Effect of colony‑stimulating factor in the mechanism of bone metastasis development (Review)
- Authors:
- Yukun Han
- Yiling Wang
- Tongtong Lv
- Qing Yang
- Dezhou Cheng
- Jinxin Li
- Wei Wang
- Jinbai Huang
- Xiaochun Peng
-
Affiliations: Nuclear Medicine Department, The First Affiliated Hospital of Yangtze University and Health Science Center of Yangtze University, Jingzhou, Hubei 434023, P.R. China, Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China, Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China - Published online on: October 14, 2024 https://doi.org/10.3892/or.2024.8824
- Article Number: 165
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chaoying L, Chao M, Xiangrui Y, Yingjian H, Gang Z, Yunhan R and Yu G: Risk factors of bone metastasis in patients with newly diagnosed prostate cancer. Eur Rev Med Pharmacol Sci. 26:391–398. 2022.PubMed/NCBI | |
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB and Holen I: Bone metastasis: Mechanisms, therapies, and biomarkers. Physiol Rev. 101:797–855. 2021. View Article : Google Scholar : PubMed/NCBI | |
Coleman RE: Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 12:6243s–6249s. 2006. View Article : Google Scholar : PubMed/NCBI | |
Puisieux A, Brabletz T and Caramel J: Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 16:488–494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL, San Juan BP, Lim E and Weinberg RA: EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35:645–654. 2016. View Article : Google Scholar : PubMed/NCBI | |
Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C and Tsuda E: Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 39:19–26. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L and Chirgwin JM: Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res. 12:6213s–6216s. 2006. View Article : Google Scholar : PubMed/NCBI | |
Barreda DR, Hanington PC and Belosevic M: Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol. 28:509–554. 2004. View Article : Google Scholar : PubMed/NCBI | |
Metcalf D: The colony-stimulating factors and cancer. Nat Rev Cancer. 10:425–434. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wakefield PE, James WD, Samlaska CP and Meltzer MS: Colony-stimulating factors. J Am Acad Dermatol. 23:903–912. 1990. View Article : Google Scholar : PubMed/NCBI | |
Bradley TR and Metcalf D: The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 44:287–299. 1966. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa Y, Pluznik DH and Sachs L: In vitro control of the development of macrophage and granulocyte colonies. Proc Natl Acad Sci USA. 56:488–495. 1966. View Article : Google Scholar : PubMed/NCBI | |
Hartung T: Immunomodulation by colony-stimulating factors. Rev Physiol Biochem Pharmacol. 136:1–164. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hareng L and Hartung T: Induction and regulation of endogenous granulocyte colony-stimulating factor formation. Biol Chem. 383:1501–1517. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Qiao L, Hu P, Deng G and Zhang J, Liang N, Xie J and Zhang J: The effect of granulocyte and granulocyte-macrophage colony stimulating factors on tumor promotion. J BUON. 22:21–28. 2017.PubMed/NCBI | |
Mueller MM, Peter W, Mappes M, Huelsen A, Steinbauer H, Boukamp P, Vaccariello M, Garlick J and Fusenig NE: Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Am J Pathol. 159:1567–1579. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gutschalk CM, Herold-Mende CC, Fusenig NE and Mueller MM: Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor promote malignant growth of cells from head and neck squamous cell carcinomas in vivo. Cancer Res. 66:8026–8036. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Lin SH, Chang SF, Chang PY, Yang ZP and Lu SC: Extracellular signal-regulated kinase 2 mediates the expression of granulocyte colony-stimulating factor in invasive cancer cells. Oncol Rep. 30:419–424. 2013. View Article : Google Scholar : PubMed/NCBI | |
Braun B, Lange M, Oeckler R and Mueller MM: Expression of G-CSF and GM-CSF in human meningiomas correlates with increased tumor proliferation and vascularization. J Neurooncol. 68:131–140. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pei XH, Nakanishi Y, Takayama K, Bai F and Hara N: Granulocyte, granulocyte-macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells. Br J Cancer. 79:40–46. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, Yu L, Ross J, Korsisaari N, Cao T, et al: Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci USA. 107:21248–21255. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mroczko B, Szmitkowski M and Czygier M: Granulocyte colony stimulating factor (G-CSF) in diagnosis and monitoring of non-small-cell lung cancer (NSCLC). Pol Arch Med Wewn. 103:163–168. 2000.(In Polish). PubMed/NCBI | |
Fukuta K, Daizumoto K, Takahashi M, Mori H, Otomi Y, Uehara H, Fukawa T, Yamamoto Y, Yamaguchi K and Kanayama HO: Granulocyte colony-stimulating factor producing retroperitoneal leiomyosarcoma. IJU Case Rep. 4:75–78. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yip RKH, Rimes JS, Capaldo BD, Vaillant F, Mouchemore KA, Pal B, Chen Y, Surgenor E, Murphy AJ, Anderson RL, et al: Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nat Commun. 12:69202021. View Article : Google Scholar : PubMed/NCBI | |
Ushach I and Zlotnik A: Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol. 100:481–489. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hume DA and MacDonald KP: Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 119:1810–1820. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moore MA and Warren DJ: Synergy of interleukin 1 and granulocyte colony-stimulating factor: In vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice. Proc Natl Acad Sci USA. 84:7134–7138. 1987. View Article : Google Scholar : PubMed/NCBI | |
Hamilton JA: Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 8:533–544. 2008. View Article : Google Scholar : PubMed/NCBI | |
Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI | |
Dougherty ST, Eaves CJ, McBride WH and Dougherty GJ: Role of macrophage-colony-stimulating factor in regulating the accumulation and phenotype of tumor-associated macrophages. Cancer Immunol Immunother. 44:165–172. 1997. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Ma FY, Tesch GH, Manthey CL and Nikolic-Paterson DJ: c-fms blockade reverses glomerular macrophage infiltration and halts development of crescentic anti-GBM glomerulonephritis in the rat. Lab Invest. 91:978–991. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shaposhnik Z, Wang X and Lusis AJ: Arterial colony stimulating factor-1 influences atherosclerotic lesions by regulating monocyte migration and apoptosis. J Lipid Res. 51:1962–1970. 2010. View Article : Google Scholar : PubMed/NCBI | |
Manthey CL, Johnson DL, Illig CR, Tuman RW, Zhou Z, Baker JF, Chaikin MA, Donatelli RR, Franks CF, Zeng L, et al: JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther. 8:3151–3161. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin EY, Nguyen AV, Russell RG and Pollard JW: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 193:727–740. 2001. View Article : Google Scholar : PubMed/NCBI | |
McDermott RS, Deneux L, Mosseri V, Védrenne J, Clough K, Fourquet A, Rodriguez J, Cosset JM, Sastre X, Beuzeboc P, et al: Circulating macrophage colony stimulating factor as a marker of tumour progression. Eur Cytokine Netw. 13:121–127. 2002.PubMed/NCBI | |
Scholl SM, Lidereau R, de la Rochefordiere A, Le-Nir CC, Mosseri V, Noguès C, Pouillart P and Stanley FR: Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. A pilot study. Breast Cancer Res Treat. 39:275–283. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kang J, Choi YJ, Seo BY, Jo U, Park SI, Kim YH and Park KH: A Selective FGFR inhibitor AZD4547 suppresses RANKL/M-CSF/OPG-dependent ostoclastogenesis and breast cancer growth in the metastatic bone microenvironment. Sci Rep. 9:87262019. View Article : Google Scholar : PubMed/NCBI | |
Liverani C, Mercatali L, Spadazzi C, La Manna F, De Vita A, Riva N, Calpona S, Ricci M, Bongiovanni A, Gunelli E, et al: CSF-1 blockade impairs breast cancer osteoclastogenic potential in co-culture systems. Bone. 66:214–222. 2014. View Article : Google Scholar : PubMed/NCBI | |
Borzone FR, Giorello MB, Martinez LM, Sanmartin MC, Feldman L, Dimase F, Batagelj E, Yannarelli G and Chasseing NA: Senescent mesenchymal stem/stromal cells in pre-metastatic bone marrow of untreated advanced breast cancer patients. Oncol Res. 31:361–374. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Whang YM, Campbell P, Mulcrone PL, Elefteriou F, Cho SW and Park SI: Dual targeting c-met and VEGFR2 in osteoblasts suppresses growth and osteolysis of prostate cancer bone metastasis. Cancer Lett. 414:205–213. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao E, Wang L, Dai J, Kryczek I, Wei S, Vatan L, Altuwaijri S, Sparwasser T, Wang G, Keller ET and Zou W: Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology. 1:152–161. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ide H, Hatake K, Terado Y, Tsukino H, Okegawa T, Nutahara K, Higashihara E and Horie S: Serum level of macrophage colony-stimulating factor is increased in prostate cancer patients with bone metastasis. Hum Cell. 21:1–6. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tsai YM, Chong IW, Hung JY, Chang WA, Kuo PL, Tsai MJ and Hsu YL: Syringetin suppresses osteoclastogenesis mediated by osteoblasts in human lung adenocarcinoma. Oncol Rep. 34:617–626. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fujita H, Gomori A, Fujioka Y, Kataoka Y, Tanaka K, Hashimoto A, Suzuki T, Ito K, Haruma T, Yamamoto-Yokoi H, et al: High potency VEGFRs/MET/FMS triple blockade by TAS-115 concomitantly suppresses tumor progression and bone destruction in tumor-induced bone disease model with lung carcinoma cells. PLoS One. 11:e01648302016. View Article : Google Scholar : PubMed/NCBI | |
Hung JY, Chang WA, Tsai YM, Hsu YL, Chiang HH, Chou SH, Huang MS and Kuo PL: Tricetin, a dietary flavonoid, suppresses benzo(a)pyrene-induced human non-small cell lung cancer bone metastasis. Int J Oncol. 46:1985–1993. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spadazzi C, Recine F, Mercatali L, Miserocchi G, Liverani C, De Vita A, Bongiovanni A, Fausti V and Ibrahim T: mTOR inhibitor and bone-targeted drugs break the vicious cycle between clear-cell renal carcinoma and osteoclasts in an in vitro co-culture model. J Bone Oncol. 16:1002272019. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Hino M, Hato F, Tatsumi N and Kitagawa S: Cytokine-specific activation of distinct mitogen-activated protein kinase subtype cascades in human neutrophils stimulated by granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor-alpha. Blood. 93:341–349. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mann A, Breuhahn K, Schirmacher P and Blessing M: Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: Stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J Invest Dermatol. 117:1382–1390. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wu FPK, Westphal JR, Hoekman K, Mels AK, Statius Muller MG, de Waal RW, Beelen RHJ, van Leeuwen PAM, Meijer S and Cuesta MA: The effects of surgery, with or without rhGM-CSF, on the angiogenic profile of patients treated for colorectal carcinoma. Cytokine. 25:68–72. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mueller MM and Fusenig NE: Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G and Bar-Sagi D: Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell. 21:836–847. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vilalta M, Rafat M, Giaccia AJ and Graves EE: Recruitment of circulating breast cancer cells is stimulated by radiotherapy. Cell Rep. 8:402–409. 2014. View Article : Google Scholar : PubMed/NCBI | |
Obermueller E, Vosseler S, Fusenig NE and Mueller MM: Cooperative autocrine and paracrine functions of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the progression of skin carcinoma cells. Cancer Res. 64:7801–7812. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lahm H, Wyniger J, Hertig S, Yilmaz A, Fischer JR, Givel JC and Odartchenko N: Secretion of bioactive granulocyte-macrophage colony-stimulating factor by human colorectal carcinoma cells. Cancer Res. 54:3700–3702. 1994.PubMed/NCBI | |
Oshika Y, Nakamura M, Abe Y, Fukuchi Y, Yoshimura M, Itoh M, Ohnishi Y, Tokunaga T, Fukushima Y, Hatanaka H, et al: Growth stimulation of non-small cell lung cancer xenografts by granulocyte-macrophage colony-stimulating factor (GM-CSF). Eur J Cancer. 34:1958–1961. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gutschalk CM, Yanamandra AK, Linde N, Meides A, Depner S and Mueller MM: GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression. Cancer Med. 2:117–129. 2013. View Article : Google Scholar : PubMed/NCBI | |
Takeda K, Hatakeyama K, Tsuchiya Y, Rikiishi H and Kumagai K: A correlation between GM-CSF gene expression and metastases in murine tumors. Int J Cancer. 47:413–420. 1991. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Taghi Khani A, Sanchez Ortiz A and Swaminathan S: GM-CSF: A double-edged sword in cancer immunotherapy. Front Immunol. 13:9012772022. View Article : Google Scholar : PubMed/NCBI | |
Lin Q, Fang X, Liang G, Luo Q, Cen Y, Shi Y, Jia S, Li J, Yang W, Sanders AJ, et al: Silencing CTNND1 mediates triple-negative breast cancer bone metastasis via upregulating CXCR4/CXCL12 axis and neutrophils infiltration in bone. Cancers (Basel). 13:57032021. View Article : Google Scholar : PubMed/NCBI | |
Lee SK, Park KK, Kim HJ, Park J, Son SH, Kim KR and Chung WY: Human antigen R-regulated CCL20 contributes to osteolytic breast cancer bone metastasis. Sci Rep. 7:96102017. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Hu Y, Feng Y, Li K, Zhu Z, Liu S, Lin Y and Yu B: IGF-1R mediates crosstalk between nasopharyngeal carcinoma cells and osteoclasts and promotes tumor bone metastasis. J Exp Clin Cancer Res. 43:462024. View Article : Google Scholar : PubMed/NCBI | |
Das Roy L, Pathangey LB, Tinder TL, Schettini JL, Gruber HE and Mukherjee P: Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis. Breast Cancer Res. 11:R562009. View Article : Google Scholar : PubMed/NCBI | |
Fuentelsaz-Romero S, Cuervo A, Estrada-Capetillo L, Celis R, Garcia-Campos R, Ramirez J, Sastre S, Samaniego R, Puig-Kröger A and Cañete JD: GM-CSF expression and macrophage polarization in joints of undifferentiated arthritis patients evolving to rheumatoid arthritis or psoriatic arthritis. Front Immunol. 11:6139752021. View Article : Google Scholar : PubMed/NCBI | |
Varricchi G, Poto R, Marone G and Schroeder JT: IL-3 in the development and function of basophils. Semin Immunol. 54:1015102021. View Article : Google Scholar : PubMed/NCBI | |
Yadav P, Vats R, Bano A and Bhardwaj R: Hematopoietic stem cells culture, expansion and differentiation: An insight into variable and available media. Int J Stem Cells. 13:326–334. 2020. View Article : Google Scholar : PubMed/NCBI | |
Donahue RE, Seehra J, Metzger M, Lefebvre D, Rock B, Carbone S, Nathan DG, Garnick M, Sehgal PK, Laston D, et al: Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science. 241:1820–1823. 1988. View Article : Google Scholar : PubMed/NCBI | |
Bénard A, Jacobsen A, Brunner M, Krautz C, Klösch B, Swierzy I, Naschberger E, Podolska MJ, Kouhestani D, David P, et al: Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections. Nat Commun. 12:11122021. View Article : Google Scholar : PubMed/NCBI | |
Mroczko B, Szmitkowski M, Wereszczynska-Siemiatkowska U and Okulczyk B: Stem cell factor (SCF) and interleukin 3 (IL-3) in the sera of patients with colorectal cancer. Dig Dis Sci. 50:1019–1024. 2005. View Article : Google Scholar : PubMed/NCBI | |
Marone G, Gambardella AR, Mattei F, Mancini J, Schiavoni G and Varricchi G: Basophils in tumor microenvironment and surroundings. Adv Exp Med Biol. 1224:21–34. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dentelli P, Rosso A, Olgasi C, Camussi G and Brizzi MF: IL-3 is a novel target to interfere with tumor vasculature. Oncogene. 30:4930–4940. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hahm ER, Kim SH, Pore SK, Mathan SV, Singh RP and Singh SV: Mechanism of synergistic inhibitory effect of benzyl isothiocyanate and zoledronic acid combination on breast cancer induction of osteoclast differentiation. Mol Carcinog. 63:301–313. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sugihara A, Maeda O, Tsuji M, Tsujimura T, Nakata Y, Akedo H, Kotake T and Terada N: Expression of cytokines enhancing the osteoclast activity, and parathyroid hormone-related protein in prostatic cancers before and after endocrine therapy: An immunohistochemical study. Oncol Rep. 5:1389–1394. 1998.PubMed/NCBI | |
Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aliper AM, Frieden-Korovkina VP, Buzdin A, Roumiantsev SA and Zhavoronkov A: A role for G-CSF and GM-CSF in nonmyeloid cancers. Cancer Med. 3:737–746. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI and Kang HS: Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer. 16:102017. View Article : Google Scholar : PubMed/NCBI | |
Luo S, Li P, Zhang A, Meng L, Huang L, Wu X, Cheng H, Tu H and Gong X: G-CSF improving combined whole brain radiotherapy and immunotherapy prognosis of non-small cell lung cancer brain metastases. Int Immunopharmacol. 130:1117052024. View Article : Google Scholar : PubMed/NCBI | |
Psaila B and Lyden D: The metastatic niche: Adapting the foreign soil. Nat Rev Cancer. 9:285–293. 2009. View Article : Google Scholar : PubMed/NCBI | |
Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT and Giaccia AJ: Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 15:35–44. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nguyen DX, Bos PD and Massagué J: Metastasis: From dissemination to organ-specific colonization. Nat Rev Cancer. 9:274–284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Győri DS and Mócsai A: Osteoclast signal transduction during bone metastasis formation. Front Cell Dev Biol. 8:5072020. View Article : Google Scholar : PubMed/NCBI | |
Boyce BF: Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 92:860–867. 2013. View Article : Google Scholar : PubMed/NCBI | |
Povolny BT and Lee MY: The role of recombinant human M-CSF, IL-3, GM-CSF and calcitriol in clonal development of osteoclast precursors in primate bone marrow. Exp Hematol. 21:532–537. 1993.PubMed/NCBI | |
Ray AL, Saunders AS, Nofchissey RA, Reidy MA, Kamal M, Lerner MR, Fung KM, Lang ML, Hanson JA, Guo S, et al: G-CSF is a novel mediator of T-cell suppression and an immunotherapeutic target for women with colon cancer. Clin Cancer Res. 29:2158–2169. 2023. View Article : Google Scholar : PubMed/NCBI | |
Brook N, Brook E, Dharmarajan A, Dass CR and Chan A: Breast cancer bone metastases: Pathogenesis and therapeutic targets. Int J Biochem Cell Biol. 96:63–78. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bade BC and Dela Cruz CS: Lung cancer 2020: Epidemiology, etiology, and prevention. Clin Chest Med. 41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cheng W and Xin H, Liu R, Wang Q, Cai W, Peng X, Yang F and Xin H: Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnol. 14:282023. View Article : Google Scholar : PubMed/NCBI | |
Lv T, Meng Y, Liu Y, Han Y, Xin H, Peng X and Huang J: RNA nanotechnology: A new chapter in targeted therapy. Colloids Surf B Biointerfaces. 230:1135332023. View Article : Google Scholar : PubMed/NCBI | |
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J and Peng X: Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine. 172:1564032023. View Article : Google Scholar : PubMed/NCBI | |
Al Husaini H, Wheatley-Price P, Clemons M and Shepherd FA: Prevention and management of bone metastases in lung cancer: A review. J Thorac Oncol. 4:251–259. 2009. View Article : Google Scholar : PubMed/NCBI | |
Molineux G, Pojda Z and Dexter TM: A comparison of hematopoiesis in normal and splenectomized mice treated with granulocyte colony-stimulating factor. Blood. 75:563–569. 1990. View Article : Google Scholar : PubMed/NCBI | |
Metcalf D, Begley CG, Williamson DJ, Nice EC, De Lamarter J, Mermod JJ, Thatcher D and Schmidt A: Hemopoietic responses in mice injected with purified recombinant murine GM-CSF. Exp Hematol. 15:1–9. 1987.PubMed/NCBI | |
Metcalf D, Begley CG, Johnson GR, Nicola NA, Lopez AF and Williamson DJ: Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood. 68:46–57. 1986. View Article : Google Scholar : PubMed/NCBI | |
Lang RA, Metcalf D, Cuthbertson RA, Lyons I, Stanley E, Kelso A, Kannourakis G, Williamson DJ, Klintworth GK, Gonda TJ, et al: Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell. 51:675–686. 1987. View Article : Google Scholar : PubMed/NCBI | |
Chang JM, Metcalf D, Lang RA, Gonda TJ and Johnson GR: Nonneoplastic hematopoietic myeloproliferative syndrome induced by dysregulated multi-CSF (IL-3) expression. Blood. 73:1487–1497. 1989. View Article : Google Scholar : PubMed/NCBI | |
Chang JM, Metcalf D, Gonda TJ and Johnson GR: Long-term exposure to retrovirally expressed granulocyte-colony-stimulating factor induces a nonneoplastic granulocytic and progenitor cell hyperplasia without tissue damage in mice. J Clin Invest. 84:1488–1496. 1989. View Article : Google Scholar : PubMed/NCBI | |
Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D and Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 90:3539–3543. 1993. View Article : Google Scholar : PubMed/NCBI | |
Conlon KC, Miljkovic MD and Waldmann TA: Cytokines in the treatment of cancer. J Interferon Cytokine Res. 39:6–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gabrilove JL, Jakubowski A, Fain K, Grous J, Scher H, Sternberg C, Yagoda A, Clarkson B, Bonilla MA, Oettgen HF, et al: Phase I study of granulocyte colony-stimulating factor in patients with transitional cell carcinoma of the urothelium. J Clin Invest. 82:1454–1461. 1988. View Article : Google Scholar : PubMed/NCBI | |
Renwick W, Pettengell R and Green M: Use of filgrastim and pegfilgrastim to support delivery of chemotherapy: Twenty years of clinical experience. BioDrugs. 23:175–186. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lieschke GJ, Maher D, Cebon J, O'Connor M, Green M, Sheridan W, Boyd A, Rallings M, Bonnem E, Metcalf D, et al: Effects of bacterially synthesized recombinant human granulocyte-macrophage colony-stimulating factor in patients with advanced malignancy. Ann Intern Med. 110:357–364. 1989. View Article : Google Scholar : PubMed/NCBI | |
Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, Delmas P, Delaissé JM and Clézardin P: Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res. 60:2949–2954. 2000.PubMed/NCBI | |
Gao L, Deng H, Zhao H, Hirbe A, Harding J, Ratner L and Weilbaecher K: HTLV-1 Tax transgenic mice develop spontaneous osteolytic bone metastases prevented by osteoclast inhibition. Blood. 106:4294–4302. 2005. View Article : Google Scholar : PubMed/NCBI |