunol. 51:2164–2177.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lopes N, McIntyre C, Martin S, Raverdeau
M, Sumaria N, Kohlgruber AC, Fiala GJ, Agudelo LZ, Dyck L, Kane H,
et al: Distinct metabolic programs established in the thymus
control effector functions of γδ T cell subsets in tumor
microenvironments. Nat Immunol. 22:179–192. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mensurado S and Silva-Santos B: Battle of
the γδ T cell subsets in the gut. Trends Cancer. 8:881–883. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Silva-Santos B, Mensurado S and Coffelt
SB: γδ T cells: Pleiotropic immune effectors with therapeutic
potential in cancer. Nat Rev Cancer. 19:392–404. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cai L, Chen A and Tang D: A new strategy
for immunotherapy of Microsatellite-stable (MSS)-type advanced
colorectal cancer: Multi-pathway combination therapy with
PD-1/PD-L1 inhibitors. Immunology. Mar 22–2024.doi:
10.1111/imm.13785 (Epub ahead of print). View Article : Google Scholar
|
|
57
|
Han Y, Liu D and Li L: PD-1/PD-L1 pathway:
Current researches in cancer. Am J Cancer Res. 10:727–742.
2020.PubMed/NCBI
|
|
58
|
Postow MA, Sidlow R and Hellmann MD:
Immune-related adverse events associated with immune checkpoint
blockade. N Engl J Med. 378:158–168. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Reck M, Rodriguez-Abreu D, Robinson AG,
Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe
S, et al: Pembrolizumab versus chemotherapy for PD-L1-positive
Non-Small-Cell lung cancer. N Engl J Med. 375:1823–1833. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Robert C, Long GV, Brady B, Dutriaux C,
Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C,
Kalinka-Warzocha E, et al: Nivolumab in previously untreated
melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tie G, Messina KE, Yan J, Messina JA and
Messina LM: Hypercholesterolemia induces oxidant stress that
accelerates the ageing of hematopoietic stem cells. J Am Heart
Assoc. 3:e0002412014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tie G, Yan J, Khair L, Messina JA, Deng A,
Kang J, Fazzio T and Messina LM: Hypercholesterolemia increases
colorectal cancer incidence by reducing production of NKT and γδ T
cells from hematopoietic stem cells. Cancer Res. 77:2351–2362.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lu H, Shi T, Wang M, Li X, Gu Y, Zhang X,
Zhang G and Chen W: B7-H3 inhibits the IFN-γ-dependent cytotoxicity
of Vγ9Vδ2 T cells against colon cancer cells. Oncoimmunology.
9:17489912020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bas A, Swamy M, Abeler-Dorner L, Williams
G, Pang DJ, Barbee SD and Hayday AC: Butyrophilin-like 1 encodes an
enterocyte protein that selectively regulates functional
interactions with T lymphocytes. Proc Natl Acad Sci USA.
108:4376–4381. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Di Marco Barros R, Roberts NA, Dart RJ,
Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R,
Iannitto ML, et al: Epithelia use Butyrophilin-like molecules to
shape organ-Specific γδ T cell compartments. Cell. 167:203–218.e17.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Du Y, Peng Q, Cheng D, Pan T, Sun W, Wang
H, Ma X, He R, Zhang H, Cui Z, et al: Cancer Cell-expressed BTNL2
facilitates tumour immune escape via engagement with
IL-17A-producing γδ T cells. Nat Commun. 13:2312022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Harly C, Guillaume Y, Nedellec S, Peigne
CM, Monkkonen H, Monkkonen J, Li J, Kuball J, Adams EJ, Netzer S,
et al: Key implication of CD277/butyrophilin-3 (BTN3A) in cellular
stress sensing by a major human γδ T-cell subset. Blood.
120:2269–2279. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chen S, Li Z, Huang W, Wang Y and Fan S:
Prognostic and therapeutic significance of BTN3A proteins in
tumors. J Cancer. 12:4505–4512. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Palakodeti A, Sandstrom A, Sundaresan L,
Harly C, Nedellec S, Olive D, Scotet E, Bonneville M and Adams EJ:
The molecular basis for modulation of human Vγ9Vδ2 T cell responses
by CD277/butyrophilin-3 (BTN3A)-specific antibodies. J Biol Chem.
287:32780–32790. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cano CE, Pasero C, De Gassart A, Kerneur
C, Gabriac M, Fullana M, Granarolo E, Hoet R, Scotet E, Rafia C, et
al: BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell
cytotoxicity against malignant cells. Cell Rep. 36:1093592021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
De Gassart A, Le KS, Brune P, Agaugue S,
Sims J, Goubard A, Castellano R, Joalland N, Scotet E, Collette Y,
et al: Development of ICT01, a first-in-class, anti-BTN3A antibody
for activating Vγ9Vδ2 T cell-mediated antitumor immune response.
Sci Transl Med. 13:eabj08352021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Blazquez JL, Benyamine A, Pasero C and
Olive D: New insights into the regulation of γδ T cells by BTN3A
and Other BTN/BTNL in tumor immunity. Front Immunol. 9:16012018.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Seiwert N, Adam J, Steinberg P, Wirtz S,
Schwerdtle T, Adams-Quack P, Hovelmeyer N, Kaina B, Foersch S and
Fahrer J: Chronic intestinal inflammation drives colorectal tumor
formation triggered by dietary heme iron in vivo. Arch Toxicol.
95:2507–2522. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Santiago L, Castro M, Sanz-Pamplona R,
Garzon M, Ramirez-Labrada A, Tapia E, Moreno V, Layunta E,
Gil-Gomez G, Garrido M, et al: Extracellular granzyme A promotes
colorectal cancer development by enhancing gut inflammation. Cell
Rep. 32:1078472020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lebrero-Fernandez C, Wenzel UA, Akeus P,
Wang Y, Strid H, Simren M, Gustavsson B, Borjesson LG, Cardell SL,
Ohman L, et al: Altered expression of Butyrophilin (BTN) and
BTN-like (BTNL) genes in intestinal inflammation and colon cancer.
Immun Inflamm Dis. 4:191–200. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu J, Wu M, Yang Y, Wang Z, He S, Tian X
and Wang H: γδ T cells and the PD-1/PD-L1 axis: A love-hate
relationship in the tumor microenvironment. J Transl Med.
22:5532024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wu K, Feng J, Xiu Y, Li Z, Lin Z, Zhao H,
Zeng H, Xia W, Yu L and Xu B: Vδ2 T cell subsets, defined by PD-1
and TIM-3 expression, present varied cytokine responses in acute
myeloid leukemia patients. Int Immunopharmacol. 80:1061222020.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Pan T, Yang H, Wang WY, Rui YY, Deng ZJ,
Chen YC, Liu C and Hu H: Neoadjuvant immunotherapy with ipilimumab
plus nivolumab in mismatch repair Deficient/Microsatellite
Instability-High colorectal cancer: A preliminary report of case
series. Clin Colorectal Cancer. 23:104–110. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li X, Lu H, Gu Y, Zhang X, Zhang G, Shi T
and Chen W: Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells
on colon cancer cells by reducing perforin and granzyme B
expression. Exp Cell Res. 386:1117192020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Guo C, Dai X, Du Y, Xiong X and Gui X:
Preclinical development of a novel CCR8/CTLA-4 bispecific antibody
for cancer treatment by disrupting CTLA-4 signaling on CD8 T cells
and specifically depleting tumor-resident Tregs. Cancer Immunol
Immunother. 73:2102024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Aggarwal V, Workman CJ and Vignali DAA:
LAG-3 as the third checkpoint inhibitor. Nat Immunol. 24:1415–1422.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Perales O, Jilaveanu L, Adeniran A, Su DG,
Hurwitz M, Braun DA, Kluger HM and Schoenfeld DA: TIGIT expression
in renal cell carcinoma infiltrating T cells is variable and
inversely correlated with PD-1 and LAG3. Cancer Immunol Immunother.
73:1922024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bhat AA, Nisar S, Singh M, Ashraf B,
Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, et
al: Cytokine- and chemokine-induced inflammatory colorectal tumor
microenvironment: Emerging avenue for targeted therapy. Cancer
Commun (Lond). 42:689–715. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Shu Y and Zheng S: The current status and
prospect of immunotherapy in colorectal cancer. Clin Transl Oncol.
26:39–51. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen DS and Mellman I: Elements of cancer
immunity and the Cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yi Y, He HW, Wang JX, Cai XY, Li YW, Zhou
J, Cheng YF, Jin JJ, Fan J and Qiu SJ: The functional impairment of
HCC-infiltrating γδ T cells, partially mediated by regulatory T
cells in a TGFβ- and IL-10-dependent manner. J Hepatol. 58:977–983.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hu G, Wu P, Cheng P, Zhang Z, Wang Z, Yu
X, Shao X, Wu D, Ye J, Zhang T, et al: Tumor-infiltrating CD39+γδ
Tregs are novel immunosuppressive T cells in human colorectal
cancer. Oncoimmunology. 6:e12773052017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhan Y, Zheng L, Liu J, Hu D, Wang J, Liu
K, Guo J, Zhang T and Kong D: PLA2G4A promotes Right-sided
colorectal cancer progression by inducing CD39+γδ Treg
polarization. JCI Insight. 6:e1480282021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen Z, Han F, Du Y, Shi H and Zhou W:
Hypoxic microenvironment in cancer: Molecular mechanisms and
therapeutic interventions. Signal Transduct Target Ther. 8:702023.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li L, Cao B, Liang X, Lu S, Luo H, Wang Z,
Wang S, Jiang J, Lang J and Zhu G: Microenvironmental oxygen
pressure orchestrates an anti- and pro-tumoral γδ T cell
equilibrium via tumor-derived exosomes. Oncogene. 38:2830–2843.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Allen J and Sears CL: Impact of the gut
microbiome on the genome and epigenome of colon epithelial cells:
Contributions to colorectal cancer development. Genome Med.
11:112019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li Y, Wang Y, Shi F, Zhang X, Zhang Y, Bi
K, Chen X, Li L and Diao H: Phospholipid metabolites of the gut
microbiota promote hypoxia-induced intestinal injury via
CD1d-dependent γδ T cells. Gut Microbes. 14:20969942022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Casanova MR, Azevedo-Silva J, Rodrigues LR
and Preto A: Colorectal cancer cells increase the production of
short chain fatty acids by propionibacterium freudenreichii
impacting on cancer cells survival. Front Nutr. 5:442018.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Dupraz L, Magniez A, Rolhion N, Richard
ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, et
al: Gut microbiota-derived short-chain fatty acids regulate IL-17
production by mouse and human intestinal γδ T cells. Cell Rep.
36:1093322021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang
FH, Willocq V, Song A, Wasen C, Tauhid S, Chu R, et al: Gut
microbiome in progressive multiple sclerosis. Ann Neurol.
89:1195–1211. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sandstrom A, Peigne CM, Leger A, Crooks
JE, Konczak F, Gesnel MC, Breathnach R, Bonneville M, Scotet E and
Adams EJ: The intracellular B30.2 domain of butyrophilin 3A1 binds
phosphoantigens to mediate activation of human Vγ9Vδ2 T cells.
Immunity. 40:490–500. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Roselli M, Finamore A, Nuccitelli S,
Carnevali P, Brigidi P, Vitali B, Nobili F, Rami R, Garaguso I and
Mengheri E: Prevention of TNBS-induced colitis by different
Lactobacillus and Bifidobacterium strains is associated with an
expansion of gammadeltaT and regulatory T cells of intestinal
intraepithelial lymphocytes. Inflamm Bowel Dis. 15:1526–1536. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ustjanzew A, Sencio V, Trottein F, Faber
J, Sandhoff R and Paret C: Interaction between bacteria and the
immune system for cancer immunotherapy: The α-GalCer alliance. Int
J Mol Sci. 23:58962022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Baxter NT, Ruffin MT, Rogers MAM and
Schloss PD: Microbiota-based model improves the sensitivity of
fecal immunochemical test for detecting colonic lesions. Genome
Medicine. 8:372016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liang Q, Chiu J, Chen Y, Huang Y,
Higashimori A, Fang J, Brim H, Ashktorab H, Ng SC, Ng SSM, et al:
Fecal bacteria act as novel biomarkers for noninvasive diagnosis of
colorectal cancer. Clin Cancer Res. 23:2061–2070. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yu J, Feng Q, Wong SH, Zhang D, Liang QY,
Qin Y, Tang L, Zhao H, Stenvang J, Li Y, et al: Metagenomic
analysis of faecal microbiome as a tool towards targeted
non-invasive biomarkers for colorectal cancer. Gut. 66:70–78. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ooki A, Shinozaki E and Yamaguchi K:
Immunotherapy in colorectal cancer: Current and future strategies.
J Anus Rectum Colon. 5:11–24. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Heregger R, Huemer F, Steiner M,
Gonzalez-Martinez A, Greil R and Weiss L: Unraveling resistance to
immunotherapy in MSI-High colorectal cancer. Cancers (Basel).
15:50902023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Stary V, Pandey RV, List J, Kleissl L,
Deckert F, Kabiljo J, Laengle J, Gerakopoulos V, Oehler R, Watzke
L, et al: Dysfunctional tumor-infiltrating Vδ1 + T lymphocytes in
microsatellite-stable colorectal cancer. Nat Commun. 15:69492024.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wu Z, Lamao Q, Gu M, Jin X, Liu Y, Tian F,
Yu Y, Yuan P, Gao S, Fulford TS, et al: Unsynchronized butyrophilin
molecules dictate cancer cell evasion of Vγ9Vδ2 T-cell killing.
Cell Mol Immunol. 21:362–373. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li
J, He J, Yang J, Hu Y, Chen Y, Lin L, et al: Allogeneic Vγ9Vδ2
T-cell immunotherapy exhibits promising clinical safety and
prolongs the survival of patients with late-stage lung or liver
cancer. Cell Mol Immunol. 18:427–439. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yang XM, Lin XD, Shi W, Xie SX, Huang XN,
Yin SH, Jiang XB, Hammock BD, Xu ZP and Lu XL: Nanobody-based
bispecific T-cell engager (Nb-BiTE): A new platform for enhanced
T-cell immunotherapy. Signal Transduct Target Ther. 8:3282023.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Magee MS, Abraham TS, Baybutt TR,
Flickinger JC Jr, Ridge NA, Marszalowicz GP, Prajapati P,
Hersperger AR, Waldman SA and Snook AE: Human GUCY2C-targeted
chimeric antigen receptor (CAR)-expressing T cells eliminate
colorectal cancer metastases. Cancer Immunol Res. 6:509–516. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Li M, Li S, Zhao R, Lv J, Zheng D, Qin L,
Li S, Wu Q, Long Y, Tang Z, et al: CD318 is a target of chimeric
antigen receptor T cells for the treatment of colorectal cancer.
Clin Exp Med. 23:2409–2419. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Nicol AJ, Tokuyama H, Mattarollo SR, Hagi
T, Suzuki K, Yokokawa K and Nieda M: Clinical evaluation of
autologous gamma delta T cell-based immunotherapy for metastatic
solid tumours. Br J Cancer. 105:778–786. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kamrani A, Nasiri H, Hassanzadeh A,
Ahmadian Heris J, Mohammadinasab R, Sadeghvand S, Sadeghi M,
Valedkarimi Z, Hosseinzadeh R, Shomali N, et al: New immunotherapy
approaches for colorectal cancer: Focusing on CAR-T cell, BiTE, and
oncolytic viruses. Cell Commun Signal. 22:562024. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Van De Vyver AJ, Marrer-Berger E, Wang K,
Lehr T and Walz AC: Cytokine release syndrome by T-cell-Redirecting
therapies: Can we predict and modulate patient risk? Clin Cancer
Res. 27:6083–6094. 2021. View Article : Google Scholar : PubMed/NCBI
|