|
1
|
Chaoying L, Chao M, Xiangrui Y, Yingjian
H, Gang Z, Yunhan R and Yu G: Risk factors of bone metastasis in
patients with newly diagnosed prostate cancer. Eur Rev Med
Pharmacol Sci. 26:391–398. 2022.PubMed/NCBI
|
|
2
|
Clézardin P, Coleman R, Puppo M, Ottewell
P, Bonnelye E, Paycha F, Confavreux CB and Holen I: Bone
metastasis: Mechanisms, therapies, and biomarkers. Physiol Rev.
101:797–855. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Coleman RE: Clinical features of
metastatic bone disease and risk of skeletal morbidity. Clin Cancer
Res. 12:6243s–6249s. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Puisieux A, Brabletz T and Caramel J:
Oncogenic roles of EMT-inducing transcription factors. Nat Cell
Biol. 16:488–494. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chaffer CL, San Juan BP, Lim E and
Weinberg RA: EMT, cell plasticity and metastasis. Cancer Metastasis
Rev. 35:645–654. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Udagawa N, Koide M, Nakamura M, Nakamichi
Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C
and Tsuda E: Osteoclast differentiation by RANKL and OPG signaling
pathways. J Bone Miner Metab. 39:19–26. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Guise TA, Mohammad KS, Clines G, Stebbins
EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L
and Chirgwin JM: Basic mechanisms responsible for osteolytic and
osteoblastic bone metastases. Clin Cancer Res. 12:6213s–6216s.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Barreda DR, Hanington PC and Belosevic M:
Regulation of myeloid development and function by colony
stimulating factors. Dev Comp Immunol. 28:509–554. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Metcalf D: The colony-stimulating factors
and cancer. Nat Rev Cancer. 10:425–434. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wakefield PE, James WD, Samlaska CP and
Meltzer MS: Colony-stimulating factors. J Am Acad Dermatol.
23:903–912. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bradley TR and Metcalf D: The growth of
mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci.
44:287–299. 1966. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ichikawa Y, Pluznik DH and Sachs L: In
vitro control of the development of macrophage and granulocyte
colonies. Proc Natl Acad Sci USA. 56:488–495. 1966. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hartung T: Immunomodulation by
colony-stimulating factors. Rev Physiol Biochem Pharmacol.
136:1–164. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hareng L and Hartung T: Induction and
regulation of endogenous granulocyte colony-stimulating factor
formation. Biol Chem. 383:1501–1517. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liu Q, Qiao L, Hu P, Deng G and Zhang J,
Liang N, Xie J and Zhang J: The effect of granulocyte and
granulocyte-macrophage colony stimulating factors on tumor
promotion. J BUON. 22:21–28. 2017.PubMed/NCBI
|
|
16
|
Mueller MM, Peter W, Mappes M, Huelsen A,
Steinbauer H, Boukamp P, Vaccariello M, Garlick J and Fusenig NE:
Tumor progression of skin carcinoma cells in vivo promoted by
clonal selection, mutagenesis, and autocrine growth regulation by
granulocyte colony-stimulating factor and granulocyte-macrophage
colony-stimulating factor. Am J Pathol. 159:1567–1579. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gutschalk CM, Herold-Mende CC, Fusenig NE
and Mueller MM: Granulocyte colony-stimulating factor and
granulocyte-macrophage colony-stimulating factor promote malignant
growth of cells from head and neck squamous cell carcinomas in
vivo. Cancer Res. 66:8026–8036. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lee CH, Lin SH, Chang SF, Chang PY, Yang
ZP and Lu SC: Extracellular signal-regulated kinase 2 mediates the
expression of granulocyte colony-stimulating factor in invasive
cancer cells. Oncol Rep. 30:419–424. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Braun B, Lange M, Oeckler R and Mueller
MM: Expression of G-CSF and GM-CSF in human meningiomas correlates
with increased tumor proliferation and vascularization. J
Neurooncol. 68:131–140. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pei XH, Nakanishi Y, Takayama K, Bai F and
Hara N: Granulocyte, granulocyte-macrophage, and macrophage
colony-stimulating factors can stimulate the invasive capacity of
human lung cancer cells. Br J Cancer. 79:40–46. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek
T, Qu X, Yu L, Ross J, Korsisaari N, Cao T, et al:
Granulocyte-colony stimulating factor promotes lung metastasis
through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci
USA. 107:21248–21255. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mroczko B, Szmitkowski M and Czygier M:
Granulocyte colony stimulating factor (G-CSF) in diagnosis and
monitoring of non-small-cell lung cancer (NSCLC). Pol Arch Med
Wewn. 103:163–168. 2000.(In Polish). PubMed/NCBI
|
|
23
|
Fukuta K, Daizumoto K, Takahashi M, Mori
H, Otomi Y, Uehara H, Fukawa T, Yamamoto Y, Yamaguchi K and
Kanayama HO: Granulocyte colony-stimulating factor producing
retroperitoneal leiomyosarcoma. IJU Case Rep. 4:75–78. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yip RKH, Rimes JS, Capaldo BD, Vaillant F,
Mouchemore KA, Pal B, Chen Y, Surgenor E, Murphy AJ, Anderson RL,
et al: Mammary tumour cells remodel the bone marrow vascular
microenvironment to support metastasis. Nat Commun. 12:69202021.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ushach I and Zlotnik A: Biological role of
granulocyte macrophage colony-stimulating factor (GM-CSF) and
macrophage colony-stimulating factor (M-CSF) on cells of the
myeloid lineage. J Leukoc Biol. 100:481–489. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hume DA and MacDonald KP: Therapeutic
applications of macrophage colony-stimulating factor-1 (CSF-1) and
antagonists of CSF-1 receptor (CSF-1R) signaling. Blood.
119:1810–1820. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Moore MA and Warren DJ: Synergy of
interleukin 1 and granulocyte colony-stimulating factor: In vivo
stimulation of stem-cell recovery and hematopoietic regeneration
following 5-fluorouracil treatment of mice. Proc Natl Acad Sci USA.
84:7134–7138. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hamilton JA: Colony-stimulating factors in
inflammation and autoimmunity. Nat Rev Immunol. 8:533–544. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Martinez FO and Gordon S: The M1 and M2
paradigm of macrophage activation: Time for reassessment.
F1000Prime Rep. 6:132014. View
Article : Google Scholar : PubMed/NCBI
|
|
30
|
Dougherty ST, Eaves CJ, McBride WH and
Dougherty GJ: Role of macrophage-colony-stimulating factor in
regulating the accumulation and phenotype of tumor-associated
macrophages. Cancer Immunol Immunother. 44:165–172. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Han Y, Ma FY, Tesch GH, Manthey CL and
Nikolic-Paterson DJ: c-fms blockade reverses glomerular macrophage
infiltration and halts development of crescentic anti-GBM
glomerulonephritis in the rat. Lab Invest. 91:978–991. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shaposhnik Z, Wang X and Lusis AJ:
Arterial colony stimulating factor-1 influences atherosclerotic
lesions by regulating monocyte migration and apoptosis. J Lipid
Res. 51:1962–1970. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Manthey CL, Johnson DL, Illig CR, Tuman
RW, Zhou Z, Baker JF, Chaikin MA, Donatelli RR, Franks CF, Zeng L,
et al: JNJ-28312141, a novel orally active colony-stimulating
factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor
tyrosine kinase inhibitor with potential utility in solid tumors,
bone metastases, and acute myeloid leukemia. Mol Cancer Ther.
8:3151–3161. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lin EY, Nguyen AV, Russell RG and Pollard
JW: Colony-stimulating factor 1 promotes progression of mammary
tumors to malignancy. J Exp Med. 193:727–740. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
McDermott RS, Deneux L, Mosseri V,
Védrenne J, Clough K, Fourquet A, Rodriguez J, Cosset JM, Sastre X,
Beuzeboc P, et al: Circulating macrophage colony stimulating factor
as a marker of tumour progression. Eur Cytokine Netw. 13:121–127.
2002.PubMed/NCBI
|
|
36
|
Scholl SM, Lidereau R, de la Rochefordiere
A, Le-Nir CC, Mosseri V, Noguès C, Pouillart P and Stanley FR:
Circulating levels of the macrophage colony stimulating factor
CSF-1 in primary and metastatic breast cancer patients. A pilot
study. Breast Cancer Res Treat. 39:275–283. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kang J, Choi YJ, Seo BY, Jo U, Park SI,
Kim YH and Park KH: A Selective FGFR inhibitor AZD4547 suppresses
RANKL/M-CSF/OPG-dependent ostoclastogenesis and breast cancer
growth in the metastatic bone microenvironment. Sci Rep.
9:87262019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liverani C, Mercatali L, Spadazzi C, La
Manna F, De Vita A, Riva N, Calpona S, Ricci M, Bongiovanni A,
Gunelli E, et al: CSF-1 blockade impairs breast cancer
osteoclastogenic potential in co-culture systems. Bone. 66:214–222.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Borzone FR, Giorello MB, Martinez LM,
Sanmartin MC, Feldman L, Dimase F, Batagelj E, Yannarelli G and
Chasseing NA: Senescent mesenchymal stem/stromal cells in
pre-metastatic bone marrow of untreated advanced breast cancer
patients. Oncol Res. 31:361–374. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lee C, Whang YM, Campbell P, Mulcrone PL,
Elefteriou F, Cho SW and Park SI: Dual targeting c-met and VEGFR2
in osteoblasts suppresses growth and osteolysis of prostate cancer
bone metastasis. Cancer Lett. 414:205–213. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhao E, Wang L, Dai J, Kryczek I, Wei S,
Vatan L, Altuwaijri S, Sparwasser T, Wang G, Keller ET and Zou W:
Regulatory T cells in the bone marrow microenvironment in patients
with prostate cancer. Oncoimmunology. 1:152–161. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ide H, Hatake K, Terado Y, Tsukino H,
Okegawa T, Nutahara K, Higashihara E and Horie S: Serum level of
macrophage colony-stimulating factor is increased in prostate
cancer patients with bone metastasis. Hum Cell. 21:1–6. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tsai YM, Chong IW, Hung JY, Chang WA, Kuo
PL, Tsai MJ and Hsu YL: Syringetin suppresses osteoclastogenesis
mediated by osteoblasts in human lung adenocarcinoma. Oncol Rep.
34:617–626. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fujita H, Gomori A, Fujioka Y, Kataoka Y,
Tanaka K, Hashimoto A, Suzuki T, Ito K, Haruma T, Yamamoto-Yokoi H,
et al: High potency VEGFRs/MET/FMS triple blockade by TAS-115
concomitantly suppresses tumor progression and bone destruction in
tumor-induced bone disease model with lung carcinoma cells. PLoS
One. 11:e01648302016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hung JY, Chang WA, Tsai YM, Hsu YL, Chiang
HH, Chou SH, Huang MS and Kuo PL: Tricetin, a dietary flavonoid,
suppresses benzo(a)pyrene-induced human non-small cell lung cancer
bone metastasis. Int J Oncol. 46:1985–1993. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Spadazzi C, Recine F, Mercatali L,
Miserocchi G, Liverani C, De Vita A, Bongiovanni A, Fausti V and
Ibrahim T: mTOR inhibitor and bone-targeted drugs break the vicious
cycle between clear-cell renal carcinoma and osteoclasts in an in
vitro co-culture model. J Bone Oncol. 16:1002272019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Suzuki K, Hino M, Hato F, Tatsumi N and
Kitagawa S: Cytokine-specific activation of distinct
mitogen-activated protein kinase subtype cascades in human
neutrophils stimulated by granulocyte colony-stimulating factor,
granulocyte-macrophage colony-stimulating factor, and tumor
necrosis factor-alpha. Blood. 93:341–349. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mann A, Breuhahn K, Schirmacher P and
Blessing M: Keratinocyte-derived granulocyte-macrophage colony
stimulating factor accelerates wound healing: Stimulation of
keratinocyte proliferation, granulation tissue formation, and
vascularization. J Invest Dermatol. 117:1382–1390. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wu FPK, Westphal JR, Hoekman K, Mels AK,
Statius Muller MG, de Waal RW, Beelen RHJ, van Leeuwen PAM, Meijer
S and Cuesta MA: The effects of surgery, with or without rhGM-CSF,
on the angiogenic profile of patients treated for colorectal
carcinoma. Cytokine. 25:68–72. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mueller MM and Fusenig NE: Friends or
foes-bipolar effects of the tumour stroma in cancer. Nat Rev
Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller
G and Bar-Sagi D: Oncogenic Kras-induced GM-CSF production promotes
the development of pancreatic neoplasia. Cancer Cell. 21:836–847.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vilalta M, Rafat M, Giaccia AJ and Graves
EE: Recruitment of circulating breast cancer cells is stimulated by
radiotherapy. Cell Rep. 8:402–409. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Obermueller E, Vosseler S, Fusenig NE and
Mueller MM: Cooperative autocrine and paracrine functions of
granulocyte colony-stimulating factor and granulocyte-macrophage
colony-stimulating factor in the progression of skin carcinoma
cells. Cancer Res. 64:7801–7812. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lahm H, Wyniger J, Hertig S, Yilmaz A,
Fischer JR, Givel JC and Odartchenko N: Secretion of bioactive
granulocyte-macrophage colony-stimulating factor by human
colorectal carcinoma cells. Cancer Res. 54:3700–3702.
1994.PubMed/NCBI
|
|
55
|
Oshika Y, Nakamura M, Abe Y, Fukuchi Y,
Yoshimura M, Itoh M, Ohnishi Y, Tokunaga T, Fukushima Y, Hatanaka
H, et al: Growth stimulation of non-small cell lung cancer
xenografts by granulocyte-macrophage colony-stimulating factor
(GM-CSF). Eur J Cancer. 34:1958–1961. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gutschalk CM, Yanamandra AK, Linde N,
Meides A, Depner S and Mueller MM: GM-CSF enhances tumor invasion
by elevated MMP-2, -9, and -26 expression. Cancer Med. 2:117–129.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Takeda K, Hatakeyama K, Tsuchiya Y,
Rikiishi H and Kumagai K: A correlation between GM-CSF gene
expression and metastases in murine tumors. Int J Cancer.
47:413–420. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kumar A, Taghi Khani A, Sanchez Ortiz A
and Swaminathan S: GM-CSF: A double-edged sword in cancer
immunotherapy. Front Immunol. 13:9012772022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lin Q, Fang X, Liang G, Luo Q, Cen Y, Shi
Y, Jia S, Li J, Yang W, Sanders AJ, et al: Silencing CTNND1
mediates triple-negative breast cancer bone metastasis via
upregulating CXCR4/CXCL12 axis and neutrophils infiltration in
bone. Cancers (Basel). 13:57032021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lee SK, Park KK, Kim HJ, Park J, Son SH,
Kim KR and Chung WY: Human antigen R-regulated CCL20 contributes to
osteolytic breast cancer bone metastasis. Sci Rep. 7:96102017.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yang K, Hu Y, Feng Y, Li K, Zhu Z, Liu S,
Lin Y and Yu B: IGF-1R mediates crosstalk between nasopharyngeal
carcinoma cells and osteoclasts and promotes tumor bone metastasis.
J Exp Clin Cancer Res. 43:462024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Das Roy L, Pathangey LB, Tinder TL,
Schettini JL, Gruber HE and Mukherjee P: Breast-cancer-associated
metastasis is significantly increased in a model of autoimmune
arthritis. Breast Cancer Res. 11:R562009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fuentelsaz-Romero S, Cuervo A,
Estrada-Capetillo L, Celis R, Garcia-Campos R, Ramirez J, Sastre S,
Samaniego R, Puig-Kröger A and Cañete JD: GM-CSF expression and
macrophage polarization in joints of undifferentiated arthritis
patients evolving to rheumatoid arthritis or psoriatic arthritis.
Front Immunol. 11:6139752021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Varricchi G, Poto R, Marone G and
Schroeder JT: IL-3 in the development and function of basophils.
Semin Immunol. 54:1015102021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yadav P, Vats R, Bano A and Bhardwaj R:
Hematopoietic stem cells culture, expansion and differentiation: An
insight into variable and available media. Int J Stem Cells.
13:326–334. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Donahue RE, Seehra J, Metzger M, Lefebvre
D, Rock B, Carbone S, Nathan DG, Garnick M, Sehgal PK, Laston D, et
al: Human IL-3 and GM-CSF act synergistically in stimulating
hematopoiesis in primates. Science. 241:1820–1823. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bénard A, Jacobsen A, Brunner M, Krautz C,
Klösch B, Swierzy I, Naschberger E, Podolska MJ, Kouhestani D,
David P, et al: Interleukin-3 is a predictive marker for severity
and outcome during SARS-CoV-2 infections. Nat Commun. 12:11122021.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mroczko B, Szmitkowski M,
Wereszczynska-Siemiatkowska U and Okulczyk B: Stem cell factor
(SCF) and interleukin 3 (IL-3) in the sera of patients with
colorectal cancer. Dig Dis Sci. 50:1019–1024. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Marone G, Gambardella AR, Mattei F,
Mancini J, Schiavoni G and Varricchi G: Basophils in tumor
microenvironment and surroundings. Adv Exp Med Biol. 1224:21–34.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Dentelli P, Rosso A, Olgasi C, Camussi G
and Brizzi MF: IL-3 is a novel target to interfere with tumor
vasculature. Oncogene. 30:4930–4940. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hahm ER, Kim SH, Pore SK, Mathan SV, Singh
RP and Singh SV: Mechanism of synergistic inhibitory effect of
benzyl isothiocyanate and zoledronic acid combination on breast
cancer induction of osteoclast differentiation. Mol Carcinog.
63:301–313. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sugihara A, Maeda O, Tsuji M, Tsujimura T,
Nakata Y, Akedo H, Kotake T and Terada N: Expression of cytokines
enhancing the osteoclast activity, and parathyroid hormone-related
protein in prostatic cancers before and after endocrine therapy: An
immunohistochemical study. Oncol Rep. 5:1389–1394. 1998.PubMed/NCBI
|
|
73
|
Qian BZ and Pollard JW: Macrophage
diversity enhances tumor progression and metastasis. Cell.
141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Aliper AM, Frieden-Korovkina VP, Buzdin A,
Roumiantsev SA and Zhavoronkov A: A role for G-CSF and GM-CSF in
nonmyeloid cancers. Cancer Med. 3:737–746. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY,
Kim CH, Park HG, Han SI and Kang HS: Induction of metastasis,
cancer stem cell phenotype, and oncogenic metabolism in cancer
cells by ionizing radiation. Mol Cancer. 16:102017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Luo S, Li P, Zhang A, Meng L, Huang L, Wu
X, Cheng H, Tu H and Gong X: G-CSF improving combined whole brain
radiotherapy and immunotherapy prognosis of non-small cell lung
cancer brain metastases. Int Immunopharmacol. 130:1117052024.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Psaila B and Lyden D: The metastatic
niche: Adapting the foreign soil. Nat Rev Cancer. 9:285–293. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Erler JT, Bennewith KL, Cox TR, Lang G,
Bird D, Koong A, Le QT and Giaccia AJ: Hypoxia-induced lysyl
oxidase is a critical mediator of bone marrow cell recruitment to
form the premetastatic niche. Cancer Cell. 15:35–44. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nguyen DX, Bos PD and Massagué J:
Metastasis: From dissemination to organ-specific colonization. Nat
Rev Cancer. 9:274–284. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Győri DS and Mócsai A: Osteoclast signal
transduction during bone metastasis formation. Front Cell Dev Biol.
8:5072020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Boyce BF: Advances in the regulation of
osteoclasts and osteoclast functions. J Dent Res. 92:860–867. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Povolny BT and Lee MY: The role of
recombinant human M-CSF, IL-3, GM-CSF and calcitriol in clonal
development of osteoclast precursors in primate bone marrow. Exp
Hematol. 21:532–537. 1993.PubMed/NCBI
|
|
83
|
Ray AL, Saunders AS, Nofchissey RA, Reidy
MA, Kamal M, Lerner MR, Fung KM, Lang ML, Hanson JA, Guo S, et al:
G-CSF is a novel mediator of T-cell suppression and an
immunotherapeutic target for women with colon cancer. Clin Cancer
Res. 29:2158–2169. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Brook N, Brook E, Dharmarajan A, Dass CR
and Chan A: Breast cancer bone metastases: Pathogenesis and
therapeutic targets. Int J Biochem Cell Biol. 96:63–78. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bade BC and Dela Cruz CS: Lung cancer
2020: Epidemiology, etiology, and prevention. Clin Chest Med.
41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu Y, Cheng W and Xin H, Liu R, Wang Q,
Cai W, Peng X, Yang F and Xin H: Nanoparticles advanced from
preclinical studies to clinical trials for lung cancer therapy.
Cancer Nanotechnol. 14:282023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lv T, Meng Y, Liu Y, Han Y, Xin H, Peng X
and Huang J: RNA nanotechnology: A new chapter in targeted therapy.
Colloids Surf B Biointerfaces. 230:1135332023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q,
Yang Q, Zhao H, Huang J and Peng X: Chemokines: Function and
therapeutic potential in bone metastasis of lung cancer. Cytokine.
172:1564032023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Al Husaini H, Wheatley-Price P, Clemons M
and Shepherd FA: Prevention and management of bone metastases in
lung cancer: A review. J Thorac Oncol. 4:251–259. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Molineux G, Pojda Z and Dexter TM: A
comparison of hematopoiesis in normal and splenectomized mice
treated with granulocyte colony-stimulating factor. Blood.
75:563–569. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Metcalf D, Begley CG, Williamson DJ, Nice
EC, De Lamarter J, Mermod JJ, Thatcher D and Schmidt A: Hemopoietic
responses in mice injected with purified recombinant murine GM-CSF.
Exp Hematol. 15:1–9. 1987.PubMed/NCBI
|
|
92
|
Metcalf D, Begley CG, Johnson GR, Nicola
NA, Lopez AF and Williamson DJ: Effects of purified bacterially
synthesized murine multi-CSF (IL-3) on hematopoiesis in normal
adult mice. Blood. 68:46–57. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lang RA, Metcalf D, Cuthbertson RA, Lyons
I, Stanley E, Kelso A, Kannourakis G, Williamson DJ, Klintworth GK,
Gonda TJ, et al: Transgenic mice expressing a hemopoietic growth
factor gene (GM-CSF) develop accumulations of macrophages,
blindness, and a fatal syndrome of tissue damage. Cell. 51:675–686.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chang JM, Metcalf D, Lang RA, Gonda TJ and
Johnson GR: Nonneoplastic hematopoietic myeloproliferative syndrome
induced by dysregulated multi-CSF (IL-3) expression. Blood.
73:1487–1497. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chang JM, Metcalf D, Gonda TJ and Johnson
GR: Long-term exposure to retrovirally expressed
granulocyte-colony-stimulating factor induces a nonneoplastic
granulocytic and progenitor cell hyperplasia without tissue damage
in mice. J Clin Invest. 84:1488–1496. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Dranoff G, Jaffee E, Lazenby A, Golumbek
P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D and Mulligan
RC: Vaccination with irradiated tumor cells engineered to secrete
murine granulocyte-macrophage colony-stimulating factor stimulates
potent, specific, and long-lasting anti-tumor immunity. Proc Natl
Acad Sci USA. 90:3539–3543. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Conlon KC, Miljkovic MD and Waldmann TA:
Cytokines in the treatment of cancer. J Interferon Cytokine Res.
39:6–21. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Gabrilove JL, Jakubowski A, Fain K, Grous
J, Scher H, Sternberg C, Yagoda A, Clarkson B, Bonilla MA, Oettgen
HF, et al: Phase I study of granulocyte colony-stimulating factor
in patients with transitional cell carcinoma of the urothelium. J
Clin Invest. 82:1454–1461. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Renwick W, Pettengell R and Green M: Use
of filgrastim and pegfilgrastim to support delivery of
chemotherapy: Twenty years of clinical experience. BioDrugs.
23:175–186. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lieschke GJ, Maher D, Cebon J, O'Connor M,
Green M, Sheridan W, Boyd A, Rallings M, Bonnem E, Metcalf D, et
al: Effects of bacterially synthesized recombinant human
granulocyte-macrophage colony-stimulating factor in patients with
advanced malignancy. Ann Intern Med. 110:357–364. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Boissier S, Ferreras M, Peyruchaud O,
Magnetto S, Ebetino FH, Colombel M, Delmas P, Delaissé JM and
Clézardin P: Bisphosphonates inhibit breast and prostate carcinoma
cell invasion, an early event in the formation of bone metastases.
Cancer Res. 60:2949–2954. 2000.PubMed/NCBI
|
|
102
|
Gao L, Deng H, Zhao H, Hirbe A, Harding J,
Ratner L and Weilbaecher K: HTLV-1 Tax transgenic mice develop
spontaneous osteolytic bone metastases prevented by osteoclast
inhibition. Blood. 106:4294–4302. 2005. View Article : Google Scholar : PubMed/NCBI
|