|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Min HY and Lee HY: Molecular targeted
therapy for anticancer treatment. Exp Mol Med. 54:1670–1694. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ricard-Blum S: The collagen family. Cold
Spring Harb Perspect Biol. 3:a0049782011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Salimian N, Peymani M, Ghaedi K, Hashemi M
and Rahimi E: Collagen 1A1 (COL1A1) and Collagen11A1(COL11A1) as
diagnostic biomarkers in Breast, colorectal and gastric cancers.
Gene. 892:1478672024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wu X, Cai J, Zuo Z and Li J: Collagen
facilitates the colorectal cancer stemness and metastasis through
an integrin/PI3K/AKT/Snail signaling pathway. Biomed Pharmacother.
114:1087082019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sun H, Wang Y, Wang S, Xie Y, Sun K, Li S,
Cui W and Wang K: The involvement of collagen family genes in tumor
enlargement of gastric cancer. Sci Rep. 13:1002023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zeltz C, Khalil M, Navab R and Tsao MS:
Collagen Type XI inhibits lung cancer-associated fibroblast
functions and restrains the integrin binding site availability on
collagen type I matrix. Int J Mol Sci. 23:117222022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Padežnik T, Oleksy A, Cokan A, Takač I and
Sobočan M: Changes in the extracellular matrix in endometrial and
cervical cancer: A systematic review. Int J Mol Sci. 24:54632023.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang X, Liang H, Liu W, Li X, Zhang W and
Shang X: A novel sequence variant in COL10A1 causing
spondylometaphyseal dysplasia accompanied with coxa valga: A case
report. Medicine (Baltimore). 98:e164852019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Leitinger B and Kwan AP: The discoidin
domain receptor DDR2 is a receptor for type X collagen. Matrix
Biol. 25:355–364. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Luckman SP, Rees E and Kwan AP: Partial
characterization of cell-type X collagen interactions. Biochem J.
372:485–493. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li T, Huang H, Shi G, Zhao L, Li T, Zhang
Z, Liu R, Hu Y, Liu H, Yu J and Li G: TGF-β1-SOX9 axis-inducible
COL10A1 promotes invasion and metastasis in gastric cancer via
epithelial-to-mesenchymal transition. Cell Death Dis. 9:8492018.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Liang Y, Xia W, Zhang T, Chen B, Wang H,
Song X, Zhang Z, Xu L, Dong G and Jiang F: Upregulated collagen
COL10A1 remodels the extracellular matrix and promotes malignant
progression in lung adenocarcinoma. Front Oncol. 10:5735342020.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wu JY, Lan XL, Yan DM, Fang YY, Peng YX,
Liang FF, Jiang L, Huang SN, Mo M, Lin CX, et al: The clinical
significance of transcription factor WD repeat and HMG-box DNA
binding protein 1 in laryngeal squamous cell carcinoma and its
potential molecular mechanism. Pathol Res Pract. 230:1537512022.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang M, Jin M, Gao Z, Yu W and Zhang W:
High COL10A1 expression potentially contributes to poor outcomes in
gastric cancer with the help of LEF1 and Wnt2. J Clin Lab Anal.
36:e246122022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chang HJ, Yang MJ, Yang YH, Hou MF, Hsueh
EJ and Lin SR: MMP13 is potentially a new tumor marker for breast
cancer diagnosis. Oncol Rep. 22:1119–1127. 2009.PubMed/NCBI
|
|
17
|
Sun Y, Wang L, Jiang M, Huang J, Liu Z and
Wolfl S: Secreted phosphoprotein 1 upstream invasive network
construction and analysis of lung adenocarcinoma compared with
human normal adjacent tissues by integrative biocomputation. Cell
Biochem Biophys. 56:59–71. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Andriani F, Landoni E, Mensah M,
Facchinetti F, Miceli R, Tagliabue E, Giussani M, Callari M, De
Cecco L, Colombo MP, et al: Diagnostic role of circulating
extracellular matrix-related proteins in non-small cell lung
cancer. BMC Cancer. 18:8992018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Patra R, Das NC and Mukherjee S: Exploring
the differential expression and prognostic significance of the
COL11A1 gene in human colorectal carcinoma: An integrated
bioinformatics approach. Front Genet. 12:6083132021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Jung B, Staudacher JJ and Beauchamp D:
Transforming growth factor β superfamily signaling in development
of colorectal cancer. Gastroenterology. 152:36–52. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu R, Yin G, Tuo H, Guo Y, Zhu Y, Zhang
L, Yang W, Liu Q and Wang Y: METTL3-induced lncRNA GBAP1 promotes
hepatocellular carcinoma progression by activating BMP/SMAD
pathway. Biol Direct. 18:532023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Iyengar PV, Marvin DL, Lama D, Tan TZ,
Suriyamurthy S, Xie F, van Dinther M, Mei H, Verma CS, Zhang L, et
al: TRAF4 inhibits bladder cancer progression by promoting BMP/SMAD
signaling. Mol Cancer Res. 20:1516–1531. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shi Y and Massagué J: Mechanisms of
TGF-beta signaling from cell membrane to the nucleus. Cell.
113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bierie B and Moses HL: TGF-beta and
cancer. Cytokine Growth Factor Rev. 17:29–40. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q,
Wang S, Hu T, Wu F and Zhou H: TGF-β signaling in the tumor
metabolic microenvironment and targeted therapies. J Hematol Oncol.
15:1352022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yang H, Yue GG, Yuen KK, Gao S, Leung PC,
Wong CK and Lau CB: Mechanistic insights into the anti-tumor and
anti-metastatic effects of Patrinia villosa aqueous extract in
colon cancer via modulation of TGF-β R1-smad2/3-E-cadherin and
FAK-RhoA-cofilin pathways. Phytomedicine. 117:1549002023.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sun Y, Ling J and Liu L: Collagen type X
alpha 1 promotes proliferation, invasion and epithelial-mesenchymal
transition of cervical cancer through activation of TGF-β/Smad
signaling. Physiol Int. May 18–2022.doi: 10.1556/2060.2022.00006
(Epub ahead of print). View Article : Google Scholar
|
|
28
|
Trono P, Ottavi F and Rosano L: Novel
insights into the role of Discoidin domain receptor 2 (DDR2) in
cancer progression: A new avenue of therapeutic intervention.
Matrix Biol. 125:31–39. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lv PC, Jiang AQ, Zhang WM and Zhu HL: FAK
inhibitors in cancer, a patent review. Expert Opin Ther Pat.
28:139–145. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pagani CA, Bancroft AC, Tower RJ,
Livingston N, Sun Y, Hong JY, Kent RN III, Strong AL, Nunez JH,
Medrano JMR, et al: Discoidin domain receptor 2 regulates aberrant
mesenchymal lineage cell fate and matrix organization. Sci Adv.
8:eabq61522022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chanez B, Ostacolo K, Badache A and
Thuault S: EB1 restricts breast cancer cell invadopodia formation
and matrix proteolysis via FAK. Cells. 10:3882021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li M, Wang Y, Li M, Wu X, Setrerrahmane S
and Xu H: Integrins as attractive targets for cancer therapeutics.
Acta Pharm Sin B. 11:2726–2737. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Recillas-Targa F: Cancer epigenetics: An
overview. Arch Med Res. 53:732–740. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhou S, Zeng H, Huang J, Lei L, Tong X, Li
S, Zhou Y, Guo H, Khan M, Luo L, et al: Epigenetic regulation of
melanogenesis. Ageing Res Rev. 69:1013492021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li Y, Li X, Deng M, Ye C, Peng Y and Lu Y:
Cancer-associated fibroblasts hinder lung squamous cell carcinoma
oxidative stress-induced apoptosis via METTL3 mediated m6A
methylation of COL10A1. Oxid Med Cell Longev. 2022:43208092022.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zeng C, Huang W, Li Y and Weng H: Roles of
METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol
Oncol. 13:1172020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xu Y, Song M, Hong Z, Chen W, Zhang Q,
Zhou J, Yang C, He Z, Yu J, Peng X, et al: The N6-methyladenosine
METTL3 regulates tumorigenesis and glycolysis by mediating m6A
methylation of the tumor suppressor LATS1 in breast cancer. J Exp
Clin Cancer Res. 42:102023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shi K, Sa R, Dou L, Wu Y, Dong Z, Fu X and
Yu H: Correction: METTL3 exerts synergistic effects on m6A
methylation and histone modification to regulate the function of
VGF in lung adenocarcinoma. Clin Epigenetics. 16:22024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang Q, Chen C, Ding Q, Zhao Y, Wang Z,
Chen J, Jiang Z, Zhang Y, Xu G, Zhang J, et al: METTL3-mediated
m6A modification of HDGF mRNA promotes gastric cancer
progression and has prognostic significance. Gut. 69:1193–1205.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Guo S, Wang E, Wang B, Xue Y, Kuang Y and
Liu H: Comprehensive multiomics analyses establish the optimal
prognostic model for resectable gastric cancer: Prognosis
prediction for resectable GC. Ann Surg Oncol. 31:2078–2089. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cai Y, Lyu T, Li H, Liu C, Xie K, Xu L, Li
W, Liu H, Zhu J, Lyu Y, et al: LncRNA CEBPA-DT promotes liver
cancer metastasis through DDR2/β-catenin activation via interacting
with hnRNPC. J Exp Clin Cancer Res. 41:3352022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xie B, Lin W, Ye J, Wang X, Zhang B, Xiong
S, Li H and Tan G: DDR2 facilitates hepatocellular carcinoma
invasion and metastasis via activating ERK signaling and
stabilizing SNAIL1. J Exp Clin Cancer Res. 34:1012015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ren L, Ren Q, Wang J, He Y, Deng H, Wang X
and Liu C: miR-199a-3p promotes gastric cancer progression by
promoting its stemness potential via DDR2 mediation. Cell Signal.
106:1106362023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang YG, Xu L, Jia RR, Wu Q, Wang T, Wei
J, Ma JL, Shi M and Li ZS: DDR2 induces gastric cancer cell
activities via activating mTORC2 signaling and is associated with
clinicopathological characteristics of gastric cancer. Dig Dis Sci.
61:2272–2283. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ren T, Zhang W, Liu X, Zhao H, Zhang J,
Zhang J, Li X, Zhang Y, Bu X, Shi M, et al: Discoidin domain
receptor 2 (DDR2) promotes breast cancer cell metastasis and the
mechanism implicates epithelial-mesenchymal transition programme
under hypoxia. J Pathol. 234:526–537. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xu J, Lu W, Zhang S, Zhu C, Ren T, Zhu T,
Zhao H, Liu Y and Su J: Overexpression of DDR2 contributes to cell
invasion and migration in head and neck squamous cell carcinoma.
Cancer Biol Ther. 15:612–622. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Davis FM, Stewart TA, Thompson EW and
Monteith GR: Targeting EMT in cancer: Opportunities for
pharmacological intervention. Trends Pharmacol Sci. 35:479–488.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ullah R, Yin Q, Snell AH and Wan L:
RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer
Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zheng F, Wu J, Zhao S, Luo Q, Tang Q, Yang
L, Li L, Wu W and Hann SS: Baicalein increases the expression and
reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα
and MEK/ERK1/2 signaling pathways in human non-small cell lung
cancer cells. J Exp Clin Cancer Res. 34:412015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wen Z, Sun J, Luo J, Fu Y, Qiu Y, Li Y, Xu
Y, Wu H and Zhang Q: COL10A1-DDR2 axis promotes the progression of
pancreatic cancer by regulating MEK/ERK signal transduction. Front
Oncol. 12:10493452022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang F, Yu Z, Liu X, Hu F, Liu X, Fu X,
Liu Y and Zou Z: A meta-analysis and bioinformatics analysis of
P4HB expression levels in the prognosis of cancer patients. Pathol
Res Pract. 245:1544742023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Feng D, Wang J, Li D, Wu R, Tuo Z, Yu Q,
Ye L, Miyamoto A, Yoo KH, Wang C, et al: Targeting Prolyl
4-hydroxylase subunit beta (P4HB) in cancer: New roads to travel.
Aging Dis. Nov 26–2023.
|
|
53
|
Feng D, Li L, Li D, Wu R, Zhu W, Wang J,
Ye L and Han P: Prolyl 4-hydroxylase subunit beta (P4HB) could
serve as a prognostic and radiosensitivity biomarker for prostate
cancer patients. Eur J Med Res. 28:2452023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ma X, Wang J, Zhuang J, Ma X, Zheng N,
Song Y and Xia W: P4HB modulates epithelial-mesenchymal transition
and the β-catenin/Snail pathway influencing chemoresistance in
liver cancer cells. Oncol Lett. 20:257–265. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yang W, Wu X and Zhou F: Collagen Type X
Alpha 1 (COL10A1) Contributes to cell proliferation, migration, and
invasion by targeting Prolyl 4-hydroxylase beta polypeptide (P4HB)
in breast cancer. Med Sci Monit. 27:e9289192021.PubMed/NCBI
|
|
56
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and
Ma W: ceRNA in cancer: Possible functions and clinical
implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu Q, Zhao H, Guo Y, Zhang K, Shang F and
Liu T: Bioinformatics-based analysis: Noncoding RNA-Mediated
COL10A1 is associated with poor prognosis and immune cell
infiltration in pancreatic cancer. J Healthc Eng. 2022:79049822022.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu Q, Zhang W, Wu Z, Liu H, Hu H, Shi H,
Li S and Zhang X: Construction of a circular
RNA-microRNA-messengerRNA regulatory network in stomach
adenocarcinoma. J Cell Biochem. 121:1317–1331. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li HH, Wang JD, Wang W, Wang HF and Lv JQ:
Effect of miR-26a-5p on gastric cancer cell proliferation,
migration and invasion by targeting COL10A1. Eur Rev Med Pharmacol
Sci. 24:1186–1194. 2020.PubMed/NCBI
|
|
60
|
Guo Q, Zheng M, Xu Y, Wang N and Zhao W:
MiR-384 induces apoptosis and autophagy of non-small cell lung
cancer cells through the negative regulation of Collagen α-1(X)
chain gene. Biosci Rep. 39:2019. View Article : Google Scholar
|
|
61
|
Mamdani H, Matosevic S, Khalid AB, Durm G
and Jalal SI: Immunotherapy in lung cancer: Current landscape and
future directions. Front Immunol. 13:8236182022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu X, Li L, Xie X, Zhuang D and Hu C:
Integrated bioinformatics analysis of microarray data from the GEO
database to identify the candidate genes linked to poor prognosis
in lung adenocarcinoma. Technol Health Care. 31:579–592. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wu X, Zhang W, Hu Y and Yi X:
Bioinformatics approach reveals systematic mechanism underlying
lung adenocarcinoma. Tumori. 101:281–286. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shi Y, Chang D, Li W, Zhao F, Ren X and
Hou B: Identification of core genes and clinical outcomes in tumors
originated from endoderm (gastric cancer and lung carcinoma) via
bioinformatics analysis. Medicine (Baltimore). 100:e251542021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Díaz Del Arco C, Ortega Medina L, Estrada
Muñoz L, García Gómez de Las Heras S and Fernández Aceñero MJ: Is
there still a place for conventional histopathology in the age of
molecular medicine? Laurén classification, inflammatory
infiltration and other current topics in gastric cancer diagnosis
and prognosis. Histol Histopathol. 36:587–613. 2021.PubMed/NCBI
|
|
66
|
Cai Z, Wei Y, Chen S, Gong Y, Fu Y, Dai X,
Zhou Y, Yang H, Tang L and Liu H: Screening and identification of
key biomarkers in alimentary tract cancers: A bioinformatic
analysis. Cancer Biomark. 29:221–233. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li Y, Luo Y, Tian Q, Lai Y, Xu L, Yun H,
Liang Y, Liao D, Gu R, Liu L, et al: Integrated bioinformatics
analysis for identifying the significant genes as poor prognostic
markers in gastric adenocarcinoma. J Oncol.
2022:90804602022.PubMed/NCBI
|
|
68
|
Aktas SH, Taskin-Tok T, Al-Khafaji K and
Akın-Balı DF: A detailed understanding of the COL10A1 and SOX9
genes interaction based on potentially damaging mutations in
gastric cancer using computational techniques. J Biomol Struct Dyn.
40:11533–11544. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shen N, Zhu S, Zhang Z and Yong X: High
Expression of COL10A1 is an independent predictive poor prognostic
biomarker and associated with immune infiltration in advanced
gastric cancer microenvironment. J Oncol. 2022:14633162022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Moreira AM, Ferreira RM, Carneiro P,
Figueiredo J, Osório H, Barbosa J, Preto J, Pinto-do-Ó P, Carneiro
F and Seruca R: Proteomic identification of a gastric tumor ECM
signature associated with cancer progression. Front Mol Biosci.
9:8185522022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Necula L, Matei L, Dragu D, Pitica I,
Neagu AI, Bleotu C, Dima S, Popescu I, Diaconu CC and
Chivu-Economescu M: High plasma levels of COL10A1 are associated
with advanced tumor stage in gastric cancer patients. World J
Gastroenterol. 26:3024–3033. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chen L, Zhang X, Zhang Q, Zhang T, Xie J,
Wei W, Wang Y, Yu H and Zhou H: A necroptosis related prognostic
model of pancreatic cancer based on single cell sequencing analysis
and transcriptome analysis. Front Immunol. 13:10224202022.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xu Q, Zheng J, Su Z, Chen B and Gu S:
COL10A1 promotes tumorigenesis by modulating CD276 in pancreatic
adenocarcinoma. BMC Gastroenterol. 23:3972023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Thorlacius-Ussing J, Jensen C, Nissen NI,
Cox TR, Kalluri R, Karsdal M and Willumsen N: The collagen
landscape in cancer: Profiling collagens in tumors and in
circulation reveals novel markers of cancer-associated fibroblast
subtypes. J Pathol. 262:22–36. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lou X, Gao H, Xu X, Ye Z, Zhang W, Wang F,
Chen J, Zhang Y, Chen X, Qin Y, et al: The Interplay of four main
pathways recomposes immune landscape in primary and metastatic
Gastroenteropancreatic neuroendocrine tumors. Front Oncol.
12:8084482022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang X, Chen B, Liu K, Ma Y, Liu Y, Zhou
H and Wei P: Infection with COVID-19 promotes the progression of
pancreatic cancer through the PI3K-AKT signaling pathway. Discov
Oncol. 14:2252023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Abdi E, Latifi-Navid S and Latifi-Navid H:
LncRNA polymorphisms and breast cancer risk. Pathol Res Pract.
229:1537292022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Won KA and Spruck C: Triple-negative
breast cancer therapy: Current and future perspectives (Review).
Int J Oncol. 57:1245–1261. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Onkar SS, Carleton NM, Lucas PC, Bruno TC,
Lee AV, Vignali DAA and Oesterreich S: The great immune escape:
Understanding the divergent immune response in breast cancer
subtypes. Cancer Discov. 13:23–40. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang M, Chen H, Wang M, Bai F and Wu K:
Bioinformatics analysis of prognostic significance of COL10A1 in
breast cancer. Biosci Rep. 40:BSR201932862020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Malvia S, Chintamani C, Sarin R, Dubey US,
Saxena S and Bagadi SAR: Aberrant expression of COL14A1, CELRS3,
and CTHRC1 in breast cancer сells. Exp Oncol. 45:28–43. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Brodsky AS, Xiong J, Yang D, Schorl C,
Fenton MA, Graves TA, Sikov WM, Resnick MB and Wang Y:
Identification of stromal ColXα1 and tumor-infiltrating lymphocytes
as putative predictive markers of neoadjuvant therapy in estrogen
receptor-positive/HER2-positive breast cancer. BMC Cancer.
16:2742016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhou W, Li Y, Gu D, Xu J, Wang R, Wang H
and Liu C: High expression COL10A1 promotes breast cancer
progression and predicts poor prognosis. Heliyon. 8:e110832022.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bao S and He G: Identification of key
genes and key pathways in breast cancer based on machine learning.
Med Sci Monit. 28:e9355152022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang M, Feng R, Chen Z, Shi W, Li C, Liu
H, Wu K, Li D and Li X: Identification of cancer-associated
fibroblast subtype of triple-negative breast cancer. J Oncol.
2022:64526362022.PubMed/NCBI
|
|
86
|
Giussani M, Landoni E, Merlino G, Turdo F,
Veneroni S, Paolini B, Cappelletti V, Miceli R, Orlandi R, Triulzi
T and Tagliabue E: Extracellular matrix proteins as diagnostic
markers of breast carcinoma. J Cell Physiol. 233:6280–6290. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cen S, Jiang D, Lv D, Xu R, Hou J, Yang Z,
Wu P, Xiong X and Gao X: Comprehensive analysis of the biological
functions of endoplasmic reticulum stress in prostate cancer. Front
Endocrinol (Lausanne). 14:10902772023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Xu S, Liu D, Qin Z, Liang Z, Xie H, Yi B,
Wang K, Lin G, Liu R, Yang K, et al: Experimental validation and
pan-cancer analysis identified COL10A1 as a novel oncogene and
potential therapeutic target in prostate cancer. Aging (Albany NY).
15:15134–15160. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang C, Wang J, Chen S, Li K, Wan S and
Yang L: COL10A1 as a prognostic biomarker in association with
immune infiltration in prostate cancer. Curr Cancer Drug Targets.
24:340–353. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhao J, Wang R, Sun X, Huang K, Jin J, Lan
L, Jian Y, Xu Z, Wu H, Wang S and Wang J: An integrative
multi-omics analysis based on nomogram for predicting prostate
cancer bone metastasis incidence. Genet Res (Camb).
2022:82137232022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mármol I, Sánchez-de-Diego C, Pradilla
Dieste A, Cerrada E and Rodriguez Yoldi MJ: Colorectal carcinoma: A
general overview and future perspectives in colorectal cancer. Int
J Mol Sci. 18:1972017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Solé X, Crous-Bou M, Cordero D, Olivares
D, Guinó E, Sanz-Pamplona R, Rodriguez-Moranta F, Sanjuan X, de Oca
J, Salazar R and Moreno V: Discovery and validation of new
potential biomarkers for early detection of colon cancer. PLoS One.
9:e1067482014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Huang H, Li T, Ye G, Zhao L, Zhang Z, Mo
D, Wang Y, Zhang C, Deng H, Li G and Liu H: High expression of
COL10A1 is associated with poor prognosis in colorectal cancer.
Onco Targets Ther. 11:1571–1581. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kahlert UD, Shi W, Strecker M, Scherpinski
LA, Wartmann T, Dölling M, Perrakis A, Relja B, Mengoni M, Braun A
and Croner RS: COL10A1 allows stratification of invasiveness of
colon cancer and associates to extracellular matrix and immune cell
enrichment in the tumor parenchyma. Front Oncol. 12:10075142022.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
He C, Liu W, Xiong Y, Pan L, Luo L, Tu Y,
Song R and Chen W: VSNL1 promotes cell proliferation, migration,
and invasion in colorectal cancer by binding with COL10A1. Ann Clin
Lab Sci. 52:60–72. 2022.PubMed/NCBI
|
|
96
|
Sroor FM, Aboelenin MM, Mahrous KF,
Mahmoud K, Elwahy AHM and Abdelhamid IA: Novel
2-cyanoacrylamido-4,5,6,7-tetrahydrobenzo[b]thiophene derivatives
as potent anticancer agents. Arch Pharm (Weinheim).
353:e20000692020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhao H, Chen Z, Fang Y, Su M, Xu Y, Wang
Z, Gyamfi MA and Zhao J: Prediction of prognosis and recurrence of
bladder cancer by ECM-Related genes. J Immunol Res.
2022:17930052022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu Q, Diao R, Feng G, Mu X and Li A: Risk
score based on three mRNA expression predicts the survival of
bladder cancer. Oncotarget. 8:61583–61591. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wu SX, Huang J, Liu ZW, Chen HG, Guo P,
Cai QQ, Zheng JJ, Qin HD, Zheng ZS, Chen X, et al: A
Genomic-clinicopathologic Nomogram for the preoperative prediction
of lymph node metastasis in bladder cancer. EBioMedicine. 31:54–65.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Karagoz K, Lehman HL, Stairs DB, Sinha R
and Arga KY: Proteomic and metabolic signatures of esophageal
squamous cell carcinoma. Curr Cancer Drug Targets. Feb 2–2016.(Epub
ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li J, Wang X, Zheng K, Liu Y, Li J and
Wang S, Liu K, Song X, Li N, Xie S and Wang S: The clinical
significance of collagen family gene expression in esophageal
squamous cell carcinoma. PeerJ. 7:e77052019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Li Y, Wang X, Shi L, Xu J and Sun B:
Predictions for high COL1A1 and COL10A1 expression resulting in a
poor prognosis in esophageal squamous cell carcinoma by
bioinformatics analyses. Transl Cancer Res. 9:85–94. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Song Y, Wang X, Wang F, Peng X, Li P, Liu
S and Zhang D: Identification of four genes and biological
characteristics of esophageal squamous cell carcinoma by integrated
bioinformatics analysis. Cancer Cell Int. 21:1232021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lapa RML, Barros-Filho MC, Marchi FA,
Domingues MAC, de Carvalho GB, Drigo SA, Kowalski LP and Rogatto
SR: Integrated miRNA and mRNA expression analysis uncovers drug
targets in laryngeal squamous cell carcinoma patients. Oral Oncol.
93:76–84. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Xie C, Du LY, Guo F, Li X and Cheng B:
Exosomes derived from microRNA-101-3p-overexpressing human bone
marrow mesenchymal stem cells suppress oral cancer cell
proliferation, invasion, and migration. Mol Cell Biochem.
458:11–26. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Guo W, Zheng X, Hua L, Zheng X, Zhang Y,
Sun B, Tao Z and Gao J: Screening and bioinformatical analysis of
differentially expressed genes in nasopharyngeal carcinoma. J
Cancer. 12:1867–1883. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Vishnubalaji R, Shaath H, Elkord E and
Alajez NM: Long non-coding RNA (lncRNA) transcriptional landscape
in breast cancer identifies LINC01614 as non-favorable prognostic
biomarker regulated by TGFβ and focal adhesion kinase (FAK)
signaling. Cell Death Discov. 5:1092019. View Article : Google Scholar : PubMed/NCBI
|