|
1
|
Wang S, Zheng R, Li J, Zeng H, Li L, Chen
R, Sun K, Han B, Bray F, Wei W and He J: Global, regional, and
national lifetime risks of developing and dying from
gastrointestinal cancers in 185 countries: A population-based
systematic analysis of GLOBOCAN. Lancet Gastroenterol Hepatol.
9:229–237. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang T, Jin Y, Wang M, Chen B, Sun J,
Zhang J, Yang H, Deng X, Cao X, Wang L and Tang Y: SALL4 in
gastrointestinal tract cancers: Upstream and downstream regulatory
mechanisms. Mol Med. 30:462024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Samson N and Ablasser A: The cGAS-STING
pathway and cancer. Nat Cancer. 3:1452–1463. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing
F, Jiang G, Yan B, Sun X, Ma Y, et al: TET2-mediated tumor cGAS
triggers endothelial STING activation to regulate vasculature
remodeling and anti-tumor immunity in liver cancer. Nat Commun.
15:62024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wang Y, Luo J, Alu A, Han X, Wei Y and Wei
X: cGAS-STING pathway in cancer biotherapy. Mol Cancer. 19:1362020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Canesso MCC, Lemos L, Neves TC, Marim FM,
Castro TBR, Veloso ÉS, Queiroz CP, Ahn J, Santiago HC, Martins FS,
et al: The cytosolic sensor STING is required for intestinal
homeostasis and control of inflammation. Mucosal Immunol.
11:820–834. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ke X, Hu T and Jiang M: cGAS-STING
signaling pathway in gastrointestinal inflammatory disease and
cancers. FASEB J. 36:e220292022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Li Y, Chen H, Yang Q, Wan L, Zhao J, Wu Y,
Wang J, Yang Y, Niu M, Liu H, et al: Increased Drp1 promotes
autophagy and ESCC progression by mtDNA stress mediated cGAS-STING
pathway. J Exp Clin Cancer Res. 41:762022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang J, Xiao Y, Loupakis F, Stintzing S,
Yang Y, Arai H, Battaglin F, Kawanishi N, Jayachandran P, Soni S,
et al: Genetic variants involved in the cGAS-STING pathway predict
outcome in patients with metastatic colorectal cancer: Data from
FIRE-3 and TRIBE trials. Eur J Cancer. 172:22–30. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xu D, Tian Y, Xia Q and Ke B: The
cGAS-STING Pathway: Novel Perspectives in Liver Diseases. Front
Immunol. 12:6827362021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mohseni G, Li J, Ariston Gabriel AN, Du L,
Wang YS and Wang C: The Function of cGAS-STING Pathway in Treatment
of Pancreatic Cancer. Front Immunol. 12:7810322021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Xu Y, Han J, Zhang X, Zhang X, Song J, Gao
Z, Qian H, Jin J and Liang Z: Exosomal circRNAs in gastrointestinal
cancer: Role in occurrence, development, diagnosis and clinical
application (Review). Oncol Rep. 51:192024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lu L, Gao Z, Jin L, Geng H and Liang Z:
Novel role of circRNAs in the drug resistance of gastric cancer:
regulatory mechanisms and future for cancer therapy. Front
Pharmacol. 15:14352642024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shen Q, Yang L, Li C, Wang T, Lv J, Liu W,
Lin Y, Yin Y and Tao K: Metformin promotes cGAS/STING signaling
pathway activation by blocking AKT phosphorylation in gastric
cancer. Heliyon. 9:e189542023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li C, Shen Q, Zhang P, Wang T, Liu W, Li
R, Ma X, Zeng X, Yin Y and Tao K: Targeting MUS81 promotes the
anticancer effect of WEE1 inhibitor and immune checkpoint blocking
combination therapy via activating cGAS/STING signaling in gastric
cancer cells. J Exp Clin Cancer Res. 40:3152021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yuan M, Guo XL, Chen JH, He Y, Liu ZQ,
Zhang HP, Ren J and Xu Q: Anlotinib suppresses proliferation,
migration, and immune escape of gastric cancer cells by activating
the cGAS-STING/IFN-beta pathway. Neoplasma. 69:807–819. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yang KS, Xu CQ and Lv J: Identification
and validation of the prognostic value of cyclic GMP-AMP
synthase-stimulator of interferon (cGAS-STING) related genes in
gastric cancer. Bioengineered. 12:1238–1250. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fukai S, Nakajima S, Saito M, Saito K,
Kase K, Nakano H, Sato T, Sakuma M, Kaneta A, Okayama H, et al:
Down-regulation of stimulator of interferon genes (STING)
expression and CD8+ T-cell infiltration depending on
HER2 heterogeneity in HER2-positive gastric cancer. Gastric Cancer.
26:878–890. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Duan Y, Li S, Huang B, Dou Y, Kong P, Kang
W and Xu D: CD47-targeted immunotherapy unleashes antitumour
immunity in Epstein-Barr virus-associated gastric cancer. Clin
Immunol. 247:1092382023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hosseinzadeh S, Imani M, Pourfarzi F,
Jafari N, AbedianKenari S and Safarzadeh E: Combination of
IFN-gamma with STING agonist and PD-1 immune checkpoint blockade: A
potential immunotherapy for gastric cancer. Med Oncol. 41:1102024.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liang L, Chai Y, Chai F, Liu H, Ma N,
Zhang H, Zhang S, Nong L, Li T and Zhang B: Expression of SASP, DNA
damage response, and cell proliferation factors in early gastric
neoplastic lesions: Correlations and clinical significance. Pathol
Oncol Res. 28:16104012022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Esophageal Cancer Treatment (PDQ(R)), .
Health Professional Version. PDQ Cancer Information Summaries
Bethesda (MD): 2002
|
|
24
|
Li Y, Yang Q, Chen H, Yang X, Han J, Yao
X, Wei X, Si J, Yao H, Liu H, et al: TFAM downregulation promotes
autophagy and ESCC survival through mtDNA stress-mediated STING
pathway. Oncogene. 41:3735–3746. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nakajima S, Mimura K, Kaneta A, Saito K,
Katagata M, Okayama H, Saito M, Saze Z, Watanabe Y, Hanayama H, et
al: Radiation-induced remodeling of the tumor microenvironment
through tumor cell-intrinsic expression of cGAS-STING in esophageal
squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 115:957–971.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Matsuishi A, Nakajima S, Kaneta A, Saito
K, Fukai S, Sakuma M, Tsumuraya H, Okayama H, Saito M, Mimura K, et
al: The tumor cell-intrinsic cGAS-STING pathway is associated with
the high density of CD8+ T cells after chemotherapy in
esophageal squamous cell carcinoma. Esophagus. 21:165–175. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Nakajima S, Mimura K, Kaneta A, Katagata
M, Okayama H, Saito M, Saze Z, Hanayama H, Tada T, Momma T and Kono
K: Remodeling of the tumor microenvironment by radiotherapy through
the cGAS-STING pathway in esophageal squamous cell carcinoma. Gan
To Kagaku Ryoho. 50:1099–1101. 2023.(In Japanese). PubMed/NCBI
|
|
28
|
Li J, Ko JM, Dai W, Yu VZ, Ng HY, Hoffmann
JS and Lung ML: Depletion of DNA polymerase theta inhibits tumor
growth and promotes genome instability through the cGAS-STING-ISG
pathway in esophageal squamous cell carcinoma. Cancers (Basel).
13:32042021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Du J, Kageyama SI, Yamashita R, Hirata H,
Hakozaki Y, Okumura M, Motegi A, Hojo H, Nakamura M, Hirano Y, et
al: Impacts of the STING-IFNAR1-STAT1-IRF1 pathway on the cellular
immune reaction induced by fractionated irradiation. Cancer Sci.
113:1352–1361. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li X, Liu H, Gao W, Yang Q, Li X, Zhou X,
Wang L, Lu Z, Liu J, Luo A, et al: Octadecyl Gallate and
Lipid-modified MnSe2 nanoparticles enhance
radiosensitivity in esophageal squamous cell carcinoma and promote
radioprotection in normal tissues. Adv Mater. 36:e23112912024.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wu X, Xu L, Li X, Zhou Y, Han X, Zhang W,
Wang W, Guo W, Liu W, Xu Q and Gu Y: A HER2-targeting antibody-MMAE
conjugate RC48 sensitizes immunotherapy in HER2-positive colon
cancer by triggering the cGAS-STING pathway. Cell Death Dis.
14:5502023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang L, Luo R, Onyshchenko K, Rao X, Wang
M, Menz B, Gaedicke S, Grosu AL, Firat E and Niedermann G: Adding
liposomal doxorubicin enhances the abscopal effect induced by
radiation/αPD1 therapy depending on tumor cell mitochondrial DNA
and cGAS/STING. J Immunother Cancer. 11:e0062352023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen B, Hong Y, Zhai X, Deng Y, Hu H, Tian
S, Zhang Y, Ren X, Zhao J and Jiang C: m6A and m5C modification of
GPX4 facilitates anticancer immunity via STING activation. Cell
Death Dis. 14:8092023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mata-Garrido J, Frizzi L, Nguyen T, He X,
Chang-Marchand Y, Xiang Y, Reisacher C, Casafont I and Arbibe L:
HP1γ prevents activation of the cGAS/STING pathway by preserving
nuclear envelope and genomic integrity in colon adenocarcinoma
cells. Int J Mol Sci. 24:73472023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hu S, Fang Y, Chen X, Cheng T, Zhao M, Du
M, Li T, Li M, Zeng Z, Wei Y, et al: cGAS restricts colon cancer
development by protecting intestinal barrier integrity. Proc Natl
Acad Sci USA. 118:e21057471182021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wei B, Xu L, Guo W, Wang Y, Wu J, Li X,
Cai X, Hu J, Wang M, Xu Q, et al: SHP2-mediated inhibition of DNA
repair contributes to cGAS-STING activation and chemotherapeutic
sensitivity in colon cancer. Cancer Res. 81:3215–3228. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang M, Huang Y, Chen M, Wang W, Wu F,
Zhong T, Chen X, Wang F, Li Y, Yu J, et al: Inhibition of tumor
intrinsic BANF1 activates antitumor immune responses via cGAS-STING
and enhances the efficacy of PD-1 blockade. J Immunother Cancer.
11:e0070352023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kunac N, Degoricija M, Viculin J, Omerović
J, Terzić J, Vilović K and Korac-Prlic J: Activation of cGAS-STING
pathway is associated with MSI-H stage IV colorectal cancer.
Cancers (Basel). 15:2212022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Vornholz L, Isay SE, Kurgyis Z, Strobl DC,
Loll P, Mosa MH, Luecken MD, Sterr M, Lickert H, Winter C, et al:
Synthetic enforcement of STING signaling in cancer cells
appropriates the immune microenvironment for checkpoint inhibitor
therapy. Sci Adv. 9:eadd85642023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zheng H, Wu L, Xiao Q, Meng X, Hafiz A,
Yan Q, Lu R and Cao J: Epigenetically suppressed tumor cell
intrinsic STING promotes tumor immune escape. Biomed Pharmacother.
157:1140332023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Catalano C, da Silva Filho MI, Frank C, Lu
S, Jiraskova K, Vymetalkova V, Levy M, Liska V, Vycital O,
Naccarati A, et al: Epistatic effect of TLR3 and
cGAS-STING-IKKepsilon-TBK1-IFN signaling variants on colorectal
cancer risk. Cancer Med. 9:1473–1484. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tian J, Zhang D, Kurbatov V, Wang Q, Wang
Y, Fang D, Wu L, Bosenberg M, Muzumdar MD, Khan S, et al:
5-Fluorouracil efficacy requires anti-tumor immunity triggered by
cancer-cell-intrinsic STING. EMBO J. 40:e1060652021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liang B, Zhang EH, Ye Z, Storts H, Jin W,
Zheng X, Hylton H, Zaleski O, Xing X, Miles W and Wang JJ: SIX4
controls Anti-PD-1 efficacy by regulating STING expression. Cancer
Res Commun. 3:2412–2419. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yang Y, Qi J, Hu J, Zhou Y, Zheng J, Deng
W, Inam M, Guo J, Xie Y, Li Y, et al: Lovastatin/SN38 co-loaded
liposomes amplified ICB therapeutic effect via remodeling the
immunologically-cold colon tumor and synergized stimulation of
cGAS-STING pathway. Cancer Lett. 588:2167652024. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Morehead LC, Garg S, Wallis KF, Simoes CC,
Siegel ER, Tackett AJ and Miousse IR: Increased response to immune
checkpoint inhibitors with dietary methionine restriction in a
colorectal cancer model. Cancers. 15:44672023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xia J, Wang L, Shen T, Li P, Zhu P, Xie S,
Chen Z, Zhou F, Zhang J, Ling J, et al: Integrated manganese
(III)-doped nanosystem for optimizing photothermal ablation:
Amplifying hyperthermia-induced STING pathway and enhancing
antitumor immunity. Acta Biomater. 155:601–617. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ma J, Xin Y, Wang Q and Ding L: Roles of
cGAS-STING pathway in radiotherapy combined with immunotherapy for
hepatocellular carcinoma. Mol Cancer Ther. 23:447–453. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li X, Pan YF, Chen YB, Wan QQ, Lin YK,
Shang TY, Xu MY, Jiang TY, Pei MM, Tan YX, et al: Arsenic trioxide
augments immunogenic cell death and induces cGAS-STING-IFN pathway
activation in hepatocellular carcinoma. Cell Death Dis. 15:3002024.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chen B, Rao X, Wang X, Luo Z, Wang J,
Sheng S, Liu Y, Zhang N, Jin S, Chen H, et al: cGAS-STING signaling
pathway and liver disease: From basic research to clinical
practice. Front Pharmacol. 12:7196442021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li K, Gong Y, Qiu D, Tang H, Zhang J, Yuan
Z, Huang Y, Qin Y, Ye L and Yang Y: Hyperbaric oxygen facilitates
Teniposide-induced cGAS-STING activation to enhance the antitumor
efficacy of PD-1 antibody in HCC. J Immunother Cancer.
10:e0040062022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang X, Hu R, Song Z, Zhao H, Pan Z, Feng
Y, Yu Y, Han Q and Zhang J: Sorafenib combined with STAT3 knockdown
triggers ER stress-induced HCC apoptosis and cGAS-STING-mediated
anti-tumor immunity. Cancer Lett. 547:2158802022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ma H, Kang Z, Foo TK, Shen Z and Xia B:
Disrupted BRCA1-PALB2 interaction induces tumor immunosuppression
and T-lymphocyte infiltration in HCC through cGAS-STING pathway.
Hepatology. 77:33–47. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Du Q, Luo Y, Xu L, Du C, Zhang W, Xu J,
Liu Y, Liu B, Chen S, Wang Y, et al: Smart responsive Fe/Mn
nanovaccine triggers liver cancer immunotherapy via pyroptosis and
pyroptosis-boosted cGAS-STING activation. J Nanobiotechnol.
22:952024. View Article : Google Scholar
|
|
55
|
Li Z, Zhang Y, Hong W, Wang B, Chen Y,
Yang P, Zhou J, Fan J, Zeng Z and Du S: Gut microbiota modulate
radiotherapy-associated antitumor immune responses against
hepatocellular carcinoma Via STING signaling. Gut Microbes.
14:21190552022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cao Y, Sun T, Sun B, Zhang G, Liu J, Liang
B, Zheng C and Kan X: Injectable hydrogel loaded with lysed OK-432
and doxorubicin for residual liver cancer after incomplete
radiofrequency ablation. J Nanobiotechnol. 21:4042023. View Article : Google Scholar
|
|
57
|
Sheng H, Huang Y, Xiao Y, Zhu Z, Shen M,
Zhou P, Guo Z, Wang J, Wang H, Dai W, et al: ATR inhibitor AZD6738
enhances the antitumor activity of radiotherapy and immune
checkpoint inhibitors by potentiating the tumor immune
microenvironment in hepatocellular carcinoma. J Immunother Cancer.
8:e0003402020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hong W, Zhang Y, Wang S, Li Z, Zheng D,
Hsu S, Zhou J, Fan J, Chen Z, Xia X, et al: RECQL4 inhibits
radiation-induced tumor immune awakening via suppressing the
cGAS-STING pathway in hepatocellular carcinoma. Adv Sci (Weinh).
11:e23080092024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Thomsen MK, Skouboe MK, Boularan C,
Vernejoul F, Lioux T, Leknes SL, Berthelsen MF, Riedel M, Cai H,
Joseph JV, et al: The cGAS-STING pathway is a therapeutic target in
a preclinical model of hepatocellular carcinoma. Oncogene.
39:1652–1664. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xu Y, Sun F, Tian Y, Zeng G, Lei G, Bai Z,
Wang Y, Ge X, Wang J, Xiao C, et al: Enhanced NK cell activation
via eEF2K-mediated potentiation of the cGAS-STING pathway in
hepatocellular carcinoma. Int Immunopharmacol. 129:1116282024.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sun F, Xu Y, Deng Z and Yang P: A
recombinant oncolytic influenza virus expressing a PD-L1 antibody
induces CD8+ T-cell activation via the cGas-STING
pathway in mice with hepatocellular carcinoma. Int Immunopharmacol.
120:1103232023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Fu L, Ding H, Bai Y, Cheng L, Hu S and Guo
Q: IDI1 inhibits the cGAS-Sting signaling pathway in hepatocellular
carcinoma. Heliyon. 10:e272052024. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen G, Zheng D, Zhou Y, Du S and Zeng Z:
Olaparib enhances radiation-induced systemic anti-tumor effects via
activating STING-chemokine signaling in hepatocellular carcinoma.
Cancer Lett. 582:2165072024. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhao F, Liu A, Gong X, Chen H, Wei J, Chen
B, Chen S, Yang R, Fan Y and Mao R: Hypoxia-induced RNASEH2A limits
activation of cGAS-STING signaling in HCC and predicts poor
prognosis. Tumori. 108:63–76. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Qi Z, Yan F, Chen D, Xing W, Li Q, Zeng W,
Bi B and Xie J: Identification of prognostic biomarkers and
correlations with immune infiltrates among cGAS-STING in
hepatocellular carcinoma. Biosci Rep. 40:BSR202026032020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ma D, Yang M, Sun C, Cui X, Xiong G, Wang
Q, Jing W, Chen H, Lv X, Liu S, et al: cGAS suppresses
hepatocellular carcinoma independent of its cGAMP synthase
activity. Cell Death Differ. 31:722–737. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sun B, Zhang Q, Sun T, Liu J, Cao Y, Liang
B, Zheng C and Kan X: Radiofrequency hyperthermia enhances the
effect of OK-432 for Hepatocellular carcinoma by activating of
TLR4-cGAS-STING pathway. Int Immunopharmacol. 130:1117692024.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang S, Wu Q, Chen T, Su R, Pan C, Qian J,
Huang H, Yin S, Xie H, Zhou L and Zheng S: Blocking CD47 promotes
antitumour immunity through CD103+ dendritic cell-NK
cell axis in murine hepatocellular carcinoma model. J Hepatol.
77:467–478. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing
F, Jiang G, Yan B, Sun X, Ma Y, et al: TET2-mediated tumor cGAS
triggers endothelial STING activation to regulate vasculature
remodeling and anti-tumor immunity in liver cancer. Nat Commun.
15:62024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Su W, Gao W, Zhang R, Wang Q, Li L, Bu Q,
Xu Z, Liu Z, Wang M, Zhu Y, Wu G, et al: TAK1 deficiency promotes
liver injury and tumorigenesis via ferroptosis and macrophage
cGAS-STING signalling. JHEP Rep. 5:1006952023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Du SS, Chen GW, Yang P, Chen YX, Hu Y,
Zhao QQ, Zhang Y, Liu R, Zheng DX, Zhou J, et al: Radiation therapy
promotes hepatocellular carcinoma immune cloaking via PD-L1
Upregulation induced by cGAS-STING activation. Int J Radiat Oncol
Biol Phys. 112:1243–1255. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Huang S, Xie P, Huang X, Chen Z, Yang J,
Wang J, Liu C, Li H and Zhou B: Disulfiram combined with
chemoimmunotherapy potentiates pancreatic cancer treatment efficacy
through the activation of cGAS-STING signaling pathway via
suppressing PARP1 expression. Am J Cancer Res. 13:2055–2065.
2023.PubMed/NCBI
|
|
73
|
Jacoberger-Foissac C, Cousineau I, Bareche
Y, Allard D, Chrobak P, Allard B, Pommey S, Messaoudi N, McNicoll
Y, Soucy G, et al: CD73 inhibits cGAS-STING and cooperates with
CD39 to promote pancreatic cancer. Cancer Immunol Res. 11:56–71.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Oh G, Wang A, Wang L, Li J, Werba G,
Weissinger D, Zhao E, Dhara S, Hernandez RE, Ackermann A, et al:
POLQ inhibition elicits an immune response in homologous
recombination-deficient pancreatic adenocarcinoma via cGAS/STING
signaling. J Clin Invest. 133:e1659342023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kabashima A, Matsuo Y, Ito S, Akiyama Y,
Ishii T, Shimada S, Masamune A, Tanabe M and Tanaka S: cGAS-STING
signaling encourages immune cell overcoming of fibroblast
barricades in pancreatic cancer. Sci Rep. 12:104662022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang SL, Wu Y, Konate M, Lu J, Mallick D,
Antony S, Meitzler JL, Jiang G, Dahan I, Juhasz A, et al: Exogenous
DNA enhances DUOX2 expression and function in human pancreatic
cancer cells by activating the cGAS-STING signaling pathway. Free
Radic Biol Med. 205:262–274. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lin S: DTX3L mediated ubiquitination of
cGAS suppresses antitumor immunity in pancreatic cancer. Biochem
Biophys Res Commun. 681:106–110. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yousef A, Yousef M, Zeineddine MA, More A,
Fanaeian M, Chowdhury S, Knafl M, Edelkamp P, Ito I, Gu Y, et al:
Serum tumor markers and outcomes in patients with appendiceal
adenocarcinoma. JAMA Netw Open. 7:e2402602024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li R, Wang J, Xie Z, Tian X, Hou J, Wang
D, Qian H, Shen H and Xu W: CircUSP1 as a novel marker promotes
gastric cancer progression via stabilizing HuR to upregulate USP1
and Vimentin. Oncogene. 43:1033–1049. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tian Y, Wang Y, Wen N, Wang S, Li B and
Liu G: Prognostic factors associated with early recurrence
following liver resection for colorectal liver metastases: A
systematic review and meta-analysis. BMC Cancer. 24:4262024.
View Article : Google Scholar : PubMed/NCBI
|