1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Testa U, Castelli G and Pelosi E: Breast
cancer: A molecularly heterogenous disease needing subtype-specific
treatments. Med Sci (Basel). 8:182020.PubMed/NCBI
|
3
|
Waks AG and Winer EP: Breast cancer
treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Harbeck N, Penault-Llorca F, Cortes J,
Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J and Cardoso F:
Breast cancer. Nat Rev Dis Primers. 5:662019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Spring LM, Gupta A, Reynolds KL, Gadd MA,
Ellisen LW, Isakoff SJ, Moy B and Bardia A: Neoadjuvant endocrine
therapy for estrogen receptor-positive breast cancer: A systematic
review and meta-analysis. JAMA Oncol. 2:1477–1486. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Swain SM, Shastry M and Hamilton E:
Targeting HER2-positive breast cancer: Advances and future
directions. Nat Rev Drug Discov. 22:101–126. 2023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tesch ME and Gelmon KA: Targeting HER2 in
breast cancer: Latest developments on treatment sequencing and the
introduction of biosimilars. Drugs. 80:1811–1830. 2020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hanker AB, Sudhan DR and Arteaga CL:
Overcoming endocrine resistance in breast cancer. Cancer Cell.
37:496–513. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nayar U, Cohen O, Kapstad C, Cuoco MS,
Waks AG, Wander SA, Painter C, Freeman S, Persky NS, Marini L, et
al: Acquired HER2 mutations in ER+ metastatic breast
cancer confer resistance to estrogen receptor-directed therapies.
Nat Genet. 51:207–216. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pegram M, Jackisch C and Johnston SRD:
Estrogen/HER2 receptor crosstalk in breast cancer: Combination
therapies to improve outcomes for patients with hormone
receptor-positive/HER2-positive breast cancer. NPJ Breast Cancer.
9:452023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang YW, Cheng HL, Ding YR, Chou LH and
Chow NH: EMP1, EMP 2, and EMP3 as novel therapeutic targets in
human cancer. Biochim Biophys Acta Rev Cancer. 1868:199–211. 2017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Li L, Xia S, Zhao Z, Deng L, Wang H, Yang
D, Hu Y, Ji J, Huang D and Xin T: EMP3 as a prognostic biomarker
correlates with EMT in GBM. BMC Cancer. 24:892024. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ma Q, Zhang Y, Liang H, Zhang F, Liu F,
Chen S, Hu Y, Jiang L, Hao Y, Li M and Liu Y: EMP3 as a key
downstream target of miR-663a regulation interferes with MAPK/ERK
signaling pathway to inhibit gallbladder cancer progression. Cancer
Lett. 575:2163982023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim EK and Koo JS: Expression of
epithelial membrane protein (EMP) 1, EMP 2, and EMP 3 in thyroid
cancer. Histol Histopathol. 37:51–61. 2022.PubMed/NCBI
|
15
|
Zhou W, Jiang Z, Li X, Xu F, Liu Y, Wen P,
Kong L, Hou M and Yu J: EMP3 overexpression in primary breast
carcinomas is not associated with epigenetic aberrations. J Korean
Med Sci. 24:97–103. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Evtimova V, Zeillinger R and Weidle UH:
Identification of genes associated with the invasive status of
human mammary carcinoma cell lines by transcriptional profiling.
Tumour Biol. 24:189–198. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hong XC, Fen YJ, Yan GC, Hong H, Yan CH,
Bing LW and Zhong YH: Epithelial membrane protein 3 functions as an
oncogene and is regulated by microRNA-765 in primary breast
carcinoma. Mol Med Rep. 12:6445–6450. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Blick T, Hugo H, Widodo E, Waltham M,
Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME and Thompson EW:
Epithelial mesenchymal transition traits in human breast cancer
cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in
human breast cancer. J Mammary Gland Biol Neoplasia. 15:235–252.
2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kohn KW, Zeeberg BM, Reinhold WC and
Pommier Y: Gene expression correlations in human cancer cell lines
define molecular interaction networks for epithelial phenotype.
PLoS One. 9:e992692014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Isbilen M, Mert Senses K and Osmay Gure A:
Predicting chemotherapy sensitivity profiles for breast cancer cell
lines with and without stem cell-like features. Curr Signal
Transduct Ther. 8:268–273. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou K, Sun Y, Dong D, Zhao C and Wang W:
EMP3 negatively modulates breast cancer cell DNA replication, DNA
damage repair, and stem-like properties. Cell Death Dis.
12:8442021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mackay A, Jones C, Dexter T, Silva RL,
Bulmer K, Jones A, Simpson P, Harris RA, Jat PS, Neville AM, et al:
cDNA microarray analysis of genes associated with ERBB2 (HER2/neu)
overexpression in human mammary luminal epithelial cells. Oncogene.
22:2680–2688. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chakrabarty A, Bhola NE, Sutton C, Ghosh
R, Kuba MG, Dave B, Chang JC and Arteaga CL: Trastuzumab-resistant
cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to
PI3K inhibitors. Cancer Res. 73:1190–1200. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang YW, Li WM, Wu WJ, Chai CY, Liu HS,
Lai MD and Chow NH: Potential significance of EMP3 in patients with
upper urinary tract urothelial carcinoma: Crosstalk with
ErbB2-PI3K-Akt pathway. J Urol. 192:242–251. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cha YJ and Koo JS: Expression and role of
epithelial membrane proteins in tumorigenesis of hormone
receptor-positive breast cancer. J Breast Cancer. 23:385–397. 2020.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Animal Protection Act. Ministry of
Agriculture, ROC (Taiwan), . 2021.https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=M0060027
|
27
|
Wolff AC, Hammond MEH, Allison KH, Harvey
BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P,
Hanna W, et al: Human epidermal growth factor receptor 2 testing in
breast cancer: American society of clinical oncology/college of
American pathologists clinical practice guideline focused update.
Arch Pathol Lab Med. 142:1364–1382. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Uhlén M, Fagerberg L, Hallström BM,
Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C,
Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the
human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gemmete JJ and Mukherji SK: Trastuzumab
(herceptin). AJNR Am J Neuroradiol. 32:1373–1374. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hsieh YH, Hsieh SC, Lee CH, Yang SF, Cheng
CW, Tang MJ, Lin CL, Lin CL and Chou RH: Targeting EMP3 suppresses
proliferation and invasion of hepatocellular carcinoma cells
through inactivation of PI3K/Akt pathway. Oncotarget.
6:34859–34874. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Christians A, Poisel E, Hartmann C, von
Deimling A and Pusch S: Characterization of the epithelial membrane
protein 3 interaction network reveals a potential functional link
to mitogenic signal transduction regulation. Int J Cancer.
145:461–473. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kar R, Jha NK, Jha SK, Sharma A, Dholpuria
S, Asthana N, Chaurasiya K, Singh VK, Burgee S and Nand P: A
‘NOTCH’ deeper into the epithelial-to-mesenchymal transition (EMT)
program in breast cancer. Genes (Basel). 10:9612019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee KL, Kuo YC, Ho YS and Huang YH:
Triple-negative breast cancer: Current understanding and future
therapeutic breakthrough targeting cancer stemness. Cancers
(Basel). 11:13342019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Derakhshani A, Rezaei Z, Safarpour H,
Sabri M, Mir A, Sanati MA, Vahidian F, Gholamiyan Moghadam A,
Aghadoukht A, Hajiasgharzadeh K and Baradaran B: Overcoming
trastuzumab resistance in HER2-positive breast cancer using
combination therapy. J Cell Physiol. 235:3142–3156. 2020.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Martija AA and Pusch S: The
multifunctional role of EMP3 in the regulation of membrane
receptors associated with IDH-wild-type glioblastoma. Int J Mol
Sci. 22:52612021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Martija AA, Krauß A, Bächle N, Doth L,
Christians A, Krunic D, Schneider M, Helm D, Will R, Hartmann C, et
al: EMP3 sustains oncogenic EGFR/CDK2 signaling by restricting
receptor degradation in glioblastoma. Acta Neuropathol Commun.
11:1772023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kumagai S, Koyama S and Nishikawa H:
Antitumour immunity regulated by aberrant ERBB family signalling.
Nat Rev Cancer. 21:181–197. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kusumoto Y, Okuyama H, Shibata T, Konno K,
Takemoto Y, Maekawa D, Kononaga T, Ishii T, Akashi-Takamura S,
Saitoh SI, et al: Epithelial membrane protein 3 (Emp3)
downregulates induction and function of cytotoxic T lymphocytes by
macrophages via TNF-α production. Cell Immunol. 324:33–41. 2018.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Sun M, Jiang H, Liu T, Tan X, Jiang Q, Sun
B, Zheng Y, Wang G, Wang Y, Cheng M, et al: Structurally defined
tandem-responsive nanoassemblies composed of dipeptide-based
photosensitive derivatives and hypoxia-activated camptothecin
prodrugs against primary and metastatic breast tumors. Acta Pharm
Sin B. 12:952–966. 2022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zeng R, Li Y, Li Y, Wan Q, Huang Z, Qiu Z
and Tang D: Smartphone-based photoelectrochemical immunoassay with
simpleCo9S8@ZnIn2S4 for
point-of-care diagnosis of breast cancer biomarker. Research (Wash
D C). 2022:98315212022.PubMed/NCBI
|
41
|
Chen H, Li H, Shi W, Qin H and Zheng L:
The roles of m6A RNA methylation modification in cancer stem cells:
New opportunities for cancer suppression. Cancer Insight. 1:1–18.
2022.
|
42
|
Yin Y, Yan Y, Fan B, Huang W, Zhang J, Hu
HY, Li X, Xiong D, Chou SL, Xiao Y and Wang H: Novel combination
therapy for triple-negative breast cancer based on an intelligent
hollow carbon sphere. Research (Wash DC). 6:00982023.PubMed/NCBI
|
43
|
Ji X, Tian X, Feng S, Zhang L, Wang J, Guo
R, Zhu Y, Yu X, Zhang Y, Du H, et al: Intermittent F-actin
perturbations by magnetic fields inhibit breast cancer metastasis.
Research (Wash DC). 6:00802023.PubMed/NCBI
|
44
|
Zheng C, Zhang D, Kong Y, Niu M, Zhao H,
Song Q, Feng Q, Li X and Wang L: Dynamic regulation of drug
biodistribution by turning tumors into decoys for biomimetic
nanoplatform to enhance the chemotherapeutic efficacy of breast
cancer with bone metastasis. Exploration (Beijing). 3:202201242023.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Cheng H, Ballman K, Vassilakopoulou M,
Dueck AC, Reinholz MM, Tenner K, Gralow J, Hudis C, Davidson NE,
Fountzilas G, et al: EGFR expression is associated with decreased
benefit from trastuzumab in the NCCTG N9831 (alliance) trial. Br J
Cancer. 111:1065–1071. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yang L, Li Y, Shen E, Cao F, Li L, Li X,
Wang X, Kariminia S, Chang B, Li H and Li Q: NRG1-dependent
activation of HER3 induces primary resistance to trastuzumab in
HER2-overexpressing breast cancer cells. Int J Oncol. 51:1553–1562.
2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Watanabe S, Yonesaka K, Tanizaki J,
Nonagase Y, Takegawa N, Haratani K, Kawakami H, Hayashi H, Takeda
M, Tsurutani J and Nakagawa K: Targeting of the HER2/HER3 signaling
axis overcomes ligand-mediated resistance to trastuzumab in
HER2-positive breast cancer. Cancer Med. 8:1258–1268. 2019.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Ogden A, Bhattarai S, Sahoo B, Mongan NP,
Alsaleem M, Green AR, Aleskandarany M, Ellis IO, Pattni S, Li XB,
et al: Combined HER3-EGFR score in triple-negative breast cancer
provides prognostic and predictive significance superior to
individual biomarkers. Sci Rep. 10:30092020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Liu B, Ordonez-Ercan D, Fan Z, Edgerton
SM, Yang X and Thor AD: Downregulation of erbB3 abrogates
erbB2-mediated tamoxifen resistance in breast cancer cells. Int J
Cancer. 120:1874–1882. 2007. View Article : Google Scholar : PubMed/NCBI
|