Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2025 Volume 53 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2025 Volume 53 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review)

  • Authors:
    • Peiting Wu
    • Jianlin Chen
    • Hui Li
    • Haiyuan Lu
    • Yukun Li
    • Juan Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China, Department of Assisted Reproductive Centre, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China, Department of Clinical Laboratory Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 18
    |
    Published online on: December 5, 2024
       https://doi.org/10.3892/or.2024.8851
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ferroptosis is a form of programmed cell death that is distinct from apoptosis. The mechanism involves redox‑active metallic iron and is characterized by an abnormal increase in iron‑dependent lipid reactive oxygen species, which results in high levels of membrane lipid peroxides. The relationship between ferroptosis and gynaecological tumours is complex. Ferroptosis can regulate tumour proliferation, metastasis and chemotherapy resistance, and targeting ferroptosis is a promising antitumour approach. Ferroptosis interacts with mechanisms related to tumorigenesis and development, such as macrophage polarization, the neutrophil trap network, mitochondrial autophagy and cuproptosis. The present review examines recent information on the interaction between the molecular mechanism of ferroptosis and other tumour‑related mechanisms, as well as the involvement of ferroptosis in gynaecological tumours, to identify implications for gynaecological cancer therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Torre LA, Islami F, Siegel RL, Ward EM and Jemal A: Global cancer in women: Burden and trends. Cancer Epidemiol Biomarkers Prev. 26:444–457. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Abu Samaan TM, Samec M, Liskova A, Kubatka P and Büsselberg D: Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules. 9:7892019. View Article : Google Scholar : PubMed/NCBI

3 

Vu M, Yu J, Awolude OA and Chuang L: Cervical cancer worldwide. Curr Probl Cancer. 42:457–465. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Ledermann JA: Front-line therapy of advanced ovarian cancer: New approaches. Ann Oncol. 28 (Suppl_8):viii46–viii50. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Fillon M: Opportunistic salpingectomy may reduce ovarian cancer risk. CA Cancer J Clin. 72:97–99. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL: Ovarian cancer statistics, 2018. CA Cancer J Clin. 68:284–296. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Mirza MR, Coleman RL, González-Martín A, Moore KN, Colombo N, Ray-Coquard I and Pignata S: The forefront of ovarian cancer therapy: Update on PARP inhibitors. Ann Oncol. 31:1148–1159. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Kalampokas E, Giannis G, Kalampokas T, Papathanasiou AA, Mitsopoulou D, Tsironi E, Triantafyllidou O, Gurumurthy M, Parkin DE, Cairns M and Vlahos NF: Current approaches to the management of patients with endometrial cancer. Cancers (Basel). 14:45002022. View Article : Google Scholar : PubMed/NCBI

9 

Brooks RA, Fleming GF, Lastra RR, Lee NK, Moroney JW, Son CH, Tatebe K and Veneris JL: Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin. 69:258–279. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Dolma S, Lessnick SL, Hahn WC and Stockwell BR: Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 3:285–296. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Conrad M and Pratt DA: The chemical basis of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31197. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Friedmann Angeli JP, Krysko DV and Conrad M: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 19:405–414. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI

16 

Mao X, Liu K, Shen S, Meng L and Chen S: Ferroptosis, a new form of cell death: Mechanisms, biology and role in gynecological malignant tumor. Am J Cancer Res. 13:2751–2762. 2023.PubMed/NCBI

17 

Chen Z, Han F, Du Y, Shi H and Zhou W: Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8:702023. View Article : Google Scholar : PubMed/NCBI

18 

Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K and Adam V: Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J Hematol Oncol. 15:772022. View Article : Google Scholar : PubMed/NCBI

19 

Semenza GL: Pharmacologic targeting of Hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 59:379–403. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Fuhrmann DC, Mondorf A, Beifuß J, Jung M and Brüne B: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 36:1016702020. View Article : Google Scholar : PubMed/NCBI

21 

Fuhrmann DC and Brüne B: A graphical journey through iron metabolism, microRNAs, and hypoxia in ferroptosis. Redox Biol. 54:1023652022. View Article : Google Scholar : PubMed/NCBI

22 

Feng X, Wang S, Sun Z, Dong H, Yu H, Huang M and Gao X: Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in db/db mice. Front Endocrinol (Lausanne). 12:6263902021. View Article : Google Scholar : PubMed/NCBI

23 

Yuan S, Wei C, Liu G, Zhang L, Li J, Li L, Cai S and Fang L: Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif. 55:e131582022. View Article : Google Scholar : PubMed/NCBI

24 

Liu XJ, Lv YF, Cui WZ, Li Y, Liu Y, Xue YT and Dong F: Icariin inhibits hypoxia/reoxygenation-induced ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1 signaling pathway. FEBS Open Bio. 11:2966–2976. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Adrover JM, McDowell SAC, He XY, Quail DF and Egeblad M: NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell. 41:505–526. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Ge W and Wu W: Influencing Factors and significance of Tumor-associated Macrophage polarization in tumor microenvironment. Zhongguo Fei Ai Za Zhi. 26:228–237. 2023.(In Chinese). PubMed/NCBI

27 

Hernansanz-Agustín P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Piña T, Moreno L, Izquierdo-Álvarez A, Cabrera-García JD, Cortés A, et al: Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature. 586:287–291. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Jung J, Zhang Y, Celiku O, Zhang W, Song H, Williams BJ, Giles AJ, Rich JN, Abounader R, Gilbert MR and Park DM: Mitochondrial NIX promotes tumor survival in the hypoxic niche of glioblastoma. Cancer Res. 79:5218–5232, 20193. View Article : Google Scholar : PubMed/NCBI

29 

Kuo CL, Ponneri Babuharisankar A, Lin YC, Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN and Lee AY: Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: Foe or friend? J Biomed Sci. 29:742022. View Article : Google Scholar : PubMed/NCBI

30 

Xiao C, Wang X, Li S, Zhang Z, Li J, Deng Q, Chen X, Yang X and Li Z: A cuproptosis-based nanomedicine suppresses triple negative breast cancers by regulating tumor microenvironment and eliminating cancer stem cells. Biomaterials. 313:1227632025. View Article : Google Scholar : PubMed/NCBI

31 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G and Stockwell BR: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 10:1604–1609. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Yuan H, Li X, Zhang X, Kang R and Tang D: Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Koleini N, Shapiro JS, Geier J and Ardehali H: Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J Clin Invest. 131:e1486712021. View Article : Google Scholar : PubMed/NCBI

36 

Luck AN and Mason AB: Transferrin-mediated cellular iron delivery. Curr Top Membr. 69:3–35. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Yambire KF, Rostosky C, Watanabe T, Pacheu-Grau D, Torres-Odio S, Sanchez-Guerrero A, Senderovich O, Meyron-Holtz EG, Milosevic I, Frahm J, et al: Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife. 8:e510312019. View Article : Google Scholar : PubMed/NCBI

39 

Zhang DD: Ironing out the details of ferroptosis. Nat Cell Biol. 26:1386–1393. 2024. View Article : Google Scholar : PubMed/NCBI

40 

Chen X, Yu C, Kang R, Kroemer G and Tang D: Cellular degradation systems in ferroptosis. Cell Death Differ. 28:1135–1148. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 289:7038–7050. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ and Zoncu R: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Garcia-Bermudez J and Birsoy K: A mitochondrial gatekeeper that helps cells escape death by ferroptosis. Nature. 593:514–515. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, et al: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 447:864–868. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Yang WS and Stockwell BR: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 15:234–245. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Tomaskova Z, Gaburjakova J, Brezova A and Gaburjakova M: Inhibition of anion channels derived from mitochondrial membranes of the rat heart by stilbene disulfonate-DIDS. J Bioenerg Biomembr. 39:301–311. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L, Attili D, Pant A, Győrffy B, Zhan M, Carter-Su C, et al: Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 24:447–461. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Song Q, Peng S, Sun Z, Heng X and Zhu X: Temozolomide drives ferroptosis via a DMT1-Dependent pathway in glioblastoma cells. Yonsei Med J. 62:843–849. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Li J, Lama R, Galster SL, Inigo JR, Wu J, Chandra D, Chemler SR and Wang X: Small-Molecule MMRi62 induces ferroptosis and inhibits metastasis in pancreatic cancer via degradation of ferritin heavy chain and mutant p53. Mol Cancer Ther. 21:535–545. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Feng J, Lu PZ, Zhu GZ, Hooi SC, Wu Y, Huang XW, Dai HQ, Chen PH, Li ZJ, Su WJ, et al: ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol Sin. 42:160–170. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Wenz C, Faust D, Linz B, Turmann C, Nikolova T, Bertin J, Gough P, Wipf P, Schröder AS, Krautwald S and Dietrich C: t-BuOOH induces ferroptosis in human and murine cell lines. Arch Toxicol. 92:759–775. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF and Clish CB: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI

58 

Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H and Yuan J: Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 116:2996–3005. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Yoshioka H, Kawamura T, Muroi M, Kondoh Y, Honda K, Kawatani M, Aono H, Waldmann H, Watanabe N and Osada H: Identification of a small molecule that enhances ferroptosis via inhibition of ferroptosis suppressor protein 1 (FSP1). ACS Chem Biol. 17:483–491. 2022. View Article : Google Scholar : PubMed/NCBI

60 

Zhao Y, Yin W, Yang Z, Sun J, Chang J, Huang L, Xue L, Zhang X, Zhi H, Chen S, et al: Nanotechnology-enabled M2 macrophage polarization and ferroptosis inhibition for targeted inflammatory bowel disease treatment. J Control Release. 367:339–353. 2024. View Article : Google Scholar : PubMed/NCBI

61 

Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI

62 

Ishii T, Bannai S and Sugita Y: Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J Biol Chem. 256:12387–12392. 1981. View Article : Google Scholar : PubMed/NCBI

63 

Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Murdoch C, Giannoudis A and Lewis CE: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 104:2224–2234. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Boutilier AJ and Elsawa SF: Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 22:69952021. View Article : Google Scholar : PubMed/NCBI

66 

Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, Xu X, Zhang H, Santin AD, Lou G and Min W: Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Invest. 126:4157–4173. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Recalcati S, Locati M, Gammella E, Invernizzi P and Cairo G: Iron levels in polarized macrophages: Regulation of immunity and autoimmunity. Autoimmun Rev. 11:883–889. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Gu Z, Liu T, Liu C, Yang Y, Tang J, Song H, Wang Y, Yang Y and Yu C: Ferroptosis-strengthened metabolic and inflammatory regulation of Tumor-associated macrophages provokes potent tumoricidal activities. Nano Lett. 21:6471–6479. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X, Rong D, Sun G, Sun G, Liu L, et al: Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol. 56:1024632022. View Article : Google Scholar : PubMed/NCBI

70 

Li LG, Peng XC, Yu TT, Xu HZ, Han N, Yang XX, Li QR, Hu J, Liu B, Yang ZY, et al: Dihydroartemisinin remodels macrophage into an M1 phenotype via ferroptosis-mediated DNA damage. Front Pharmacol. 13:9498352022. View Article : Google Scholar : PubMed/NCBI

71 

Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, Zammataro L, Girelli D and Cairo G: Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol. 40:824–835. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Zhao YY, Lian JX, Lan Z, Zou KL, Wang WM and Yu GT: Ferroptosis promotes anti-tumor immune response by inducing immunogenic exposure in HNSCC. Oral Dis. 29:933–941. 2023. View Article : Google Scholar : PubMed/NCBI

73 

Chen W, Zuo F, Zhang K, Xia T, Lei W, Zhang Z, Bao L and You Y: Exosomal MIF derived from nasopharyngeal carcinoma promotes metastasis by repressing ferroptosis of macrophages. Front Cell Dev Biol. 9:7911872021. View Article : Google Scholar : PubMed/NCBI

74 

Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J and Janda K: Reactive oxygen species-sources, functions, oxidative damage. Pol Merkur Lekarski. 48:124–127. 2020.PubMed/NCBI

75 

Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Haschka D, Hoffmann A and Weiss G: Iron in immune cell function and host defense. Semin Cell Dev Biol. 115:27–36. 2021. View Article : Google Scholar : PubMed/NCBI

77 

Wen ZF, Liu H, Gao R, Zhou M, Ma J, Zhang Y, Zhao J, Chen Y, Zhang T, Huang F, et al: Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J Immunother Cancer. 6:1512018. View Article : Google Scholar : PubMed/NCBI

78 

Farhood B, Najafi M and Mortezaee K: CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Yang L, Guo J, Yu N, Liu Y, Song H, Niu J and Gu Y: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci. 261:1184872020. View Article : Google Scholar : PubMed/NCBI

80 

Carmona-Cuenca I, Roncero C, Sancho P, Caja L, Fausto N, Fernández M and Fabregat I: Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol. 49:965–976. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Yang L, Xing R, Li C, Liu Y, Sun L, Liu X and Wang Y: Active immunization with Tocilizumab mimotopes induces specific immune responses. BMC Biotechnol. 15:462015. View Article : Google Scholar : PubMed/NCBI

82 

Chen P, Wang D, Xiao T, Gu W, Yang H, Yang M and Wang H: ACSL4 promotes ferroptosis and M1 macrophage polarization to regulate the tumorigenesis of nasopharyngeal carcinoma. Int Immunopharmacol. 122:1106292023. View Article : Google Scholar : PubMed/NCBI

83 

Puylaert P, Roth L, Van Praet M, Pintelon I, Dumitrascu C, van Nuijs A, Klejborowska G, Guns PJ, Berghe TV, Augustyns K, et al: Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis. 26:505–522. 2023. View Article : Google Scholar : PubMed/NCBI

84 

Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI

85 

Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, Zeh HJ, Kang R, Wang J and Tang D: Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 16:2069–2083. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Takei H, Araki A, Watanabe H, Ichinose A and Sendo F: Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 59:229–240. 1996. View Article : Google Scholar : PubMed/NCBI

88 

Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V and Zychlinsky A: Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 176:231–241. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Papayannopoulos V and Zychlinsky A: NETs: A new strategy for using old weapons. Trends Immunol. 30:513–521. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Monti M, De Rosa V, Iommelli F, Carriero MV, Terlizzi C, Camerlingo R, Di Minno G and Del Vecchio S: Neutrophil extracellular traps as an adhesion substrate for different tumor cells expressing RGD-Binding integrins. Int J Mol Sci. 19:23502018. View Article : Google Scholar : PubMed/NCBI

91 

Pieterse E, Rother N, Garsen M, Hofstra JM, Satchell SC, Hoffmann M, Loeven MA, Knaapen HK, van der Heijden OWH, Berden JHM, et al: Neutrophil extracellular traps drive Endothelial-to-mesenchymal transition. Arterioscler Thromb Vasc Biol. 37:1371–1379. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Xiao Y, Cong M, Li J, He D, Wu Q, Tian P, Wang Y, Yang S, Liang C, Liang Y, et al: Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell. 39:423–437.e7. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Xia X, Zhang Z, Zhu C, Ni B, Wang S, Yang S, Yu F, Zhao E, Li Q and Zhao G: Neutrophil extracellular traps promote metastasis in gastric cancer patients with postoperative abdominal infectious complications. Nat Commun. 13:10172022. View Article : Google Scholar : PubMed/NCBI

94 

Awasthi D and Sarode A: Neutrophils at the crossroads: Unraveling the multifaceted role in the tumor microenvironment. Int J Mol Sci. 25:29292024. View Article : Google Scholar : PubMed/NCBI

95 

Li C, Chen T, Liu J, Wang Y, Zhang C, Guo L, Shi D, Zhang T, Wang X and Li J: FGF19-induced inflammatory CAF promoted neutrophil extracellular trap formation in the liver metastasis of colorectal cancer. Adv Sci (Weinh). 10:e23026132023. View Article : Google Scholar : PubMed/NCBI

96 

Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, Huang D, Li J, Li H, Chen F, et al: DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature. 583:133–138. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Lee W, Ko SY, Mohamed MS, Kenny HA, Lengyel E and Naora H: Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J Exp Med. 216:176–194. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Aldabbous L, Abdul-Salam V, McKinnon T, Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C, Wilkins MR, Toshner M and Wojciak-Stothard B: Neutrophil extracellular traps promote angiogenesis: Evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol. 36:2078–2087. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Zhang H, Wu D, Wang Y, Guo K, Spencer CB, Ortoga L, Qu M, Shi Y, Shao Y, Wang Z, et al: METTL3-mediated N6-methyladenosine exacerbates ferroptosis via m6A-IGF2BP2-dependent mitochondrial metabolic reprogramming in sepsis-induced acute lung injury. Clin Transl Med. 13:e13892023. View Article : Google Scholar : PubMed/NCBI

100 

Zhang Y and Ertl HC: Starved and Asphyxiated: How Can CD8(+) T cells within a tumor microenvironment prevent tumor progression. Front Immunol. 7:322016. View Article : Google Scholar : PubMed/NCBI

101 

Chen X, Song M, Zhang B and Zhang Y: Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid Med Cell Longev. 2016:15809672016. View Article : Google Scholar : PubMed/NCBI

102 

Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT and Wagner DD: Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA. 109:13076–13081. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Yao L, Sheng X, Dong X, Zhou W, Li Y, Ma X, Song Y, Dai H and Du Y: Neutrophil extracellular traps mediate TLR9/Merlin axis to resist ferroptosis and promote triple negative breast cancer progression. Apoptosis. 28:1484–1495. 2023. View Article : Google Scholar : PubMed/NCBI

104 

Zhang W: The mitophagy receptor FUN14 domain-containing 1 (FUNDC1): A promising biomarker and potential therapeutic target of human diseases. Genes Dis. 8:640–654. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Al-Faze R, Ahmed HA, El-Atawy MA, Zagloul H, Alshammari EM, Jaremko M, Emwas AH, Nabil GM and Hanna DH: Mitochondrial dysfunction route as a possible biomarker and therapy target for human cancer. Biomed J. March 5–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

106 

Sugioka R, Shimizu S and Tsujimoto Y: Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem. 279:52726–52734. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Chen QM: Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med. 179:133–143. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Tian C, Liu Y, Li Z, Zhu P and Zhao M: Mitochondria related cell death modalities and disease. Front Cell Dev Biol. 10:8323562022. View Article : Google Scholar : PubMed/NCBI

109 

Li Y, Wang X, Huang Z, Zhou Y, Xia J, Hu W, Wang X, Du J, Tong X and Wang Y: CISD3 inhibition drives cystine-deprivation induced ferroptosis. Cell Death Dis. 12:8392021. View Article : Google Scholar : PubMed/NCBI

110 

Yu F, Zhang Q, Liu H, Liu J, Yang S, Luo X, Liu W, Zheng H, Liu Q, Cui Y, et al: Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov. 8:402022. View Article : Google Scholar : PubMed/NCBI

111 

Yu Z, Cao W, Ren Y, Zhang Q and Liu J: ATPase copper transporter A, negatively regulated by miR-148a-3p, contributes to cisplatin resistance in breast cancer cells. Clin Transl Med. 10:57–73. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Finney L, Mandava S, Ursos L, Zhang W, Rodi D, Vogt S, Legnini D, Maser J, Ikpatt F and Olopade OI: X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci USA. 104:2247–2252. 2007. View Article : Google Scholar : PubMed/NCBI

113 

Lopez J, Ramchandani D and Vahdat L: Copper depletion as a therapeutic strategy in cancer. Met Ions Life Sci. 303–330. 2019.PubMed/NCBI

114 

Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K and Petris MJ: Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 1868:1188932021. View Article : Google Scholar : PubMed/NCBI

115 

Lossow K, Schwarz M and Kipp AP: Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol. 42:1019002021. View Article : Google Scholar : PubMed/NCBI

116 

Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI

117 

Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al: Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 15:681–689. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Mayr JA, Feichtinger RG, Tort F, Ribes A and Sperl W: Lipoic acid biosynthesis defects. J Inherit Metab Dis. 37:553–563. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Solmonson A and DeBerardinis RJ: Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem. 293:7522–7530. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Brewer GJ, Askari F, Lorincz MT, Carlson M, Schilsky M, Kluin KJ, Hedera P, Moretti P, Fink JK, Tankanow R, et al: Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol. 63:521–527. 2006. View Article : Google Scholar : PubMed/NCBI

121 

Chen T, Liang L, Wang Y, Li X and Yang C: Ferroptosis and cuproptposis in kidney diseases: Dysfunction of cell metabolism. Apoptosis. 29:289–302. 2024. View Article : Google Scholar : PubMed/NCBI

122 

He B, Liao Y, Tian M, Tang C, Tang Q, Ma F, Zhou W, Leng Y and Zhong D: Identification and verification of a novel signature that combines cuproptosis-related genes with ferroptosis-related genes in osteoarthritis using bioinformatics analysis and experimental validation. Arthritis Res Ther. 26:1002024. View Article : Google Scholar : PubMed/NCBI

123 

Luo G, Wang L, Zheng Z, Gao B and Lei C: Cuproptosis-related ferroptosis genes for predicting prognosis in kidney renal clear cell carcinoma. Eur J Med Res. 28:1762023. View Article : Google Scholar : PubMed/NCBI

124 

Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D and Liu J: Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 19:1982–1996. 2023. View Article : Google Scholar : PubMed/NCBI

125 

Xiong C, Ling H, Hao Q and Zhou X: Cuproptosis: A53-regulated metabolic cell death? Cell Death Differ. 30:876–884. 2023. View Article : Google Scholar : PubMed/NCBI

126 

Shao L, Zhu L, Su R, Yang C, Gao X, Xu Y, Wang H, Guo C and Li H: Baicalin enhances the chemotherapy sensitivity of oxaliplatin-resistant gastric cancer cells by activating p53-mediated ferroptosis. Sci Rep. 14:107452024. View Article : Google Scholar : PubMed/NCBI

127 

Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dančík V, et al: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 10:16172019. View Article : Google Scholar : PubMed/NCBI

128 

Lu Y, Qin H, Jiang B, Lu W, Hao J, Cao W, Du L, Chen W, Zhao X, Guo H, et al: KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 522:1–13. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, Anderson B, Burstein HJ, Chew H, Dang C, et al: Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 20:691–722. 2022. View Article : Google Scholar : PubMed/NCBI

130 

Zou Y, Zheng S, Xie X, Ye F, Hu X, Tian Z, Yan SM, Yang L, Kong Y, Tang Y, et al: N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 13:26722022. View Article : Google Scholar : PubMed/NCBI

131 

Wu S, Pan R, Lu J, Wu X, Xie J, Tang H and Li X: Development and verification of a prognostic Ferroptosis-related gene model in triple-negative breast cancer. Front Oncol. 12:8969272022. View Article : Google Scholar : PubMed/NCBI

132 

Zou Y, Yang A, Chen B, Deng X, Xie J, Dai D, Zhang J, Tang H, Wu T, Zhou Z, et al: crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug Resist Updat. 77:1011262024. View Article : Google Scholar : PubMed/NCBI

133 

Giordano C, Chemi F, Panza S, Barone I, Bonofiglio D, Lanzino M, Cordella A, Campana A, Hashim A, Rizza P, et al: Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget. 7:1262–1275. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, Cairns R, Thomas KC, Fazakerley DJ, Grewal T, et al: Adipocyte lipolysis links obesity to breast cancer growth: Adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5:12017. View Article : Google Scholar : PubMed/NCBI

135 

He JY, Wei XH, Li SJ, Liu Y, Hu HL, Li ZZ, Kuang XH, Wang L, Shi X, Yuan ST and Sun L: Adipocyte-derived IL-6 and leptin promote breast Cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression. Cell Commun Signal. 16:1002018. View Article : Google Scholar : PubMed/NCBI

136 

Koundouros N and Poulogiannis G: Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 122:4–22. 2020. View Article : Google Scholar : PubMed/NCBI

137 

Bobiński R, Dutka M, Pizon M, Waksmańska W and Pielesz A: Ferroptosis, Acyl starvation, and breast cancer. Mol Pharmacol. 103:132–144. 2023. View Article : Google Scholar : PubMed/NCBI

138 

Pondé NF, Zardavas D and Piccart M: Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol. 16:27–44. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Bi M, Zhang Z, Jiang YZ, Xue P, Wang H, Lai Z, Fu X, De Angelis C, Gong Y, Gao Z, et al: Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nat Cell Biol. 22:701–715. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J and Xu Y: RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol. 68:1029522023. View Article : Google Scholar : PubMed/NCBI

141 

He HL, Lee YE, Chen HP, Hsing CH, Chang IW, Shiue YL, Lee SW, Hsu CT, Lin LC, Wu TF and Li CF: Overexpression of DNAJC12 predicts poor response to neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Exp Mol Pathol. 98:338–345. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Shen M, Cao S, Long X, Xiao L, Yang L, Zhang P, Li L, Chen F, Lei T, Gao H, et al: DNAJC12 causes breast cancer chemotherapy resistance by repressing doxorubicin-induced ferroptosis and apoptosis via activation of AKT. Redox Biol. 70:1030352024. View Article : Google Scholar : PubMed/NCBI

143 

Bianchini G, Balko JM, Mayer IA, Sanders ME and Gianni L: Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 13:674–690. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Denkert C, Liedtke C, Tutt A and von Minckwitz G: Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 389:2430–2442. 2017. View Article : Google Scholar : PubMed/NCBI

145 

Xiao Y, Ma D, Zhao S, Suo C, Shi J, Xue MZ, Ruan M, Wang H, Zhao J, Li Q, et al: Multi-Omics Profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of Triple-negative breast cancer. Clin Cancer Res. 25:5002–5014. 2019. View Article : Google Scholar : PubMed/NCBI

146 

Yu H, Yang C, Jian L, Guo S, Chen R, Li K, Qu F, Tao K, Fu Y, Luo F and Liu S: Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 42:826–838. 2019.PubMed/NCBI

147 

Timmerman LA, Holton T, Yuneva M, Louie RJ, Padró M, Daemen A, Hu M, Chan DA, Ethier SP, van ‘t Veer LJ, et al: Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell. 24:450–465. 2013. View Article : Google Scholar : PubMed/NCBI

148 

Wang Z, Dong J, Tian W, Qiao S and Wang H: Role of TRPV1 ion channel in cervical squamous cell carcinoma genesis. Front Mol Biosci. 9:9802622022. View Article : Google Scholar : PubMed/NCBI

149 

Liu Y, Li L, Yang Z, Wen D and Hu Z: Circular RNA circACAP2 suppresses ferroptosis of cervical cancer during malignant progression by miR-193a-5p/GPX4. J Oncol. 2022:52288742022.PubMed/NCBI

150 

Wu P, Li C, Ye DM, Yu K, Li Y, Tang H, Xu G, Yi S and Zhang Z: Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis. Aging (Albany NY). 13:4663–4673. 2021. View Article : Google Scholar : PubMed/NCBI

151 

Xiong J, Nie M, Fu C, Chai X, Zhang Y, He L and Sun S: Hypoxia enhances HIF1α transcription activity by Upregulating KDM4A and mediating H3K9me3, thus inducing ferroptosis resistance in cervical cancer cells. Stem Cells Int. 2022:16088062022. View Article : Google Scholar : PubMed/NCBI

152 

Wu Y, Fang B, Yang XQ, Wang L, Chen D, Krasnykh V, Carter BZ, Morris JS and Shureiqi I: Therapeutic molecular targeting of 15-lipoxygenase-1 in colon cancer. Mol Ther. 16:886–892. 2008. View Article : Google Scholar

153 

Abdurahman A, Li Y, Jia SZ, Xu XW, Lin SJ, Ouyang P, Jun He Z, Zhang ZH, Liu Q, Xu Y and Song GL: Knockdown of the SELENOK gene induces ferroptosis in cervical cancer cells. Metallomics. 15:mfad0192023. View Article : Google Scholar : PubMed/NCBI

154 

Ray Chaudhuri A and Nussenzweig A: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 18:610–621. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Sánchez-Quesada C, López-Biedma A and Gaforio JJ: Oleanolic acid, a compound present in grapes and olives, protects against genotoxicity in human mammary epithelial cells. Molecules. 20:13670–13688. 2015. View Article : Google Scholar : PubMed/NCBI

156 

Shi H, Xiong L, Yan G, Du S, Liu J and Shi Y: Susceptibility of cervical cancer to dihydroartemisinin-induced ferritinophagy-dependent ferroptosis. Front Mol Biosci. 10:11560622023. View Article : Google Scholar : PubMed/NCBI

157 

Liu S, Zhang HL, Li J, Ye ZP, Du T, Li LC, Guo YQ, Yang D, Li ZL, Cao JH, et al: Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis. Redox Biol. 62:1026772023. View Article : Google Scholar : PubMed/NCBI

158 

Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI

159 

Lheureux S, Gourley C, Vergote I and Oza AM: Epithelial ovarian cancer. Lancet. 393:1240–1253. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Zhang J, Ouyang F, Gao A, Zeng T, Li M, Li H, Zhou W, Gao Q, Tang X, Zhang Q, et al: ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent Warburg effect within the hypoxic tumor microenvironment. Mol Cancer. 23:942024. View Article : Google Scholar : PubMed/NCBI

161 

Fan Z, Ye M, Liu D, Zhou W, Zeng T, He S and Li Y: Lactate drives the ESM1-SCD1 axis to inhibit the antitumor CD8+ T-cell response by activating the Wnt/β-catenin pathway in ovarian cancer cells and inducing cisplatin resistance. Int Immunopharmacol. 137:1124612024. View Article : Google Scholar : PubMed/NCBI

162 

Li YK, Gao AB, Zeng T, Liu D, Zhang QF, Ran XM, Tang ZZ, Li Y, Liu J, Zhang T, et al: ANGPTL4 accelerates ovarian serous cystadenocarcinoma carcinogenesis and angiogenesis in the tumor microenvironment by activating the JAK2/STAT3 pathway and interacting with ESM1. J Transl Med. 22:462024. View Article : Google Scholar : PubMed/NCBI

163 

Christie EL and Bowtell DDL: Acquired chemotherapy resistance in ovarian cancer. Ann Oncol. 28 (Suppl_8):viii13–viii5. 2017. View Article : Google Scholar : PubMed/NCBI

164 

Ruan D, Wen J, Fang F, Lei Y, Zhao Z and Miao Y: Ferroptosis in epithelial ovarian cancer: A burgeoning target with extraordinary therapeutic potential. Cell Death Discov. 9:4342023. View Article : Google Scholar : PubMed/NCBI

165 

Fu R, Zhao B, Chen M, Fu X, Zhang Q, Cui Y, Fu X, Li R, Zhong G and Zhou X: Moving beyond cisplatin resistance: mechanisms, challenges, and prospects for overcoming recurrence in clinical cancer therapy. Med Oncol. 41:92023. View Article : Google Scholar : PubMed/NCBI

166 

Lv C, Qu H, Zhu W, Xu K, Xu A, Jia B, Qing Y, Li H, Wei HJ and Zhao HY: Low-dose paclitaxel inhibits tumor cell growth by regulating glutaminolysis in colorectal carcinoma cells. Front Pharmacol. 8:2442017. View Article : Google Scholar : PubMed/NCBI

167 

Wang Y, Zhao G, Condello S, Huang H, Cardenas H, Tanner EJ, Wei J, Ji Y, Li J, Tan Y, et al: Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 81:384–399. 2021. View Article : Google Scholar : PubMed/NCBI

168 

Shi M, Zhang MJ, Yu Y, Ou R, Wang Y, Li H and Ge RS: Curcumin derivative NL01 induces ferroptosis in ovarian cancer cells via HCAR1/MCT1 signaling. Cell Signal. 109:1107912023. View Article : Google Scholar : PubMed/NCBI

169 

Cheng Q, Bao L, Li M, Chang K and Yi X: Erastin synergizes with cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and in vivo. J Obstet Gynaecol Res. 47:2481–2491. 2021. View Article : Google Scholar : PubMed/NCBI

170 

Ni M, Zhou J, Zhu Z, Xu Q, Yin Z, Wang Y, Zheng Z and Zhao H: Shikonin and cisplatin synergistically overcome cisplatin resistance of ovarian cancer by inducing ferroptosis via upregulation of HMOX1 to promote Fe2+ accumulation. Phytomedicine. 112:1547012023. View Article : Google Scholar : PubMed/NCBI

171 

Krishnakumar R and Kraus WL: The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets. Mol Cell. 39:8–24. 2010. View Article : Google Scholar : PubMed/NCBI

172 

Gibson BA and Kraus WL: New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol. 13:411–424. 2012. View Article : Google Scholar : PubMed/NCBI

173 

Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, et al: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: A proof-of-concept trial. Lancet. 376:245–251. 2010. View Article : Google Scholar : PubMed/NCBI

174 

Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George J, Dobrovic A, Birrer MJ, Webb PM, Stewart C, et al: BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. J Clin Oncol. 30:2654–2663. 2012. View Article : Google Scholar : PubMed/NCBI

175 

Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y and Wang J: PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 42:1019282021. View Article : Google Scholar : PubMed/NCBI

176 

Tang S, Shen Y, Wei X, Shen Z, Lu W and Xu J: Olaparib synergizes with arsenic trioxide by promoting apoptosis and ferroptosis in platinum-resistant ovarian cancer. Cell Death Dis. 13:8262022. View Article : Google Scholar : PubMed/NCBI

177 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

178 

Fang X, Zhang T and Chen Z: Solute carrier family 7 member 11 (SLC7A11) is a potential prognostic biomarker in uterine corpus endometrial carcinoma. Int J Gen Med. 16:481–497. 2023. View Article : Google Scholar : PubMed/NCBI

179 

Marshall AD, van Geldermalsen M, Otte NJ, Lum T, Vellozzi M, Thoeng A, Pang A, Nagarajah R, Zhang B, Wang Q, et al: ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis. 6:e3672017. View Article : Google Scholar : PubMed/NCBI

180 

Liu X, Olszewski K, Zhang Y, Lim EW, Shi J, Zhang X, Zhang J, Lee H, Koppula P, Lei G, et al: Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol. 22:476–486. 2020. View Article : Google Scholar : PubMed/NCBI

181 

Byrne FL, Poon IK, Modesitt SC, Tomsig JL, Chow JD, Healy ME, Baker WD, Atkins KA, Lancaster JM, Marchion DC, et al: Metabolic vulnerabilities in endometrial cancer. Cancer Res. 74:5832–5845. 2014. View Article : Google Scholar : PubMed/NCBI

182 

Han X, Ren C, Yang T, Qiao P, Wang L, Jiang A, Meng Y, Liu Z, Du Y and Yu Z: Negative regulation of AMPKα1 by PIM2 promotes aerobic glycolysis and tumorigenesis in endometrial cancer. Oncogene. 38:6537–6549. 2019. View Article : Google Scholar : PubMed/NCBI

183 

Cheng H, Jiang XY, Zheng RR, Zuo SJ, Zhao LP, Fan GL, Xie BR, Yu XY, Li SY and Zhang XZ: A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials. 195:75–85. 2019. View Article : Google Scholar : PubMed/NCBI

184 

Yu S, Chen Z, Zeng X, Chen X and Gu Z: Advances in nanomedicine for cancer starvation therapy. Theranostics. 9:8026–8047. 2019. View Article : Google Scholar : PubMed/NCBI

185 

Murakami H, Hayashi M, Terada S and Ohmichi M: Medroxyprogesterone acetate-resistant endometrial cancer cells are susceptible to ferroptosis inducers. Life Sci. 325:1217532023. View Article : Google Scholar : PubMed/NCBI

186 

Zhang YY, Ni ZJ, Elam E, Zhang F, Thakur K, Wang S, Zhang JG and Wei ZJ: Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells. Food Funct. 12:4947–4959. 2021. View Article : Google Scholar : PubMed/NCBI

187 

Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q and Liu Q: Modulating ferroptosis sensitivity: Environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res. 43:192024. View Article : Google Scholar : PubMed/NCBI

188 

Hu Y, Wang H and Liu Y: NETosis: Sculpting tumor metastasis and immunotherapy. Immunol Rev. 321:263–279. 2024. View Article : Google Scholar : PubMed/NCBI

189 

Zhang H, Liu J, Zhou Y, Qu M, Wang Y, Guo K, Shen R, Sun Z, Cata JP, Yang S, et al: Neutrophil extracellular traps mediate m6A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells. Int J Biol Sci. 18:3337–3357. 2022. View Article : Google Scholar : PubMed/NCBI

190 

Chu C, Wang X, Yang C, Chen F, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D and Ding W: Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol. 67:1029062023. View Article : Google Scholar : PubMed/NCBI

191 

Medlock AE, Hixon JC, Bhuiyan T and Cobine PA: Prime real estate: Metals, cofactors and MICOS. Front Cell Dev Biol. 10:8923252022. View Article : Google Scholar : PubMed/NCBI

192 

Xie J, Yang Y, Gao Y and He J: Cuproptosis: Mechanisms and links with cancers. Mol Cancer. 22:462023. View Article : Google Scholar : PubMed/NCBI

193 

Wang W, Lu K, Jiang X, Wei Q, Zhu L, Wang X, Jin H and Feng L: Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res. 42:1422023. View Article : Google Scholar : PubMed/NCBI

194 

Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X and Chen G: Iron and copper: Critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 21:3272023. View Article : Google Scholar : PubMed/NCBI

195 

Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, Wang SB, Feng J and Zhang XZ: Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano. 12:12181–12192. 2018. View Article : Google Scholar : PubMed/NCBI

196 

Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS and Stockwell BR: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI

197 

Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI

198 

Yang J, Jia Z, Zhang J, Pan X, Wei Y, Ma S, Yang N, Liu Z and Shen Q: Metabolic intervention nanoparticles for triple-negative breast cancer therapy via overcoming FSP1-mediated ferroptosis resistance. Adv Healthc Mater. 11:e21027992022. View Article : Google Scholar : PubMed/NCBI

199 

Radadiya PS, Thornton MM, Puri RV, Yerrathota S, Dinh-Phan J, Magenheimer B, Subramaniam D, Tran PV, Zhu H, Bolisetty S, et al: Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight. 6:e1412992021. View Article : Google Scholar : PubMed/NCBI

200 

Yao X, Zhang Y, Hao J, Duan HQ, Zhao CX, Sun C, Li B, Fan BY, Wang X, Li WX, et al: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res. 14:532–541. 2019. View Article : Google Scholar : PubMed/NCBI

201 

Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S and Li R: Nanoparticle-induced ferroptosis: Detection methods, mechanisms and applications. Nanoscale. 13:2266–2285. 2021. View Article : Google Scholar : PubMed/NCBI

202 

Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ and Mercurio AM: Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 51:575–586.e4. 2019. View Article : Google Scholar : PubMed/NCBI

203 

Wu H and Liu A: Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer. J Int Med Res. 49:3000605219961832021. View Article : Google Scholar : PubMed/NCBI

204 

Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279.e25. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu P, Chen J, Li H, Lu H, Li Y and Zhang J: Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review). Oncol Rep 53: 18, 2025.
APA
Wu, P., Chen, J., Li, H., Lu, H., Li, Y., & Zhang, J. (2025). Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review). Oncology Reports, 53, 18. https://doi.org/10.3892/or.2024.8851
MLA
Wu, P., Chen, J., Li, H., Lu, H., Li, Y., Zhang, J."Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review)". Oncology Reports 53.2 (2025): 18.
Chicago
Wu, P., Chen, J., Li, H., Lu, H., Li, Y., Zhang, J."Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review)". Oncology Reports 53, no. 2 (2025): 18. https://doi.org/10.3892/or.2024.8851
Copy and paste a formatted citation
x
Spandidos Publications style
Wu P, Chen J, Li H, Lu H, Li Y and Zhang J: Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review). Oncol Rep 53: 18, 2025.
APA
Wu, P., Chen, J., Li, H., Lu, H., Li, Y., & Zhang, J. (2025). Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review). Oncology Reports, 53, 18. https://doi.org/10.3892/or.2024.8851
MLA
Wu, P., Chen, J., Li, H., Lu, H., Li, Y., Zhang, J."Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review)". Oncology Reports 53.2 (2025): 18.
Chicago
Wu, P., Chen, J., Li, H., Lu, H., Li, Y., Zhang, J."Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review)". Oncology Reports 53, no. 2 (2025): 18. https://doi.org/10.3892/or.2024.8851
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team