Role and value of the tumor microenvironment in the progression and treatment resistance of gastric cancer (Review)
- Authors:
- Heng Yun
- Fangde Dong
- Xiaoqin Wei
- Xinyong Yan
- Ronglong Zhang
- Xiuyu Zhang
- Yulin Wang
-
Affiliations: Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China, Department of Pain, The Second People's Hospital of Baiyin, Baiyin, Gansu 730900, P.R. China, Department of Proctology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China, Department of Gastroenterology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China - Published online on: November 26, 2024 https://doi.org/10.3892/or.2024.8847
- Article Number: 14
-
Copyright: © Yun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, Yasuda T, Koh V, Huang KK, Tay ST, et al: Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 12:670–691. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yasuda T and Wang YA: Gastric cancer immunosuppressive microenvironment heterogeneity: Implications for therapy development. Trends Cancer. 10:627–642. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yin J, Zhao L, Zhou G, Dong S, Zhang Y, Niu P, Ren H, Zheng T, Yan J, et al: Reconstruction of the gastric cancer microenvironment after neoadjuvant chemotherapy by longitudinal single-cell sequencing. J Transl Med. 20:5632022. View Article : Google Scholar : PubMed/NCBI | |
Zu M, Hao X, Ning J, Zhou X, Gong Y, Lang Y, Xu W, Zhang J and Ding S: Patient-derived organoid culture of gastric cancer for disease modeling and drug sensitivity testing. Biomed Pharmacother. 163:1147512023. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Hu P, Xie J, Tang K, Hu S, Sun J, He Y, Li J, Lu W, Liu H, et al: Remodeling the immune microenvironment for gastric cancer therapy through antagonism of prostaglandin E2 receptor 4. Genes Dis. 11:1011642023. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Wang X, Wang X, Xu M and Sheng W: The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis. 13:8742022. View Article : Google Scholar : PubMed/NCBI | |
Shaopeng Z, Yang Z, Yuan F, Chen H and Zhengjun Q: Regulation of regulatory T cells and tumor-associated macrophages in gastric cancer tumor microenvironment. Cancer Med. 13:e69592024. View Article : Google Scholar : PubMed/NCBI | |
Hsieh HL and Tsai MM: Tumor progression-dependent angiogenesis in gastric cancer and its potential application. World J Gastrointest Oncol. 11:686–704. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moreira AM, Pereira J, Melo S, Fernandes MS, Carneiro P, Seruca R and Figueiredo J: The extracellular matrix: An accomplice in gastric cancer development and progression. Cells. 9:3942020. View Article : Google Scholar : PubMed/NCBI | |
Fang F, Zhang T, Li Q, Chen X, Jiang F and Shen X: The tumor immune-microenvironment in gastric cancer. Tumori. 108:541–551. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li C, Lu Y, Liu C and Yang W: Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol. 13:10168172022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Meng WJ and Wang ZQ: Cancer stem cells and the tumor microenvironment in gastric cancer. Front Oncol. 11:8039742022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yuan Q, Guo H, Guan H, Hong Z and Shang D: Deciphering drug resistance in gastric cancer: Potential mechanisms and future perspectives. Biomed Pharmacother. 173:1163102024. View Article : Google Scholar : PubMed/NCBI | |
Rojas A, Araya P, Gonzalez I and Morales E: Gastric tumor microenvironment. Adv Exp Med Biol. 1226:23–35. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G and De Maria R: Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer. 18:702019. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M and Worthley DL: Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 16:282–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
Helms E, Onate MK and Sherman MH: Fibroblast heterogeneity in the pancreatic tumor microenvironment. Cancer Discov. 10:648–656. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X and Shi S: Signaling pathways in cancer-associated fibroblasts: Recent advances and future perspectives. Cancer Commun (Lond). 43:3–41. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Xiao G, Yang C, Liu Q, Lv C, Yu X, Zhou Z, Lin S, Bai Z, Lin H, et al: Cancer-associated fibroblasts promote lymphatic metastasis in cholangiocarcinoma via the PDGF-BB/PDGFR-β mediated paracrine signaling network. Aging Dis. 15:369–389. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita H, Yashiro M, Fukuoka T, Hasegawa T, Morisaki T, Kasashima H, Masuda G, Noda S and Hirakawa K: Diffuse-type gastric cancer cells switch their driver pathways from FGFR2 signaling to SDF1/CXCR4 axis in hypoxic tumor microenvironments. Carcinogenesis. 36:1511–1520. 2015.PubMed/NCBI | |
Lou M, Iwatsuki M, Wu X, Zhang W, Matsumoto C and Baba H: Cancer-associated fibroblast-derived IL-8 upregulates PD-L1 expression in gastric cancer through the NF-κB pathway. Ann Surg Oncol. 31:2983–2995. 2024. View Article : Google Scholar : PubMed/NCBI | |
Galbo PM Jr, Zang X and Zheng D: Molecular features of cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res. 27:2636–2647. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M and Maeda K: The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci. 114:16–24. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q and Peng C: Cancer-associated fibroblasts regulate the biological behavior of cancer cells and stroma in gastric cancer. Oncol Lett. 15:691–698. 2018.PubMed/NCBI | |
Lin Y, Pan X, Zhao L, Yang C, Zhang Z, Wang B, Gao Z, Jiang K, Ye Y, Wang S and Shen Z: Immune cell infiltration signatures identified molecular subtypes and underlying mechanisms in gastric cancer. NPJ Genom Med. 6:832021. View Article : Google Scholar : PubMed/NCBI | |
Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martínez-Ciarpaglini C, Cabeza-Segura M, Roselló S, Roda D, Huerta M, Cervantes A and Fleitas T: The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treat Rev. 86:1020152020. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Gao Z, Guo X, Ma R, Wang X, Zhou P, Li C, Tang Z, Zhao R and Gao P: CAP2 promotes gastric cancer metastasis by mediating the interaction between tumor cells and tumor-associated macrophages. J Clin Invest. 133:e1662242023. View Article : Google Scholar : PubMed/NCBI | |
Miao L, Qi J, Zhao Q, Wu QN, Wei DL, Wei XL, Liu J, Chen J, Zeng ZL, Ju HQ, et al: Targeting the STING pathway in tumor-associated macrophages regulates innate immune sensing of gastric cancer cells. Theranostics. 10:498–515. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ivanović T, Božić D, Benzon B, Čapkun V, Vukojević K and Glavina Durdov M: Histological type, cytotoxic T cells and macrophages in the tumor microenvironment affect the PD-L1 status of gastric cancer. Biomedicines. 11:7092023. View Article : Google Scholar : PubMed/NCBI | |
Hu HT, Ai X, Lu M, Song Z and Li H: Characterization of intratumoral and circulating IL-10-producing B cells in gastric cancer. Exp Cell Res. 384:1116522019. View Article : Google Scholar : PubMed/NCBI | |
Qu Y, Wang X, Bai S, Niu L, Zhao G, Yao Y, Li B and Li H: The effects of TNF-α/TNFR2 in regulatory T cells on the microenvironment and progression of gastric cancer. Int J Cancer. 150:1373–1391. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mesali H, Ajami A, Hussein-Nattaj H, Rafiei A, Rajabian Z, Asgarian-Omran H, Hosseini V, Taghvaei T and Tehrani M: Regulatory T cells and myeloid-derived suppressor cells in patients with peptic ulcer and gastric cancer. Iran J Immunol. 13:167–177. 2016.PubMed/NCBI | |
Tsutsumi C, Ohuchida K, Katayama N, Yamada Y, Nakamura S, Okuda S, Otsubo Y, Iwamoto C, Torata N, Horioka K, et al: Tumor-infiltrating monocytic myeloid-derived suppressor cells contribute to the development of an immunosuppressive tumor microenvironment in gastric cancer. Gastric Cancer. 27:248–262. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Shi H, Yuan X, Jiang P, Qian H and Xu W: Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer. 17:1462018. View Article : Google Scholar : PubMed/NCBI | |
Weygant N, Ge Y, Westphalen CB, Ma WW and Vega KJ: Role of the microenvironment in gastrointestinal tumors. J Oncol. 2019:21534132019. View Article : Google Scholar : PubMed/NCBI | |
Luo Q, Dong Z, Xie W, Fu X, Lin L, Zeng Q, Chen Y, Ye G, Chen M, Hu H, et al: Apatinib remodels the immunosuppressive tumor ecosystem of gastric cancer enhancing anti-PD-1 immunotherapy. Cell Rep. 42:1124372023. View Article : Google Scholar : PubMed/NCBI | |
Oh DY, Doi T, Shirao K, Lee KW, Park SR, Chen Y, Yang L, Valota O and Bang YJ: Phase I study of axitinib in combination with cisplatin and capecitabine in patients with previously untreated advanced gastric cancer. Cancer Res Treat. 47:687–696. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Guo J, Chen Z, Wang J, Liu M and Pang X: Linifanib (ABT-869) potentiates the efficacy of chemotherapeutic agents through the suppression of receptor tyrosine kinase-mediated AKT/mTOR signaling pathways in gastric cancer. Sci Rep. 6:293822016. View Article : Google Scholar : PubMed/NCBI | |
Ryu MH, Lee KH, Shen L, Yeh KH, Yoo C, Hong YS, Park YI, Yang SH, Shin DB, Zang DY, et al: Randomized phase II study of capecitabine plus cisplatin with or without sorafenib in patients with metastatic gastric cancer (STARGATE). Cancer Med. 12:7784–7794. 2023. View Article : Google Scholar : PubMed/NCBI | |
Giubelan A, Stancu MI, Honţaru SO, Mălăescu GD, Badea-Voiculescu O, Firoiu C and Mogoantă SŞ: Tumor angiogenesis in gastric cancer. Rom J Morphol Embryol. 64:311–318. 2023. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Dai Y, Gong Z, Cheng JN, Zhang L, Sun C, Zeng X, Jia Q and Zhu B: Association between angiogenesis and cytotoxic signatures in the tumor microenvironment of gastric cancer. Onco Targets Ther. 11:2725–2733. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brzozowa M, Michalski M, Harabin-Słowińska M and Wojnicz R: The role of tumour microenvironment in gastric cancer angiogenesis. Prz Gastroenterol. 9:325–328. 2014.PubMed/NCBI | |
Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L and Zhao Q: Lymphangiogenesis in gastric cancer: Function and mechanism. Eur J Med Res. 28:4052023. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Xue F, Li M, Zhu X, Lu X, Wang C, Xu E, Wang X, Zhang L, Yu H, et al: Extracellular matrix characterization in gastric cancer helps to predict prognosis and chemotherapy response. Front Oncol. 11:7533302021. View Article : Google Scholar : PubMed/NCBI | |
Moreira AM, Ferreira RM, Carneiro P, Figueiredo J, Osório H, Barbosa J, Preto J, Pinto-do-Ó P, Carneiro F and Seruca R: Proteomic identification of a gastric tumor ECM signature associated with cancer progression. Front Mol Biosci. 9:8185522022. View Article : Google Scholar : PubMed/NCBI | |
Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, Bin J, Liao Y, Rao J and Liao W: Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res. 7:737–750. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Wang S, Ni B, Xing S, Cao H, Zhang Z, Yu F, Zhao E and Zhao G: Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene. 39:6231–6244. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oya Y, Hayakawa Y and Koike K: Tumor microenvironment in gastric cancers. Cancer Sci. 111:2696–2707. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z and Lu ZR: Molecular imaging of the tumor microenvironment. Adv Drug Deliv Rev. 113:24–48. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Dam S, Baars MJD and Vercoulen Y: Multiplex tissue imaging: Spatial revelations in the tumor microenvironment. Cancers (Basel). 14:31702022. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Wang H, Wu J, Chen C, Yuan Q, Huang W, Li T, Xi S, Hu Y, Zhou Z, et al: Noninvasive imaging evaluation of tumor immune microenvironment to predict outcomes in gastric cancer. Ann Oncol. 31:760–768. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Wang B, Fu Z, Wei J and Lu W: Hypoxic microenvironment induces EMT and upgrades stem-like properties of gastric cancer cells. Technol Cancer Res Treat. 15:60–68. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Song B, Li Y, Zhao Q and Tan B: Mapping spatial heterogeneity in gastric cancer microenvironment. Biomed Pharmacother. 172:1163172024. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Wu RL and Xu AM: Epithelial-mesenchymal transition in gastric cancer. Am J Transl Res. 7:2141–2158. 2015.PubMed/NCBI | |
Koda T, Matsushima S, Sasaki A, Danjo Y and Kakinuma M: c-myc Gene amplification in primary stomach cancer. Jpn J Cancer Res. 76:551–554. 1985.PubMed/NCBI | |
Cai HQ, Zhang LY, Fu LM, Xu B and Jiao Y: Mutational landscape of TP53 and CDH1 in gastric cancer. World J Gastrointest Surg. 16:276–283. 2024. View Article : Google Scholar : PubMed/NCBI | |
De Marco K, Sanese P, Simone C and Grossi V: Histone and DNA methylation as epigenetic regulators of DNA damage repair in gastric cancer and emerging therapeutic opportunities. Cancers (Basel). 15:49762023. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. 42:713–725. 2018.PubMed/NCBI | |
Fattahi S, Amjadi-Moheb F, Tabaripour R, Ashrafi GH and Akhavan-Niaki H: PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci. 262:1185132020. View Article : Google Scholar : PubMed/NCBI | |
Magnelli L, Schiavone N, Staderini F, Biagioni A and Papucci L: MAP kinases pathways in gastric cancer. Int J Mol Sci. 21:28932020. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Xu C, Guan Z, Su X, Xu Z, Cao J and Teng L: Galectin-1 mediates TGF-β-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer. Am J Transl Res. 8:1641–1658. 2016.PubMed/NCBI | |
Hasegawa T, Yashiro M, Nishii T, Matsuoka J, Fuyuhiro Y, Morisaki T, Fukuoka T, Shimizu K, Shimizu T, Miwa A and Hirakawa K: Cancer-associated fibroblasts might sustain the stemness of scirrhous gastric cancer cells via transforming growth factor-β signaling. Int J Cancer. 134:1785–1795. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Ji J, Jiang J, Cai Q, Wang C, Shi M, Yu Y, Zhu Z and Zhang J: HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death Dis. 9:8672018. View Article : Google Scholar : PubMed/NCBI | |
Hong HN, Won YJ, Shim JH, Kim HJ, Han SH, Kim BS and Kim HS: Cancer-associated fibroblasts promote gastric tumorigenesis through EphA2 activation in a ligand-independent manner. J Cancer Res Clin Oncol. 144:1649–1663. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Li B, Zi J, Zhang R, Yu M, Zhou J, Pu Y and Xiong W: The dual role of LOXL4 in the pathogenesis and development of human malignant tumors: A narrative review. Transl Cancer Res. 13:2026–2042. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bin YL, Hu HS, Tian F, Wen ZH, Yang MF, Wu BH, Wang LS, Yao J and Li DF: Metabolic reprogramming in gastric cancer: Trojan horse effect. Front Oncol. 11:7452092022. View Article : Google Scholar : PubMed/NCBI | |
Nienhüser H and Schmidt T: Angiogenesis and anti-angiogenic therapy in gastric cancer. Int J Mol Sci. 19:432017. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhang M, Ma Z, Yuan D, Zhu J, Tuo B, Li T and Liu X: Alteration and dysfunction of ion channels/transporters in a hypoxic microenvironment results in the development and progression of gastric cancer. Cell Oncol (Dordr). 44:739–749. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hao LS, Liu Q, Tian C, Zhang DX, Wang B, Zhou DX, Li ZP and Yuan ZX: Correlation and expression analysis of hypoxia-inducible factor 1α, glucose transporter 1 and lactate dehydrogenase 5 in human gastric cancer. Oncol Lett. 18:1431–1441. 2019.PubMed/NCBI | |
Shang Z, Ma Z, Wu E, Chen X, Tuo B, Li T and Liu X: Effect of metabolic reprogramming on the immune microenvironment in gastric cancer. Biomed Pharmacother. 170:1160302024. View Article : Google Scholar : PubMed/NCBI | |
Ham IH, Lee D and Hur H: Role of cancer-associated fibroblast in gastric cancer progression and resistance to treatments. J Oncol. 2019:62707842019. View Article : Google Scholar : PubMed/NCBI | |
Taeb S, Ashrafizadeh M, Zarrabi A, Rezapoor S, Musa AE, Farhood B and Najafi M: Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr Cancer Drug Targets. 22:18–30. 2022. View Article : Google Scholar : PubMed/NCBI | |
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P and Mongiat M: Role of extracellular matrix in gastrointestinal cancer-associated angiogenesis. Int J Mol Sci. 21:36862020. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Cao M, Duan Y, Bai H, Li X and Wang Y: Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: A meta-analysis and experimental validation. Arch Med Sci. 16:1092–1103. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Xi W, Ji J, Cai Q, Jiang J, Shi M, Yu Y, Zhu Z and Zhang J: HGF derived from cancer-associated fibroblasts promotes vascularization in gastric cancer via PI3K/AKT and ERK1/2 signaling. Oncol Rep. 40:1185–1195. 2018.PubMed/NCBI | |
Wan X, Guan S, Hou Y, Qin Y, Zeng H, Yang L, Qiao Y, Liu S, Li Q, Jin T, et al: FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts. Theranostics. 11:4975–4991. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yoshida CJ: Regulation of heterogeneous cancer-associated fibroblasts: The molecular pathology of activated signaling pathways. J Exp Clin Cancer Res. 39:1122020. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S and Qiao Y: Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 6:1532021. View Article : Google Scholar : PubMed/NCBI | |
Ilan N, Elkin M and Vlodavsky I: Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol. 38:2018–2039. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fan HL, Han ZT, Gong XR, Wu YQ, Fu YJ, Zhu TM and Li H: Macrophages in CRSwNP: Do they deserve more attention? Int Immunopharmacol. 134:1122362024. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Miller CP, Tykodi SS, Akilesh S and Warren EH: Signaling crosstalk between tumor endothelial cells and immune cells in the microenvironment of solid tumors. Front Cell Dev Biol. 12:13871982024. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhao XH, Liu J, Zhang R and Li JP: Nervous system and gastric cancer. Biochim Biophys Acta Rev Cancer. 1873:1883132020. View Article : Google Scholar : PubMed/NCBI | |
Sukri A, Hanafiah A and Kosai NR: The roles of immune cells in gastric cancer: Anti-cancer or pro-cancer? Cancers (Basel). 14:39222022. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Chen J, Li W, Feng C, Liu Q, Gao W and He M: Immunology and immunotherapy in gastric cancer. Clin Exp Med. 23:3189–3204. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tong L, Jiménez-Cortegana C, Tay AHM, Wickström S, Galluzzi L and Lundqvist A: NK cells and solid tumors: Therapeutic potential and persisting obstacles. Mol Cancer. 21:2062022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Hu C, Zhang R, Xu J, Zhang Y, Yuan L, Zhang S, Pan S, Cao M, Qin J, et al: The role of macrophages in gastric cancer. Front Immunol. 14:12821762023. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Yi M, Niu M, Mei Q and Wu K: Myeloid-derived suppressor cells: An emerging target for anticancer immunotherapy. Mol Cancer. 21:1842022. View Article : Google Scholar : PubMed/NCBI | |
Ozmen E, Demir TD and Ozcan G: Cancer-associated fibroblasts: Protagonists of the tumor microenvironment in gastric cancer. Front Mol Biosci. 11:13401242024. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Guan WB, Li JL, Li LX, Wang KZ, Wang RF and Wang LF: Cancer-associated fibroblasts subtypes and role in invasion and metastasis of gastric cancer. Neoplasma. 69:1277–1288. 2022. View Article : Google Scholar : PubMed/NCBI | |
Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar : PubMed/NCBI | |
Khaloozadeh F, Razmara E, Asgharpour-Babayian F, Fallah A, Ramezani R, Rouhollah F and Babashah S: Exosomes derived from colorectal cancer cells take part in activation of stromal fibroblasts through regulating PHLPP isoforms. EXCLI J. 23:634–654. 2024.PubMed/NCBI | |
Qin Y, Wang F, Ni H, Liu Y, Yin Y, Zhou X, Gao G, Li Q, Qi X and Li J: Cancer-associated fibroblasts in gastric cancer affect malignant progression via the CXCL12-CXCR4 axis. J Cancer. 12:3011–3023. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Cong X, Li Z and Xue Y: Estrogen facilitates gastric cancer cell proliferation and invasion through promoting the secretion of interleukin-6 by cancer-associated fibroblasts. Int Immunopharmacol. 78:1059372020. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Wang LF and Wang RF: Role of cancer-associated fibroblasts in invasion and metastasis of gastric cancer. World J Gastroenterol. 21:9717–9726. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dzobo K, Senthebane DA and Dandara C: The tumor microenvironment in tumorigenesis and therapy resistance revisited. Cancers (Basel). 15:3762023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z and Zhu Y: FAP, CD10, and GPR77-labeled CAFs cause neoadjuvant chemotherapy resistance by inducing EMT and CSC in gastric cancer. BMC Cancer. 23:5072023. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI | |
Zhai J, Shen J, Xie G, Wu J, He M, Gao L, Zhang Y, Yao X and Shen L: Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer. Cancer Lett. 454:37–43. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lengyel CG, Hussain S, Seeber A, Jamil Nidhamalddin S, Trapani D, Habeeb BS, Elfaham E, Mazher SA, Seid F, Khan SZ, et al: FGFR pathway inhibition in gastric cancer: The golden era of an old target? Life (Basel). 12:812022.PubMed/NCBI | |
Watabe T and Giesel FL: Fibroblast activation protein inhibitor PET/CT in gastric cancer. PET Clin. 18:337–344. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gupta R: Epigenetic regulation and targeting of ECM for cancer therapy. Am J Physiol Cell Physiol. 322:C762–C768. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sleeboom JJF, van Tienderen GS, Schenke-Layland K, van der Laan LJW, Khalil AA and Verstegen MMA: The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets. Sci Transl Med. 16:eadg38402024. View Article : Google Scholar : PubMed/NCBI | |
Abbaszadegan MR, Mojarrad M and Moghbeli M: Role of extra cellular proteins in gastric cancer progression and metastasis: An update. Genes Environ. 42:182020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhu CC, Ni B, Zhang ZZ, Jiang SH, Hu LP, Wang X, Zhang XX, Huang PQ, Yang Q, et al: Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. EBioMedicine. 49:157–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Laczko R and Csiszar K: Lysyl oxidase (LOX): Functional contributions to signaling pathways. Biomolecules. 10:10932020. View Article : Google Scholar : PubMed/NCBI | |
Gamradt P, De La Fouchardière C and Hennino A: Stromal protein-mediated immune regulation in digestive cancers. Cancers (Basel). 13:1462021. View Article : Google Scholar : PubMed/NCBI | |
Ye L, Li Y, Zhang S, Wang J and Lei B: Exosomes-regulated lipid metabolism in tumorigenesis and cancer progression. Cytokine Growth Factor Rev. 73:27–39. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhang H, Wang J, Liu Y, Luo T and Hua H: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol. 15:342022. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang Y, Li M, Wu X, Setrerrahmane S and Xu H: Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B. 11:2726–2737. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lugano R, Ramachandran M and Dimberg A: Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci. 77:1745–1770. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li P, Zhang H, Chen T, Zhou Y, Yang J and Zhou J: Cancer-associated fibroblasts promote proliferation, angiogenesis, metastasis and immunosuppression in gastric cancer. Matrix Biol. 132:59–71. 2024. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, de Haas S, Kang YK, Ohtsu A, Tebbutt NC, Ming Xu J, Peng Yong W, Langer B, Delmar P, Scherer SJ and Shah MA: Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: A biomarker evaluation from the AVAGAST randomized phase III trial. J Clin Oncol. 30:2119–2127. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bang YJ, Kang YK, Kang WK, Boku N, Chung HC, Chen JS, Doi T, Sun Y, Shen L, Qin S, et al: Phase II study of sunitinib as second-line treatment for advanced gastric cancer. Invest New Drugs. 29:1449–1458. 2011. View Article : Google Scholar : PubMed/NCBI | |
de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, Lu Y and Fu P: Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: New insights and therapeutic implications. Cell Death Dis. 14:5862023. View Article : Google Scholar : PubMed/NCBI | |
Gysler SM and Drapkin R: Tumor innervation: Peripheral nerves take control of the tumor microenvironment. J Clin Invest. 131:e1472762021. View Article : Google Scholar : PubMed/NCBI | |
Cifuentes L, Camilleri M and Acosta A: Gastric sensory and motor functions and energy intake in health and obesity-therapeutic implications. Nutrients. 13:11582021. View Article : Google Scholar : PubMed/NCBI | |
Serafim Junior V, Fernandes GMM, Oliveira-Cucolo JG, Pavarino EC and Goloni-Bertollo EM: Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine. 136:1552702020. View Article : Google Scholar : PubMed/NCBI | |
Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, Renz BW, Tailor Y, Macchini M, Middelhoff M, et al: Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 31:21–34. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schledwitz A, Sundel MH, Alizadeh M, Hu S, Xie G and Raufman JP: Differential actions of muscarinic receptor subtypes in gastric, pancreatic, and colon cancer. Int J Mol Sci. 22:131532021. View Article : Google Scholar : PubMed/NCBI | |
Muñoz M and Coveñas R: Involvement of substance P and the NK-1 receptor in cancer progression. Peptides. 48:1–9. 2013. View Article : Google Scholar : PubMed/NCBI | |
Muñoz M, Rosso M and Coveñas R: The NK-1 receptor antagonist L-732,138 induces apoptosis in human gastrointestinal cancer cell lines. Pharmacol Rep. 69:696–701. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lan YL, Zou S, Wang W, Chen Q and Zhu Y: Progress in cancer neuroscience. MedComm (2020). 4:e4312023. View Article : Google Scholar : PubMed/NCBI | |
Han X, Liu T, Zhai J, Liu C, Wang W, Nie C, Wang Q, Zhu X, Zhou H and Tian W: Association between EPHA5 methylation status in peripheral blood leukocytes and the risk and prognosis of gastric cancer. PeerJ. 10:e137742022. View Article : Google Scholar : PubMed/NCBI | |
Niu Q, Zhu J, Yu X, Feng T, Ji H, Li Y, Zhang W and Hu B: Immune response in H. pylori-associated gastritis and gastric cancer. Gastroenterol Res Pract. 2020:93425632020. View Article : Google Scholar : PubMed/NCBI | |
Jing Y, Xu F, Liang W, Liu J and Zhang L: Role of regulatory B cells in gastric cancer: Latest evidence and therapeutics strategies. Int Immunopharmacol. 96:1075812021. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Yuan S, Wang C and Zhu H: Resistance to immune checkpoint inhibitors in gastric cancer. Front Pharmacol. 14:12853432023. View Article : Google Scholar : PubMed/NCBI | |
Yeh ES: Special issue: Cancer metastasis and therapeutic resistance. Biomedicines. 11:13472023. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y and Yu D: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. View Article : Google Scholar : PubMed/NCBI | |
Dallavalasa S, Beeraka NM, Basavaraju CG, Tulimilli SV, Sadhu SP, Rajesh K, Aliev G and Madhunapantula SV: The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis-current status. Curr Med Chem. 28:8203–8236. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liao Z, Tan ZW, Zhu P and Tan NS: Cancer-associated fibroblasts in tumor microenvironment-Accomplices in tumor malignancy. Cell Immunol. 343:1037292019. View Article : Google Scholar : PubMed/NCBI | |
Biagioni A, Peri S, Versienti G, Fiorillo C, Becatti M, Magnelli L and Papucci L: Gastric cancer vascularization and the contribution of reactive oxygen species. Biomolecules. 13:8862023. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Wang Y, Wang C, Guo C and Zhang D, Zhong Y, Yin L, Lu Y, Liu F, Zhang Y and Zhang D: Spatial transcriptomics of gastric cancer brain metastasis reveals atypical vasculature strategies with supportive immune profiles. Gastroenterol Rep (Oxf). 12:goae0672024. View Article : Google Scholar : PubMed/NCBI | |
Yuzhalin AE, Lim SY, Kutikhin AG and Gordon-Weeks AN: Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer. 1870:207–228. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fields GB: The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma. Cells. 8:9842019. View Article : Google Scholar : PubMed/NCBI | |
Namee NM and O'Driscoll L: Extracellular vesicles and anti-cancer drug resistance. Biochim Biophys Acta Rev Cancer. 1870:123–136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Eichhorn PJA and Thiery JP: TGF-β, EMT, and resistance to anti-cancer treatment. Semin Cancer Biol. 97:1–11. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Ajani JA and Song S: Drug resistance and cancer stem cells. Cell Commun Signal. 19:192021. View Article : Google Scholar : PubMed/NCBI | |
Yeldag G, Rice A and Del Río Hernández A: Chemoresistance and the self-maintaining tumor microenvironment. Cancers (Basel). 10:4712018. View Article : Google Scholar : PubMed/NCBI | |
Ma ES, Wang ZX, Zhu MQ and Zhao J: Immune evasion mechanisms and therapeutic strategies in gastric cancer. World J Gastrointest Oncol. 14:216–229. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Zhao J, Fu W, Xu Q and Huang D: Immune Evasion and drug resistance mediated by USP22 in cancer: Novel targets and mechanisms. Front Immunol. 13:9183142022. View Article : Google Scholar : PubMed/NCBI | |
Li J and Stanger BZ: How tumor cell dedifferentiation drives immune evasion and resistance to immunotherapy. Cancer Res. 80:4037–4041. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Ewetse MP, Ma C, Pu W, Xu B, He P, Wang Y, Zhu J and Chen H: The ‘light knife’ for gastric cancer: Photodynamic therapy. Pharmaceutics. 15:1012022. View Article : Google Scholar : PubMed/NCBI | |
Li K, Zhang A, Li X, Zhang H and Zhao L: Advances in clinical immunotherapy for gastric cancer. Biochim Biophys Acta Rev Cancer. 1876:1886152021. View Article : Google Scholar : PubMed/NCBI | |
Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, et al: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 15:1224–1235. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Kadowaki S, Nishina T, Sakai D, Yoshikawa R, Piao Y, Ozeki A, Inoue K, Gritli I and Muro K: Safety, pharmacokinetic, and clinical activity profiles of ramucirumab in combination with three platinum/fluoropyrimidine doublets in Japanese patients with chemotherapy-naïve metastatic gastric/gastroesophageal junction cancer. Gastric Cancer. 21:106–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Jung A, Yang A, Monroy I, Zhang Z, Chaurasiya S, Deshpande S, Priceman S, Fong Y, Park AK and Woo Y: Chimeric antigen receptor-T cell and oncolytic viral therapies for gastric cancer and peritoneal carcinomatosis of gastric origin: Path to improving combination strategies. Cancers (Basel). 15:56612023. View Article : Google Scholar : PubMed/NCBI | |
Patel TH and Cecchini M: Targeted therapies in advanced gastric cancer. Curr Treat Options Oncol. 21:702020. View Article : Google Scholar : PubMed/NCBI | |
Kwon M, An M, Klempner SJ, Lee H, Kim KM, Sa JK, Cho HJ, Hong JY, Lee T, Min YW, et al: Determinants of response and intrinsic resistance to PD-1 blockade in microsatellite instability-high gastric cancer. Cancer Discov. 11:2168–2185. 2021. View Article : Google Scholar : PubMed/NCBI | |
Janjigian YY, Kawazoe A, Yañez P, Li N, Lonardi S, Kolesnik O, Barajas O, Bai Y, Shen L, Tang Y, et al: The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature. 600:727–730. 2021. View Article : Google Scholar : PubMed/NCBI | |
Entezam M, Sanaei MJ, Mirzaei Y, Mer AH, Abdollahpour-Alitappeh M, Azadegan-Dehkordi F and Bagheri N: Current progress and challenges of immunotherapy in gastric cancer: A focus on CAR-T cells therapeutic approach. Life Sci. 318:1214592023. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Xu B, Xiang L, Ding T, Wang N, Yu R, Gu B, Gao L, Maswikiti EP, Wang Y, et al: Photodynamic therapy improves the outcome of immune checkpoint inhibitors via remodelling anti-tumour immunity in patients with gastric cancer. Gastric Cancer. 26:798–813. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xu B, He P, Wang Y, Wang H, Zhang J, Zhu J, Pu W and Chen H: PDT for gastric cancer-the view from China. Photodiagnosis Photodyn Ther. 42:1033662023. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Cui Y, Zheng Y, Li S, Lv J, Wu Q, Long Y, Wang S, Yao Y, Wei W, et al: Human hyaluronidase PH20 potentiates the antitumor activities of mesothelin-specific CAR-T cells against gastric cancer. Front Immunol. 12:6604882021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Liu SS, Ma J and Qu W: Secretory leukocyte protease inhibitor (SLPI) in cancer pathophysiology: Mechanisms of action and clinical implications. Pathol Res Pract. 248:1546332023. View Article : Google Scholar : PubMed/NCBI | |
Lim NR and Chung WC: Helicobacter pylori-associated chronic atrophic gastritis and progression of gastric carcinogenesis. Korean J Gastroenterol. 82:171–179. 2023. View Article : Google Scholar : PubMed/NCBI | |
Graham DY: Helicobacter pylori update: Gastric cancer, reliable therapy, and possible benefits. Gastroenterology. 148:719–731.e3. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deng R, Zheng H, Cai H, Li M, Shi Y and Ding S: Effects of helicobacter pylori on tumor microenvironment and immunotherapy responses. Front Immunol. 13:9234772022. View Article : Google Scholar : PubMed/NCBI | |
Guo R and Yang B: Hypoxia-induced LXRα contributes to the migration and invasion of gastric cancer cells. Folia Biol (Praha). 67:91–101. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Cong X, Gao H, Lan X, Li Z, Wang W, Song S, Wang Y, Li C, Zhang H, et al: Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J Exp Clin Cancer Res. 38:62019. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Bu L, Yasuda T, Koiwa M, Akiyama T, Uchihara T, Baba H and Ishimoto T: Gastric cancer stem cells: Current insights into the immune microenvironment and therapeutic targets. Biomedicines. 8:72020. View Article : Google Scholar : PubMed/NCBI | |
Aghlara-Fotovat S, Nash A, Kim B, Krencik R and Veiseh O: Targeting the extracellular matrix for immunomodulation: Applications in drug delivery and cell therapies. Drug Deliv Transl Res. 11:2394–2413. 2021. View Article : Google Scholar : PubMed/NCBI |