Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review)
- Authors:
- Xinchi Luan
- Xuezhe Wang
- Gang Bian
- Xiaoxuan Li
- Ziru Gao
- Zijiao Liu
- Zhishang Zhang
- Tianyue Han
- Jinpeng Zhao
- Hongjiao Zhao
- Xinyue Luan
- Wuhui Zhu
- Lili Dong
- Feifei Guo
-
Affiliations: Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China, Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China, Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China, School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China, Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China - Published online on: November 20, 2024 https://doi.org/10.3892/or.2024.8846
- Article Number: 13
-
Copyright: © Luan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cancer Genome Atlas Research Network. Electronic address, . simpleAndrew_aguirre@dfci.harvard.edu; Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell. 32:185–203.e113. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klein AP: Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 18:493–502. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Luo G, Jin K, Deng S, Cheng H, Fan Z, Gong Y, Qian Y, Huang Q, Ni Q, Liu C and Yu X: Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer. 1875:1884092021. View Article : Google Scholar : PubMed/NCBI | |
Carmicheal J, Patel A, Dalal V, Atri P, Dhaliwal AS, Wittel UA, Malafa MP, Talmon G, Swanson BJ, Singh S, et al: Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer biomarker(s). Biochim Biophys Acta Rev Cancer. 1873:1883182020. View Article : Google Scholar : PubMed/NCBI | |
Bestari MB, Joewono IR and Syam AF: A quest for survival: a review of the early biomarkers of pancreatic cancer and the most effective approaches at present. Biomolecules 14: 364. (doi: 10.3390/biom14030364). 2024. View Article : Google Scholar | |
Yang J and Xu R: Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review. Cancer Commun (Lond). 41:1257–1274. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Chen Y, Wang Q, Jayasinghe U, Luo X, Wei Q, Wang J, Xiong H, Chen C, Xu B, et al: Exosome: Emerging biomarker in breast cancer. Oncotarget. 8:41717–41733. 2017. View Article : Google Scholar : PubMed/NCBI | |
Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH and Zhang SJ: Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer. Mol Cancer. 21:2072022. View Article : Google Scholar : PubMed/NCBI | |
Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, et al: Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 17:816–826. 2015. View Article : Google Scholar : PubMed/NCBI | |
Awadallah NS, Shroyer KR, Langer DA, Torkko KC, Chen YK, Bentz JS, Papkoff J, Liu W, Nash SR and Shah RJ: Detection of B7-H4 and p53 in pancreatic cancer: Potential role as a cytological diagnostic adjunct. Pancreas. 36:200–206. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bausch D, Mino-Kenudson M, Fernández-Del Castillo C, Warshaw AL, Kelly KA and Thayer SP: Plectin-1 is a biomarker of malignant pancreatic intraductal papillary mucinous neoplasms. J Gastrointest Surg. 13:1948–1954. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Ma Y, Shankar S and Srivastava RK: Role of SATB2 in human pancreatic cancer: Implications in transformation and a promising biomarker. Oncotarget. 7:57783–57797. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou CY, Dong YP, Sun X, Sui X, Zhu H, Zhao YQ, Zhang YY, Mason C, Zhu Q and Han SX: High levels of serum glypican-1 indicate poor prognosis in pancreatic ductal adenocarcinoma. Cancer Med. 7:5525–5533. 2018. View Article : Google Scholar : PubMed/NCBI | |
Padden J, Ahrens M, Kälsch J, Bertram S, Megger DA, Bracht T, Eisenacher M, Kocabayoglu P, Meyer HE, Sipos B, et al: Immunohistochemical markers distinguishing cholangiocellular carcinoma (CCC) from pancreatic ductal adenocarcinoma (PDAC) discovered by proteomic analysis of microdissected cells. Mol Cell Proteomics. 15:1072–1082. 2016. View Article : Google Scholar : PubMed/NCBI | |
Herreros-Villanueva M and Bujanda L: Non-invasive biomarkers in pancreatic cancer diagnosis: What we need versus what we have. Ann Transl Med. 4:1342016. View Article : Google Scholar : PubMed/NCBI | |
Brezgyte G, Shah V, Jach D and Crnogorac-Jurcevic T: Non-invasive biomarkers for earlier detection of pancreatic Cancer-A comprehensive review. Cancers (Basel). 13:2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Liang X, Liu B, Huang X, Shen Y, Lin F, Chen J, Gao X, He H, Li W, et al: Exosomal miR-9-5p derived from iPSC-MSCs ameliorates doxorubicin-induced cardiomyopathy by inhibiting cardiomyocyte senescence. J Nanobiotechnology. 22:1952024. View Article : Google Scholar : PubMed/NCBI | |
Chen YX and Cai Q: Plant Exosome-like nanovesicles and their role in the innovative delivery of RNA therapeutics. Biomedicines. 11:18062023. View Article : Google Scholar : PubMed/NCBI | |
Tamura R, Balabanova A, Frakes SA, Bargmann A, Grimm J, Koch TH and Yin H: Photoactivatable prodrug of doxazolidine targeting exosomes. J Med Chem. 62:1959–1970. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kreger BT, Johansen ER, Cerione RA and Antonyak MA: The enrichment of survivin in exosomes from breast cancer cells treated with paclitaxel promotes cell survival and chemoresistance. Cancers. 8:1112016. View Article : Google Scholar : PubMed/NCBI | |
Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, et al: Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 523:177–182. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Wu D, Ma X, Wang J, Hou W and Zhang W: Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacother. 128:1102372020. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Yan Y, Shen Y, Xu M and Xu W: Exosomes: Emerging insights into the progression of pancreatic cancer. Int J Biol Sci. 20:4098–4113. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qin C, Li T, Lin C, Zhao B, Li Z, Zhao Y and Wang W: The systematic role of pancreatic cancer exosomes: Distant communication, liquid biopsy and future therapy. Cancer Cell Int. 24:2642024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Kleeff J and Sunami Y: Pancreatic cancer cell- and cancer-associated fibroblast-derived exosomes in disease progression, metastasis, and therapy. Discov Oncol. 15:2532024. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Feng J, Wang Q, Zhao Y, Ding H, Jiang K, Ji H, Tang Z and Dai R: Knowledge mapping and research trends of exosomes in pancreatic cancer: A bibliometric analysis and review (2013–2023). Front Oncol. 14:13624362024. View Article : Google Scholar : PubMed/NCBI | |
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Vasileiadi S, Tsagarakis A, et al: A current synopsis of the emerging role of extracellular vesicles and Micro-RNAs in pancreatic cancer: A Forward-Looking plan for diagnosis and treatment. Int J Mol Sci. 25:34062024. View Article : Google Scholar : PubMed/NCBI | |
Sha G, Zhang W, Jiang Z, Zhao Q, Wang D and Tang D: Exosomal non-coding RNA: A new frontier in diagnosing and treating pancreatic cancer: A review. Int J Biol Macromol. 263:1301492024. View Article : Google Scholar : PubMed/NCBI | |
Papadakos SP, Dedes N, Pergaris A, Gazouli M and Theocharis S: Exosomes in the Treatment of Pancreatic Cancer: A moonshot to PDAC treatment? Int J Mol Sci. 23:36202022. View Article : Google Scholar : PubMed/NCBI | |
Ariston Gabriel AN, Wang F, Jiao Q, Yvette U, Yang X, Al-Ameri SA, Du L, Wang YS and Wang C: The involvement of exosomes in the diagnosis and treatment of pancreatic cancer. Mol Cancer. 19:1322020. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Lan H, Jin K and Qian J: Pancreatic cancer and exosomes: Role in progression, diagnosis, monitoring, and treatment. Front Oncol. 13:11495512023. View Article : Google Scholar : PubMed/NCBI | |
Bunduc S, Gede N, Váncsa S, Lillik V, Kiss S, Juhász MF, Erőss B, Szakács Z, Gheorghe C, Mikó A and Hegyi P: Exosomes as prognostic biomarkers in pancreatic ductal adenocarcinoma-a systematic review and meta-analysis. Transl Res. 244:126–136. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu B, Chen Y, Peng M, Zheng JH and Zuo C: Exploring the potential of exosomes in diagnosis and drug delivery for pancreatic ductal adenocarcinoma. Int J Cancer. 152:110–122. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hsu SK, Jadhao M, Liao WT, Chang WT, Lin IL and Chiu CC: The role of exosomes in pancreatic ductal adenocarcinoma progression and their potential as biomarkers. Cancers (Basel). 15:17762023. View Article : Google Scholar : PubMed/NCBI | |
Han L, Zhao Z, Yang K, Xin M, Zhou L, Chen S, Zhou S, Tang Z, Ji H and Dai R: Application of exosomes in the diagnosis and treatment of pancreatic diseases. Stem Cell Res Ther. 13:1532022. View Article : Google Scholar : PubMed/NCBI | |
Doyle LM and Wang MZ: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8:7272019. View Article : Google Scholar : PubMed/NCBI | |
Wortzel I, Dror S, Kenific CM and Lyden D: Exosome-mediated metastasis: Communication from a distance. Dev Cell. 49:347–360. 2019. View Article : Google Scholar : PubMed/NCBI | |
He C, Zheng S, Luo Y and Wang B: Exosome theranostics: Biology and translational medicine. Theranostics. 8:237–255. 2018. View Article : Google Scholar : PubMed/NCBI | |
Duan SL, Fu WJ, Jiang YK, Peng LS, Ousmane D, Zhang ZJ and Wang JP: Emerging role of exosome-derived non-coding RNAs in tumor-associated angiogenesis of tumor microenvironment. Front Mol Biosci. 10:12201932023. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Ye Y and He F: Emerging innovations on exosome-based onco-therapeutics. Front Immunol. 13:8652452022. View Article : Google Scholar : PubMed/NCBI | |
Skotland T, Hessvik NP, Sandvig K and Llorente A: Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 60:9–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI | |
He C, Li L, Wang L, Meng W, Hao Y and Zhu G: Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med. 18:21–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Ji W, Zhao R, Yang J, Lu Z, Li Y and Zhang X: Exosome: A significant nano-scale drug delivery carrier. J Mater Chem B. 8:7591–7608. 2020. View Article : Google Scholar : PubMed/NCBI | |
Im H, Shao H, Weissleder R, Castro CM and Lee H: Nano-plasmonic exosome diagnostics. Expert Rev Mol Diagn. 15:725–733. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hamzah RN, Alghazali KM, Biris AS and Griffin RJ: Exosome traceability and cell source dependence on composition and cell-cell cross talk. Int J Mol Sci. 22:53462021. View Article : Google Scholar : PubMed/NCBI | |
Kawamura S, Iinuma H, Wada K, Takahashi K, Minezaki S, Kainuma M, Shibuya M, Miura F and Sano K: Exosome-encapsulated microRNA-4525, microRNA-451a and microRNA-21 in portal vein blood is a high-sensitive liquid biomarker for the selection of high-risk pancreatic ductal adenocarcinoma patients. J Hepatobiliary Pancreat Sci. 26:63–72. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Wu LF and Deng FY: Exosome: An emerging source of biomarkers for human diseases. Curr Mol Med. 19:387–394. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A and Möller A: Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 4:270312015. View Article : Google Scholar : PubMed/NCBI | |
Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, Xu Y, Wu YS, Hu XM, Ping BH and Wang Q: Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med. 40:834–844. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vaswani K, Mitchell MD, Holland OJ, Qin Koh Y, Hill RJ, Harb T, Davies PSW and Peiris H: A Method for the isolation of exosomes from human and bovine milk. J Nutr Metab. 2019:57647402019. View Article : Google Scholar : PubMed/NCBI | |
Tayebi M, Zhou Y, Tripathi P, Chandramohanadas R and Ai Y: Exosome purification and analysis using a facile microfluidic hydrodynamic trapping device. Anal Chem. 92:10733–10742. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez H, Hagerling C and Werb Z: Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 32:1267–1284. 2018. View Article : Google Scholar : PubMed/NCBI | |
He Z, Wang J, Zhu C, Xu J, Chen P, Jiang X, Chen Y, Jiang J and Sun C: Exosome-derived FGD5-AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic cancer cell proliferation and metastasis. Cancer Lett. 548:2157512022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu Y, Liu H and Tang WH: Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 9:192019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, et al: The molecular biology of pancreatic adenocarcinoma: Translational challenges and clinical perspectives. Signal Transduct Target Ther. 6:2492021. View Article : Google Scholar : PubMed/NCBI | |
Kumari N and Choi SH: Tumor-associated macrophages in cancer: Recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. 41:682022. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Yin Y, Zheng X, Liu Z and Wang X: Metabolic regulation of tumor-associated macrophage heterogeneity: Insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark Res. 12:12024. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Pritchard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM and Deshane JS: Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells. 9:13032020. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Tang H, Li Q, Chen G and Li D: Exosomes and their roles in the chemoresistance of pancreatic cancer. Cancer Med. 11:4979–4988. 2022. View Article : Google Scholar : PubMed/NCBI | |
Papadakos SP, Machairas N, Stergiou IE, Arvanitakis K, Germanidis G, Frampton AE and Theocharis S: Unveiling the Yin-Yang balance of M1 and M2 macrophages in hepatocellular carcinoma: Role of exosomes in tumor microenvironment and immune modulation. Cells. 12:20362023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li Z, Shen J, Liu Z, Liang J, Wu X, Sun X and Wu Z: Exosome-like vesicles derived by Schistosoma japonicum adult worms mediates M1 type immune-activity of macrophage. Parasitol Res. 114:1865–1873. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, et al: Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer. 22:1692023. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Fu Q, Wang X, Xia P, Cui X, Bai X and Lu Z: Molecular mechanisms and clinical applications of exosomes in prostate cancer. Biomark Res. 10:562022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li S, Li L, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Milane L, Singh A, Mattheolabakis G, Suresh M and Amiji MM: Exosome mediated communication within the tumor microenvironment. J Control Release. 219:278–294. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khan MI and Alsayed R: Exosome-mediated response to cancer therapy: Modulation of Epigenetic Machinery. Int J Mol Sci. 23:62222022. View Article : Google Scholar : PubMed/NCBI | |
McAndrews KM, Xiao F, Chronopoulos A, LeBleu VS, Kugeratski FG and Kalluri R: Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer. Life Sci Alliance. 4:e2020008752021. View Article : Google Scholar : PubMed/NCBI | |
Su MJ, Aldawsari H and Amiji M: Pancreatic cancer cell exosome-mediated macrophage reprogramming and the role of MicroRNAs 155 and 125b2 transfection using nanoparticle delivery systems. Sci Rep. 6:301102016. View Article : Google Scholar : PubMed/NCBI | |
Caruso Bavisotto C, Cappello F, Macario AJL, Conway de Macario E, Logozzi M, Fais S and Campanella C: Exosomal HSP60: A potentially useful biomarker for diagnosis, assessing prognosis, and monitoring response to treatment. Expert Rev Mol Diagn. 17:815–822. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dudeja V, Mujumdar N, Phillips P, Chugh R, Borja-Cacho D, Dawra RK, Vickers SM and Saluja AK: Heat shock protein 70 inhibits apoptosis in cancer cells through simultaneous and independent mechanisms. Gastroenterology. 136:1772–1782. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shaashua L, Ben-Shmuel A, Pevsner-Fischer M, Friedman G, Levi-Galibov O, Nandakumar S, Barki D, Nevo R, Brown LE, Zhang W, et al: BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling. Nat Commun. 13:65132022. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Liu P, Wu Y, Meng X, Wu M, Han J and Tan X: Exosomal zinc transporter ZIP4 promotes cancer growth and is a novel diagnostic biomarker for pancreatic cancer. Cancer Sci. 109:2946–2956. 2018. View Article : Google Scholar : PubMed/NCBI | |
Castillo J, Bernard V, San Lucas FA, Allenson K, Capello M, Kim DU, Gascoyne P, Mulu FC, Stephens BM, Huang J, et al: Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann Oncol. 29:223–229. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Loganathan S, Humphreys I and Srivastava SK: Benzyl isothiocyanate-induced DNA damage causes G2/M cell cycle arrest and apoptosis in human pancreatic cancer cells. J Nutr. 136:2728–2734. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ristorcelli E, Beraud E, Mathieu S, Lombardo D and Verine A: Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. Int J Cancer. 125:1016–1026. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Chen P, Liu K, Liu J, Zhou B, Wu R, Peng Q, Liu ZX, Li C, Kroemer G, et al: CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut. 70:890–899. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B, Aziz M, Kassner M, Bryant KL, Pierobon M, et al: Long-term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and Senescence-like growth suppression. Cancer Cell. 29:75–89. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li B, Cao Y, Sun M and Feng H: Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy. FASEB J. 35:e219162021. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Ren Y, Lu Z and Zhao X: The potential roles of exosomes in pancreatic cancer initiation and metastasis. Mol Cancer. 19:1352020. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Xu JW, Cheng YG, Gao JY, Hu SY, Wang L and Zhan HX: Early detection of pancreatic cancer: Where are we now and where are we going? Int J Cancer. 141:231–241. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Gao F, Weng S and Liu Q: Pancreatic cancer and associated exosomes. Cancer Biomark. 20:357–367. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Fu G and Ming L: Role of exosomes in pancreatic cancer. Oncol Lett. 15:7479–7488. 2018.PubMed/NCBI | |
Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 78:4586–4598. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chiba M, Kubota S, Sato K and Monzen S: Exosomes released from pancreatic cancer cells enhance angiogenic activities via dynamin-dependent endocytosis in endothelial cells in vitro. Sci Rep. 8:119722018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, Liu H, Bi H, Liu X and Li X: Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 37:1772018. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Zhong F, Yan Y, Wu S, Wang H, Liu J, Li F, Cui D and Xu M: Pancreatic cancer cell-derived exosomes promote lymphangiogenesis by downregulating ABHD11-AS1 expression. Cancers (Basel). 14:46122022. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhou J, Zhang Z, Li J, Wang F, Ma L, Tian X, Mao Z and Yang Y: Exosomal miR-485-3p derived from pancreatic ductal epithelial cells inhibits pancreatic cancer metastasis through targeting PAK1. Chin Med J. 135:2326–2337. 2022. View Article : Google Scholar : PubMed/NCBI | |
Di Pace AL, Pelosi A, Fiore PF, Tumino N, Besi F, Quatrini L, Santopolo S, Vacca P and Moretta L: MicroRNA analysis of Natural Killer cell-derived exosomes: The microRNA let-7b-5p is enriched in exosomes and participates in their anti-tumor effects against pancreatic cancer cells. Oncoimmunology. 12:22210812023. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Shi K, Qi K, Kong H, Zhang J, Dai S, Ye W, Deng T, He Q and Zhou M: Natural killer cell-derived exosomal miR-3607-3p inhibits pancreatic cancer progression by targeting IL-26. Front Immunol. 10:28192019. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Zhou Y, Ma T, Chen S, Shi N, Zou Y, Hou B and Zhang C: Down-regulated lncRNA SBF2-AS1 in M2 macrophage-derived exosomes elevates miR-122-5p to restrict XIAP, thereby limiting pancreatic cancer development. J Cell Mol Med. 24:5028–5038. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Ji J, Chen X, Xu W, Chen H, Zhu S, Wu J, Wu Y, Sun Y, Sai W, et al: Human umbilical cord mesenchymal stem cell-derived exosomes carrying hsa-miRNA-128-3p suppress pancreatic ductal cell carcinoma by inhibiting Galectin-3. Clin Transl Oncol. 24:517–531. 2022. View Article : Google Scholar : PubMed/NCBI | |
Torphy RJ, Fujiwara Y and Schulick RD: Pancreatic cancer treatment: Better, but a long way to go. Surg Today. 50:1117–1125. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z and Liu W: Pancreatic cancer: A review of risk factors, diagnosis, and treatment. Technol Cancer Res Treat. 19:15330338209621172020. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Chen H, Lu M, Zhang Y, Lu B, You L, Zhang T, Dai M and Zhao Y: Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Lett. 520:1–11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Loveday BPT, Lipton L and Thomson BN: Pancreatic cancer: An update on diagnosis and management. Aust J Gen Pract. 48:826–831. 2019. View Article : Google Scholar : PubMed/NCBI | |
Scarà S, Bottoni P and Scatena R: CA 19-9: Biochemical and clinical aspects. Adv Exp Med Biol. 867:247–260. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Zhu Z, Roy S, Jun E, Han H, Munoz RM, Nishiwada S, Sharma G, Cridebring D, Zenhausern F, et al: An Exosome-based transcriptomic signature for noninvasive, early detection of patients with pancreatic ductal adenocarcinoma: A multicenter cohort study. Gastroenterology. 163:1252–1266.e2. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tempero MA, Malafa MP, Al-Hawary M, Behrman SW, Benson AB, Cardin DB, Chiorean EG, Chung V, Czito B, Del Chiaro M, et al: Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 19:439–457. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vincent A, Herman J, Schulick R, Hruban RH and Goggins M: Pancreatic cancer. Lancet. 378:607–620. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hu ZI and O'Reilly EM: Therapeutic developments in pancreatic cancer. Nat Rev Gastroenterol Hepatol. 21:7–24. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lupo F, Pezzini F, Pasini D, Fiorini E, Adamo A, Veghini L, Bevere M, Frusteri C, Delfino P, D'agosto S, et al: Axon guidance cue SEMA3A promotes the aggressive phenotype of basal-like PDAC. Gut. 73:1321–1335. 2024. View Article : Google Scholar : PubMed/NCBI | |
Reese M and Dhayat SA: Small extracellular vesicle non-coding RNAs in pancreatic cancer: molecular mechanisms and clinical implications. J Hematol Oncol. 14:1412021. View Article : Google Scholar : PubMed/NCBI | |
Ran Z, Wu S, Ma Z, Chen X, Liu J and Yang J: Advances in exosome biomarkers for cervical cancer. Cancer Med. 11:4966–4978. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, et al: Cancer metabolism and tumor microenvironment: Fostering each other? Sci China Life Sci. 65:236–279. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Zhou WB, Zhou J, Wei Y, Wang HM, Liu XD, Chen XC, Wang W, Ye L, Yao LC, et al: Circulating exosomal microRNAs as novel potential detection biomarkers in pancreatic cancer. Oncol Lett. 20:1432–1440. 2020. View Article : Google Scholar : PubMed/NCBI | |
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM and Voinea SC: miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells. 9:2762020. View Article : Google Scholar : PubMed/NCBI | |
Ouyang H, Gore J, Deitz S and Korc M: microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-β actions. Oncogene. 33:4664–4674. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X and Zhang X: Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 21:562022. View Article : Google Scholar : PubMed/NCBI | |
He C, Li L, Wang L, Meng W, Hao Y and Zhu G: Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med. 18:21–33. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Wang H, Mou Y, Li L and Jin W: Functions and clinical applications of exosomes in pancreatic cancer. Mol Biol Rep. 49:11037–11048. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Rabiee N, Kumar AP, Sethi G, Zarrabi A and Wang Y: Long noncoding RNAs (lncRNAs) in pancreatic cancer progression. Drug Discov Today. 27:2181–2198. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kato S and Honda K: Use of biomarkers and imaging for early detection of pancreatic cancer. Cancers (Basel). 12:19652020. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Ren Y and Lu Z: Potential diagnostic and therapeutic roles of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer. 1874:1884142020. View Article : Google Scholar : PubMed/NCBI | |
Frampton AE, Prado MM, López-Jiménez E, Fajardo-Puerta AB, Jawad ZAR, Lawton P, Giovannetti E, Habib NA, Castellano L, Stebbing J, et al: Glypican-1 is enriched in circulating-exosomes in pancreatic cancer and correlates with tumor burden. Oncotarget. 9:19006–19013. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marin AM, Mattar SB, Amatuzzi RF, Chammas R, Uno M, Zanette DL and Aoki MN: Plasma exosome-derived microRNAs as potential diagnostic and prognostic biomarkers in brazilian pancreatic cancer patients. Biomolecules. 12:7692022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wu J, Ye N, Li F, Zhan H, Chen S and Xu J: Plasma-derived exosome MiR-19b acts as a diagnostic marker for pancreatic cancer. Front Oncol. 11:7391112021. View Article : Google Scholar : PubMed/NCBI | |
Nakamura S, Sadakari Y, Ohtsuka T, Okayama T, Nakashima Y, Gotoh Y, Saeki K, Mori Y, Nakata K, Miyasaka Y, et al: Pancreatic Juice exosomal MicroRNAs as biomarkers for detection of pancreatic ductal adenocarcinoma. Ann Surg Oncol. 26:2104–2111. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen SL, Ma M, Yan L, Xiong SH, Liu Z, Li S, Liu T, Shang S, Zhang YY, Zeng H, et al: Clinical significance of exosomal miR-1231 in pancreatic cancer]. Zhonghua Zhong Liu Za Zhi. 41:46–49. 2019.(In Chinese). PubMed/NCBI | |
Corrigendum to Serum exosomal miR-451a acts as a candidate marker for pancreatic cancer. Int J Biol Markers. 37:2242022. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Li Y, Liao Z, Wang Z, Wang Z, Li Y, Qian L, Zhao J, Zong H, Kang B, et al: Plasma extracellular vesicle long RNA profiling identifies a diagnostic signature for the detection of pancreatic ductal adenocarcinoma. Gut. 69:540–550. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hong L, Xu L, Jin L, Xu K, Tang W, Zhu Y, Qiu X and Wang J: Exosomal circular RNA hsa_circ_0006220, and hsa_circ_0001666 as biomarkers in the diagnosis of pancreatic cancer. J Clin Lab Anal. 36:e244472022. View Article : Google Scholar : PubMed/NCBI | |
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W and Liang T: Liquid biopsy in pancreatic cancer: The beginning of a new era. Oncotarget. 9:26900–26933. 2018. View Article : Google Scholar : PubMed/NCBI | |
Allenson K, Castillo J, San Lucas FA, Scelo G, Kim DU, Bernard V, Davis G, Kumar T, Katz M, Overman MJ, et al: High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol. 28:741–747. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mizukami K, Iwasaki Y, Kawakami E, Hirata M, Kamatani Y, Matsuda K, Endo M, Sugano K, Yoshida T, Murakami Y, et al: Genetic characterization of pancreatic cancer patients and prediction of carrier status of germline pathogenic variants in cancer-predisposing genes. EBioMedicine. 60:1030332020. View Article : Google Scholar : PubMed/NCBI | |
Lai E, Ziranu P, Spanu D, Dubois M, Pretta A, Tolu S, Camera S, Liscia N, Mariani S, Persano M, et al: BRCA-mutant pancreatic ductal adenocarcinoma. Br J Cancer. 125:1321–1332. 2021. View Article : Google Scholar : PubMed/NCBI | |
Moutinho-Ribeiro P, Adem B, Batista I, Silva M, Silva S, Ruivo CF, Morais R, Peixoto A, Coelho R, Costa-Moreira P, et al: Exosomal glypican-1 discriminates pancreatic ductal adenocarcinoma from chronic pancreatitis. Dig Liver Dis. 54:871–877. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yoshizawa N, Sugimoto K, Tameda M, Inagaki Y, Ikejiri M, Inoue H, Usui M, Ito M and Takei Y: miR-3940-5p/miR-8069 ratio in urine exosomes is a novel diagnostic biomarker for pancreatic ductal adenocarcinoma. Oncol Lett. 19:2677–2684. 2020.PubMed/NCBI | |
Xie Z, Gao Y, Ho C, Li L, Jin C, Wang X, Zou C, Mao Y, Wang X, Li Q, et al: Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut. 71:568–579. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ishihara M, Kageyama S, Miyahara Y, Ishikawa T, Ueda S, Soga N, Naota H, Mukai K, Harada N, Ikeda H and Shiku H: MAGE-A4, NY-ESO-1 and SAGE mRNA expression rates and co-expression relationships in solid tumours. BMC Cancer. 20:6062020. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto K, Nishimura S, Ito T and Akagi M: Clinicopathological assessment of cancer/testis antigens NY-ESO-1 and MAGE-A4 in highly aggressive soft tissue sarcomas. Diagnostics (Basel). 12:7332022. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Chen X, Ji J, Zhou R, Liu J, Ni W, Qu L, Ni H, Ni R, Bao B and Xiao M: Progress of exosomes in the diagnosis and treatment of pancreatic cancer. Gene Test Mol Biomarkers. 23:215–222. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Hu W, Liu Z, Xia J, Chen S, Wang PG and Yang S: Glycoproteomic bioanalysis of exosomes by LC-MS for early diagnosis of pancreatic cancer. Bioanalysis. 13:861–864. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Tang J, Jiang K, Liu SY, Aicher A and Heeschen C: Liquid biopsy in pancreatic cancer-Current perspective and future outlook. Biochim Biophys Acta Rev Cancer. 1878:1888682023. View Article : Google Scholar : PubMed/NCBI | |
Raufi AG, May MS, Hadfield MJ, Seyhan AA and El-Deiry WS: Advances in Liquid Biopsy Technology and Implications for Pancreatic Cancer. Int J Mol Sci. 24:42382023. View Article : Google Scholar : PubMed/NCBI | |
Haeberle L, Schramm M, Goering W, Frohn L, Driescher C, Hartwig W, Preissinger-Heinzel HK, Beyna T, Neuhaus H, Fuchs K, et al: Molecular analysis of cyst fluids improves the diagnostic accuracy of pre-operative assessment of pancreatic cystic lesions. Sci Rep. 11:29012021. View Article : Google Scholar : PubMed/NCBI | |
Karunakaran M and Barreto SG: Surgery for pancreatic cancer: Current controversies and challenges. Future Oncol. 17:5135–5162. 2021. View Article : Google Scholar : PubMed/NCBI | |
Strobel O and Neoptolemos J: Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol. 16:11–26. 2019. View Article : Google Scholar : PubMed/NCBI | |
Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, et al: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 369:1691–1703. 2013. View Article : Google Scholar : PubMed/NCBI | |
Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, et al: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 364:1817–1825. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshida K, Iwashita T, Uemura S, Maruta A, Okuno M, Ando N, Iwata K, Kawaguchi J, Mukai T and Shimizu M: A multicenter prospective phase II study of first-line modified FOLFIRINOX for unresectable advanced pancreatic cancer. Oncotarget. 8:111346–111355. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pajewska M, Partyka O, Czerw A, Deptała A, Cipora E, Gąska I, Wojtaszek M, Sygit K, Sygit M, Krzych-Fałta E, et al: Management of metastatic pancreatic Cancer-comparison of global guidelines over the last 5 years. Cancers (Basel). 15:44002023. View Article : Google Scholar : PubMed/NCBI | |
Strickler JH, Satake H, George TJ, Yaeger R, Hollebecque A, Garrido-Laguna I, Schuler M, Burns TF, Coveler AL, Falchook GS, et al: Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer. N Engl J Med. 388:33–43. 2023. View Article : Google Scholar : PubMed/NCBI | |
Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, Park JO, Hochhauser D, Arnold D, Oh DY, et al: Maintenance Olaparib for Germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 381:317–327. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV and Moses HL: Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev. 20:3147–3160. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Ali S, Banerjee S, Bao B, Li Y, Azmi AS, Korc M and Sarkar FH: Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. J Cell Physiol. 228:556–562. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pirlog R and Calin GA: KRAS mutations as essential promoters of lymphangiogenesis via extracellular vesicles in pancreatic cancer. J Clin Invest. 132:e1614542022. View Article : Google Scholar : PubMed/NCBI | |
Chang WH, Nguyen TT, Hsu CH, Bryant KL, Kim HJ, Ying H, Erickson JW, Der CJ, Cerione RA and Antonyak MA: KRAS-dependent cancer cells promote survival by producing exosomes enriched in Survivin. Cancer Lett. 517:66–77. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, Macarulla T, Lee KH, Cunningham D, Blanc JF, et al: Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet. 387:545–557. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ahmad SA, Duong M, Sohal DPS, Gandhi NS, Beg MS, Wang-Gillam A, Wade JL III, Chiorean EG, Guthrie KA, Lowy AM, et al: Surgical outcome results from SWOG S1505: A randomized clinical trial of mFOLFIRINOX versus Gemcitabine/Nab-paclitaxel for perioperative treatment of resectable pancreatic ductal adenocarcinoma. Ann Surg. 272:481–486. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kunzmann V, Siveke JT, Algül H, Goekkurt E, Siegler G, Martens U, Waldschmidt D, Pelzer U, Fuchs M, Kullmann F, et al: Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): A multicentre, randomised, phase 2 trial. Lancet Gastroenterol Hepatol. 6:128–138. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G and Zitvogel L: Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 126:1224–1232. 2016. View Article : Google Scholar : PubMed/NCBI | |
Veerman RE, Güçlüler Akpinar G, Eldh M and Gabrielsson S: Immune Cell-derived extracellular vesicles-functions and therapeutic applications. Trends Mol Med. 25:382–394. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Liu T and Zhou M: Immune-cell-derived exosomes for cancer therapy. Mol Pharm. 19:3042–3056. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao LX, Zhang K, Shen BB and Li JN: Mesenchymal stem cell-derived exosomes for gastrointestinal cancer. World J Gastrointest Oncol. 13:1981–1996. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zhou W, Chen X, Wang Q, Li C, Chen Q, Zhang Y, Lu Y, Ding X and Jiang C: Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer. Acta Pharma Sin B. 10:1563–1575. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xiang J, Zhang F, Liu L and Hu C: MSCs can be a double-edged sword in tumorigenesis. Front Oncol. 12:10479072022. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL: Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 35:69–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, Jung JY, Choi H, Lee JH, Sung S, et al: Mesenchymal Stem/stromal Cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 9:11572020. View Article : Google Scholar : PubMed/NCBI | |
Fang S, Xu C, Zhang Y, Xue C, Yang C, Bi H, Qian X, Wu M, Ji K, Zhao Y, et al: Umbilical Cord-derived mesenchymal stem cell-derived exosomal MicroRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl Med. 5:1425–1439. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Hao Z, Wang P, Xia Y, Wu J, Xia D, Fang S and Xu S: Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif. 52:e125702019. View Article : Google Scholar : PubMed/NCBI | |
Eldaly AS, Mashaly SM, Fouda E, Emam OS, Aglan A, Abuasbeh J, Khurana A, Hamdar H and Fath AR: Systemic anti-inflammatory effects of mesenchymal stem cells in burn: A systematic review of animal studies. J Clin Transl Res. 8:276–291. 2022.PubMed/NCBI | |
Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ and Zhong CQ: Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells. Proteomics. 23:e22002042023. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Yang Y, Zhao B, Yang Y, Wang J, Shen K, Yang X, Hu D, Zheng G and Han J: Exosomes derived from Adipose-derived mesenchymal stem cells ameliorate Radiation-induced brain injury by activating the SIRT1 pathway. Front Cell Dev Biol. 9:6937822021. View Article : Google Scholar : PubMed/NCBI | |
Shenoda BB and Ajit SK: Modulation of immune responses by exosomes derived from Antigen-presenting cells. Clin Med Insights Pathol. 9 (Suppl 1):S1–S8. 2016.PubMed/NCBI | |
Zaidi N, Soban M, Chen F, Kinkead H, Mathew J, Yarchoan M, Armstrong TD, Haider S and Jaffee EM: Role of in silico structural modeling in predicting immunogenic neoepitopes for cancer vaccine development. JCI Insight. 5:e1369912020. View Article : Google Scholar : PubMed/NCBI | |
Yadav SS and Narayan G: Role of ROBO4 signalling in developmental and pathological angiogenesis. Biomed Res Int. 2014:6830252014. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li WL, Fu L, Gu F and Ma YJ: Slit2/Robo1 signaling in glioma migration and invasion. Neurosci Bull. 26:474–478. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yang L, Zhuang T and Shi X: Tumor-derived exosomal miR-29b reduces angiogenesis in pancreatic cancer by silencing ROBO1 and SRGAP2. J Immunol Res. 2022:47693852022. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Zhang Y, Li B and Yang H: MTA1 promotes the invasion and migration of pancreatic cancer cells potentially through the HIF-α/VEGF pathway. J Recept Signal Transduct Res. 38:352–358. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, Kim YG, Jang JY and Kim CW: Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 8:e842562013. View Article : Google Scholar : PubMed/NCBI | |
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N and Javan M: MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr). 40:457–470. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang E, Wang X, Gong Z, Yu M, Wu H and Zhang D: Exosome-mediated metabolic reprogramming: The emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 5:2422020. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Huang X, Wu Q and Liu F: Senescent stromal cells in the tumor microenvironment: Victims or accomplices? Cancers (Basel). 15:19272023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y and Bai Y: Stromal cells in the tumor microenvironment: Accomplices of tumor progression? Cell Death Dis. 14:5872023. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Xie Y and Dong M: Cancer-associated fibroblasts derived extracellular vesicles promote angiogenesis of colorectal adenocarcinoma cells through miR-135b-5p/FOXO1 axis. Cancer Biol Ther. 23:76–88. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Liu X, Pan L, Zhou R and Zhang X: Long noncoding RNA MIR155HG facilitates pancreatic cancer progression through negative regulation of miR-802. J Cell Biochem. 120:17926–17934. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Jia HH, Xu YQ, Zhou X, Zhao XH, Wang YF, Song X, Zhu ZY, Sun T, Dou Y, et al: Paracrine and epigenetic control of CAF-induced metastasis: The role of HOTAIR stimulated by TGF-ß1 secretion. Mol Cancer. 17:52018. View Article : Google Scholar : PubMed/NCBI | |
Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, Stepanova A, Iommarini L, Mastroleo C, Daly L, et al: Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci USA. 114:E9066–E9075. 2017. View Article : Google Scholar : PubMed/NCBI | |
Achreja A, Zhao H, Yang L, Yun TH, Marini J and Nagrath D: Exo-MFA-A 13C metabolic flux analysis framework to dissect tumor microenvironment-secreted exosome contributions towards cancer cell metabolism. Metab Eng. 43:156–172. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H, et al: Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 159:499–513. 2014. View Article : Google Scholar : PubMed/NCBI | |
Duong MN, Geneste A, Fallone F, Li X, Dumontet C and Muller C: The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget. 8:57622–57641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frisbie L, Buckanovich RJ and Coffman L: Carcinoma-associated mesenchymal stem/stromal cells: Architects of the pro-tumorigenic tumor microenvironment. Stem Cells. 40:705–715. 2022. View Article : Google Scholar : PubMed/NCBI | |
Habanjar O, Diab-Assaf M, Caldefie-Chezet F and Delort L: The impact of obesity, adipose tissue, and tumor microenvironment on macrophage polarization and metastasis. Biology (Basel). 11:3392022.PubMed/NCBI | |
Li B, Liu S, Yang Q, Li Z, Li J, Wu J, Sun S, Xu Z, Sun S and Wu Q: Macrophages in tumor-associated adipose microenvironment accelerate tumor progression. Adv Biol (Weinh). 7:e22001612023. View Article : Google Scholar : PubMed/NCBI | |
Wen D, Liang T, Chen G, Li H, Wang Z, Wang J, Fu R, Han X, Ci T, Zhang Y, et al: Adipocytes encapsulating telratolimod recruit and polarize Tumor-Associated macrophages for cancer immunotherapy. Adv Sci (Weinh). 10:e22060012023. View Article : Google Scholar : PubMed/NCBI | |
Masuda T, Fukuda A, Yamakawa G, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Nagao M, Araki O, Yoshikawa T, et al: Pancreatic RECK inactivation promotes cancer formation, epithelial-mesenchymal transition, and metastasis. J Clin Invest. 133:e1618472023. View Article : Google Scholar : PubMed/NCBI | |
Träger MM and Dhayat SA: Epigenetics of epithelial-to-mesenchymal transition in pancreatic carcinoma. Int J Cancer. 141:24–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Iwamoto C, Ohuchida K, Shinkawa T, Okuda S, Otsubo Y, Okumura T, Sagara A, Koikawa K, Ando Y, Shindo K, et al: Bone marrow-derived macrophages converted into cancer-associated fibroblast-like cells promote pancreatic cancer progression. Cancer Lett. 512:15–27. 2021. View Article : Google Scholar : PubMed/NCBI | |
Padoan A, Plebani M and Basso D: Inflammation and pancreatic cancer: Focus on metabolism, cytokines, and immunity. Int J Mol Sci. 20:6762019. View Article : Google Scholar : PubMed/NCBI | |
Malinova A, Veghini L, Real FX and Corbo V: Cell lineage infidelity in PDAC progression and therapy resistance. Front Cell Dev Biol. 9:7952512021. View Article : Google Scholar : PubMed/NCBI | |
Chou CW, Huang YK, Kuo TT, Liu JP and Sher YP: An overview of ADAM9: Structure, Activation, and regulation in human diseases. Int J Mol Sci. 21:77902020. View Article : Google Scholar : PubMed/NCBI | |
Shang S, Wang J, Chen S, Tian R, Zeng H, Wang L, Xia M, Zhu H and Zuo C: Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer. Cancer Med. 8:7728–7740. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Mao Y, Wu D, Zhu Y, Lu J, Huang Y, Guo Y, Wang Z, Zhu S, Li X and Lu Y: Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/β-catenin axis. Cancer Lett. 512:38–50. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan Y, Wang M, Zhu W, Qian H, Xu W, et al: Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle. 14:2473–2483. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gomis RR and Gawrzak S: Tumor cell dormancy. Mol Oncol. 11:62–78. 2017. View Article : Google Scholar : PubMed/NCBI | |
Haider MT, Smit DJ and Taipaleenmäki H: The Endosteal niche in breast cancer bone metastasis. Front Oncol. 10:3352020. View Article : Google Scholar : PubMed/NCBI | |
Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, Yoshida M, Tsuda H, Tamura K and Ochiya T: Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 7:ra632014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Bucan V, Baehre H, von der Ohe J, Otte A and Hass R: Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol. 47:244–252. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu R, Shao Q, Yang B, Chen Y, Ye Q, Chen X and Zhu J: MiR-520a-5p/PPP5C regulation pattern is identified as the key to gemcitabine resistance in pancreatic cancer. Front Oncol. 12:9034842022. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Wei Q, Koay EJ, Liu Y, Ning B, Bernard PW, Zhang N, Han H, Katz MH, Zhao Z and Hu Y: Chemoresistance transmission via exosome-Mediated EphA2 transfer in pancreatic cancer. Theranostics. 8:5986–5994. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Rong Y, Tang X, Yi K, Qi P, Hou J, Liu W, He Y, Gao X, Yuan C and Wang F: Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer. 21:452022. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Xia M, Liao Y, Fang Y, Wen G and Zhong J: Exosomes in triple negative breast cancer: From bench to bedside. Cancer Lett. 527:1–9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Scavo MP, Depalo N, Tutino V, De Nunzio V, Ingrosso C, Rizzi F, Notarnicola M, Curri ML and Giannelli G: Exosomes for diagnosis and therapy in gastrointestinal cancers. Int J Mol Sci. 21:3672020. View Article : Google Scholar : PubMed/NCBI | |
Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, Alhakeem SS, Oben K, Munagala R, Bondada S and Gupta RC: Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine. 13:1627–1636. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lux A, Kahlert C, Grützmann R and Pilarsky C: c-Met and PD-L1 on circulating exosomes as diagnostic and prognostic markers for pancreatic cancer. Int J Mol Sci. 20:33052019. View Article : Google Scholar : PubMed/NCBI | |
Sakaue T, Koga H, Iwamoto H, Nakamura T, Ikezono Y, Abe M, Wada F, Masuda A, Tanaka T, Fukahori M, et al: Glycosylation of ascites-derived exosomal CD133: A potential prognostic biomarker in patients with advanced pancreatic cancer. Med Mol Morphol. 52:198–208. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takahasi K, Iinuma H, Wada K, Minezaki S, Kawamura S, Kainuma M, Ikeda Y, Shibuya M, Miura F and Sano K: Usefulness of exosome-encapsulated microRNA-451a as a minimally invasive biomarker for prediction of recurrence and prognosis in pancreatic ductal adenocarcinoma. J Hepatobiliary Pancreat Sci. 25:155–161. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei Q, Li Z, Feng H and Ren L: Serum exosomal EphA2 is a prognostic biomarker in patients with pancreatic cancer. Cancer Manag Res. 13:3675–3683. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Wu X, Xia M, Wu F, Ding J, Jiao Y, Zhan Q and An F: Upregulated exosomic miR-23b-3p plays regulatory roles in the progression of pancreatic cancer. Oncol Rep. 38:2182–2188. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Tao Y, Wang X, Jiang P, Li J, Peng M, Zhang X, Chen K, Liu H, Zhen P, et al: Tumor-secreted exosomal miR-222 promotes tumor progression via regulating P27 expression and Re-localization in pancreatic cancer. Cell Physiol Biochem. 51:610–629. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Zhou W, Rong Y, Kuang T, Xu X, Wu W, Wang D and Lou W: Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res. 383:1115432019. View Article : Google Scholar : PubMed/NCBI | |
Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE and Hill R: Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 36:1770–1778. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mikamori M, Yamada D, Eguchi H, Hasegawa S, Kishimoto T, Tomimaru Y, Asaoka T, Noda T, Wada H, Kawamoto K, et al: MicroRNA-155 controls exosome synthesis and promotes gemcitabine resistance in pancreatic ductal adenocarcinoma. Sci Rep. 7:423392017. View Article : Google Scholar : PubMed/NCBI | |
Batista IA and Melo SA: Exosomes and the future of immunotherapy in pancreatic cancer. Int J Mol Sci. 20:5672019. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, Zou Y and Chen S: Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res. 38:3102019. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Zhou Y, Chen X, Ning T, Chen H, Guo Q, Zhang Y, Liu P, Zhang Y, Li C, et al: Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogra-mming tumor microenvironment. Biomaterials. 268:1205462021. View Article : Google Scholar : PubMed/NCBI | |
Li YJ, Wu JY, Wang JM, Hu XB, Cai JX and Xiang DX: Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater. 101:519–530. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ and Kalluri R: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 546:498–503. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Erb U, Zhao K, Hackert T and Zöller M: Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. Oncoimmunology. 6:e13190442017. View Article : Google Scholar : PubMed/NCBI | |
Jang Y and Kim H, Yoon S, Lee H, Hwang J, Jung J, Chang JH, Choi J and Kim H: Exosome-based photoacoustic imaging guided photodynamic and immunotherapy for the treatment of pancreatic cancer. J Control Release. 330:293–304. 2021. View Article : Google Scholar : PubMed/NCBI | |
Que RS, Lin C, Ding GP, Wu ZR and Cao LP: Increasing the immune activity of exosomes: The effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. J Zhejiang Univ Sci B. 17:352–360. 2016. View Article : Google Scholar : PubMed/NCBI | |
Duan L, Xu L, Xu X, Qin Z, Zhou X, Xiao Y, Liang Y and Xia J: Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale. 13:1387–1397. 2021. View Article : Google Scholar : PubMed/NCBI | |
Moon B and Chang S: Exosome as a delivery vehicle for cancer therapy. Cells. 11:3162022. View Article : Google Scholar : PubMed/NCBI | |
Arrighetti N, Corbo C, Evangelopoulos M, Pastò A, Zuco V and Tasciotti E: Exosome-like nanovectors for drug delivery in cancer. Curr Med Chem. 26:6132–6148. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Duan L, Lu J and Xia J: Engineering exosomes for targeted drug delivery. Theranostics. 11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guimarães D, Cavaco-Paulo A and Nogueira E: Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 601:1205712021. View Article : Google Scholar : PubMed/NCBI | |
Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS and Jay SM: Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng. 9:315–324. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zuo L, Tao H, Xu H, Li C, Qiao G, Guo M, Cao S, Liu M and Lin X: Exosomes-coated miR-34a displays potent antitumor activity in pancreatic cancer both in vitro and in vivo. Drug Des Devel Ther. 14:3495–3507. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Cao F, Sun H, Wang Y, Liu S, Wu Y, Cui Q, Mei W and Li F: Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett. 442:351–361. 2019. View Article : Google Scholar : PubMed/NCBI | |
Duan H, Liu Y, Gao Z and Huang W: Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B. 11:55–70. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo G, Tan Z, Liu Y, Shi F and She J: The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer. Stem Cell Res Ther. 13:1382022. View Article : Google Scholar : PubMed/NCBI | |
Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia SM, et al: Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release. 192:262–270. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bonomi A, Sordi V, Dugnani E, Ceserani V, Dossena M, Coccè V, Cavicchini L, Ciusani E, Bondiolotti G, Piovani G, et al: Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells. Cytotherapy. 17:1687–1695. 2015. View Article : Google Scholar : PubMed/NCBI | |
van der Meel R, Fens MH, Vader P, van Solinge WW, Eniola-Adefeso O and Schiffelers RM: Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J Control Release. 195:72–85. 2014. View Article : Google Scholar : PubMed/NCBI | |
Clayton A, Harris CL, Court J, Mason MD and Morgan BP: Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur J Immunol. 33:522–531. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gomes-da-Silva LC, Fonseca NA, Moura V, Pedroso de Lima MC, Simões S and Moreira JN: Lipid-based nanoparticles for siRNA delivery in cancer therapy: Paradigms and challenges. Acc Chem Res. 45:1163–1171. 2012. View Article : Google Scholar : PubMed/NCBI | |
Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes N and de Lima MP: Cationic liposomes for gene delivery. Expert Opin Drug Deliv. 2:237–254. 2005. View Article : Google Scholar : PubMed/NCBI | |
Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, et al: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA. 109:6662–6667. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, Yang S, Blanko EVR, Peng Q, Ma X, et al: Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI insight. 3:e992632018. View Article : Google Scholar : PubMed/NCBI | |
Bardol T, Dujon AM, Taly V, Dunyach-Remy C, Lavigne JP, Costa-Silva B, Kurma K, Eslami-S Z, Cayrefourcq L, Canivet C, et al: Early detection of pancreatic cancer by liquid biopsy ‘PANLIPSY’: A french nation-wide study project. BMC Cancer. 24:7092024. View Article : Google Scholar : PubMed/NCBI | |
Wei MY, Shi S, Liang C, Meng QC, Hua J, Zhang YY, Liu J, Zhang B, Xu J and Yu XJ: The microbiota and microbiome in pancreatic cancer: More influential than expected. Mol Cancer. 18:972019. View Article : Google Scholar : PubMed/NCBI | |
Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, San Lucas A, et al: Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 178:795–806.e12. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Liu Q, Liao Q and Zhao Y: Pancreatic cancer, gut microbiota, and therapeutic efficacy. J Cancer. 11:2749–2758. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Mou Y, Wang H, Li L, Jin T, Wang H, Liu M and Jin W: Causal effect between gut microbiota and pancreatic cancer: A two-sample Mendelian randomization study. BMC Cancer. 23:10912023. View Article : Google Scholar : PubMed/NCBI | |
Kartal E, Schmidt TSB, Molina-Montes E, Rodríguez-Perales S, Wirbel J, Maistrenko OM, Akanni WA, Alashkar Alhamwe B, Alves RJ, Carrato A, et al: A faecal microbiota signature with high specificity for pancreatic cancer. Gut. 71:1359–1372. 2022. View Article : Google Scholar : PubMed/NCBI | |
McAllister F, Khan MAW, Helmink B and Wargo JA: The Tumor microbiome in pancreatic cancer: Bacteria and beyond. Cancer Cell. 36:577–579. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kabwe M, Dashper S and Tucci J: The Microbiome in pancreatic cancer-implications for diagnosis and precision bacteriophage therapy for this low survival disease. Front Cell Infect Microbiol. 12:8712932022. View Article : Google Scholar : PubMed/NCBI | |
Chow YC, Yam HC, Gunasekaran B, Lai WY, Wo WY, Agarwal T, Ong YY, Cheong SL and Tan SA: Implications of Porphyromonas gingivalis peptidyl arginine deiminase and gingipain R in human health and diseases. Front Cell Infect Microbiol. 12:9876832022. View Article : Google Scholar : PubMed/NCBI | |
Maekawa T, Fukaya R, Takamatsu S, Itoyama S, Fukuoka T, Yamada M, Hata T, Nagaoka S, Kawamoto K, Eguchi H, et al: Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer. Biochem Biophys Res Commun. 506:962–969. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Xie F, Wang L, Zhang L, Zhang S, Fang M and Zhou F: The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 17:323–334. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lai RC, Yeo RW, Tan KH and Lim SK: Exosomes for drug delivery-a novel application for the mesenchymal stem cell. Biotechnol Adv. 31:543–551. 2013. View Article : Google Scholar : PubMed/NCBI | |
Otsuka M and Kotani A: Recent advances in extracellular vesicles in gastrointestinal cancer and lymphoma. Cancer Sci. 114:2230–2237. 2023. View Article : Google Scholar : PubMed/NCBI | |
Vosough P, Khatami SH, Hashemloo A, Tajbakhsh A, Karimi-Fard F, Taghvimi S, Taheri-Anganeh M, Soltani Fard E, Savardashtaki A and Movahedpour A: Exosomal lncRNAs in gastrointestinal cancer. Clin Chim Acta. 540:1172162023. View Article : Google Scholar : PubMed/NCBI | |
Tang XH, Guo T, Gao XY, Wu XL, Xing XF, Ji JF and Li ZY: Exosome-derived noncoding RNAs in gastric cancer: Functions and clinical applications. Mol Cancer. 20:992021. View Article : Google Scholar : PubMed/NCBI |