Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2025 Volume 53 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2025 Volume 53 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review)

  • Authors:
    • Sirui Zhou
    • Jiazheng Sun
    • Weijian Zhu
    • Zhiying Yang
    • Ping Wang
    • Yulan Zeng
  • View Affiliations / Copyright

    Affiliations: Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China, Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China, Department of Radiation Oncology, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 29
    |
    Published online on: December 30, 2024
       https://doi.org/10.3892/or.2024.8862
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Non‑small cell lung cancer (NSCLC) is one of the most prevalent and lethal types of cancers worldwide and its high incidence and mortality rates pose a significant public health challenge. Despite significant advances in targeted therapy and immunotherapy, the overall prognosis of patients with NSCLC remains poor. Hypoxia is a critical driving factor in tumor progression, influencing the biological behavior of tumor cells through complex molecular mechanisms. The present review systematically examined the role of the hypoxic microenvironment in NSCLC, demonstrating its crucial role in promoting tumor cell growth, invasion and metastasis. Additionally, it has been previously reported that the hypoxic microenvironment enhances tumor cell resistance by activating hypoxia‑inducible factor and regulating exosome secretion. The hypoxic microenvironment also enables tumor cells to adapt to low oxygen and nutrient‑deficient conditions by enhancing metabolic reprogramming, such as through upregulating glycolysis. Further studies have shown that the hypoxic microenvironment facilitates immune escape by modulating tumor‑associated immune cells and suppressing the antitumor response of the immune system. Moreover, the hypoxic microenvironment increases tumor resistance to radiotherapy, chemotherapy and other types of targeted therapy through various pathways, significantly reducing the therapeutic efficacy of these treatments. Therefore, it could be suggested that early detection of cellular hypoxia and targeted therapy based on hypoxia may offer new therapeutic approaches for patients with NSCLC. The present review not only deepened the current understanding of the mechanisms of action and role of the hypoxic microenvironment in NSCLC but also provided a solid theoretical basis for the future development of precision treatments for patients with NSCLC.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Steeg PS: Targeting metastasis. Nat Rev Cancer. 16:201–218. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Xu FX, Zhang YL, Liu JJ, Zhang DD and Chen HB: Hypoxic markers in non-small cell lung cancer (NSCLC)-A review. Eur Rev Med Pharmacol Sci. 20:849–852. 2016.PubMed/NCBI

5 

Saxena K and Jolly MK: Acute vs. chronic vs. cyclic hypoxia: Their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules. 9:3392019. View Article : Google Scholar : PubMed/NCBI

6 

Bertout JA, Patel SA and Simon MC: The impact of O2 availability on human cancer. Nat Rev Cancer. 8:967–975. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Meng X, Kong FM and Yu J: Implementation of hypoxia measurement into lung cancer therapy. Lung Cancer. 75:146–150. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Challapalli A, Carroll L and Aboagye EO: Molecular mechanisms of hypoxia in cancer. Clin Transl Imaging. 5:225–253. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Desai P, Takahashi N, Kumar R, Nichols S, Malin J, Hunt A, Schultz C, Cao Y, Tillo D, Nousome D, et al: Microenvironment shapes small-cell lung cancer neuroendocrine states and presents therapeutic opportunities. Cell Rep Med. 5:1016102024. View Article : Google Scholar : PubMed/NCBI

11 

Tam FF, Ning KL, Lee M, Dumlao JM and Choy JC: Cytokine induction of HIF-1α during normoxia in A549 human lung carcinoma cells is regulated by STAT1 and JNK signalling pathways. Mol Immunol. 160:12–19. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Tirpe AA, Gulei D, Ciortea SM, Crivii C and Berindan-Neagoe I: Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 20:61402019. View Article : Google Scholar : PubMed/NCBI

13 

Rankin EB and Giaccia AJ: The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15:678–685. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Della Rocca Y, Fonticoli L, Rajan TS, Trubiani O, Caputi S, Diomede F, Pizzicannella J and Marconi GD: Hypoxia: molecular pathophysiological mechanisms in human diseases. J Physiol Biochem. 78:739–752. 2022. View Article : Google Scholar : PubMed/NCBI

16 

Zeng SG, Lin X, Liu JC and Zhou J: Hypoxia-induced internalization of connexin 26 and connexin 43 in pulmonary epithelial cells is involved in the occurrence of non-small cell lung cancer via the P53/MDM2 signaling pathway. Int J Oncol. 55:845–859. 2019.PubMed/NCBI

17 

Hapke RY and Haake SM: Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett. 487:10–20. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Musleh Ud Din S, Streit SG, Huynh BT, Hana C, Abraham AN and Hussein A: Therapeutic targeting of hypoxia-inducible factors in cancer. Int J Mol Sci. 25:20602024. View Article : Google Scholar : PubMed/NCBI

19 

Liu S, Zhan Y, Luo J, Feng J, Lu J, Zheng H, Wen Q and Fan S: Roles of exosomes in the carcinogenesis and clinical therapy of non-small cell lung cancer. Biomed Pharmacother. 111:338–346. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Wang C, Xu S and Yang X: Hypoxia-driven changes in tumor microenvironment: Insights into exosome-mediated cell interactions. Int J Nanomedicine. 19:8211–8236. 2024. View Article : Google Scholar : PubMed/NCBI

21 

Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Wei Y, Wang D, Jin F, Bian Z, Li L, Liang H, Li M, Shi L, Pan C, Zhu D, et al: Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun. 8:140412017. View Article : Google Scholar : PubMed/NCBI

23 

Ji X, Zhu R, Gao C, Xie H, Gong X and Luo J: Hypoxia-derived exosomes promote lung adenocarcinoma by regulating HS3ST1-GPC4-mediated glycolysis. Cancers (Basel). 16:6952024. View Article : Google Scholar : PubMed/NCBI

24 

Jiang H, Zhao H, Zhang M, He Y, Li X, Xu Y and Liu X: Hypoxia induced changes of exosome cargo and subsequent biological effects. Front Immunol. 13:8241882022. View Article : Google Scholar : PubMed/NCBI

25 

Jiang S, Wang R, Yan H, Jin L, Dou X and Chen D: MicroRNA-21 modulates radiation resistance through upregulation of hypoxia-inducible factor-1α-promoted glycolysis in non-small cell lung cancer cells. Mol Med Rep. 13:4101–4107. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Becker V, Yuan X, Boewe AS, Ampofo E, Ebert E, Hohneck J, Bohle RM, Meese E, Zhao Y, Menger MD, et al: Hypoxia-induced downregulation of microRNA-186-5p in endothelial cells promotes non-small cell lung cancer angiogenesis by upregulating protein kinase C alpha. Mol Ther Nucleic Acids. 31:421–436. 2023. View Article : Google Scholar : PubMed/NCBI

27 

Zhao J, Qiao CR, Ding Z, Sheng YL, Li XN, Yang Y, Zhu DY, Zhang CY, Liu DL, Wu K and Zhao S: A novel pathway in NSCLC cells: miR-191, targeting NFIA, is induced by chronic hypoxia, and promotes cell proliferation and migration. Mol Med Rep. 15:1319–1325. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Wang C, Han C, Zhang Y and Liu F: LncRNA PVT1 regulate expression of HIF1α via functioning as ceRNA for miR-199a-5p in non-small cell lung cancer under hypoxia. Mol Med Rep. 17:1105–1110. 2018.PubMed/NCBI

29 

Ren J: Intermittent hypoxia BMSCs-derived exosomal miR-31-5p promotes lung adenocarcinoma development via WDR5-induced epithelial mesenchymal transition. Sleep Breath. 27:1399–1409. 2023. View Article : Google Scholar : PubMed/NCBI

30 

Yin HL, Xu HW and Lin QY: miR129-1 regulates protein phosphatase 1D protein expression under hypoxic conditions in non-small cell lung cancer cells harboring a TP53 mutation. Oncol Lett. 20:2239–2247. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Leone RD and Powell JD: Metabolism of immune cells in cancer. Nat Rev Cancer. 20:516–531. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Yu Z, Zou J and Xu F: Tumor-associated macrophages affect the treatment of lung cancer. Heliyon. 10:e293322024. View Article : Google Scholar : PubMed/NCBI

33 

Jin J and Yu G: Hypoxic lung cancer cell-derived exosomal miR-21 mediates macrophage M2 polarization and promotes cancer cell proliferation through targeting IRF1. World J Surg Oncol. 20:2412022. View Article : Google Scholar : PubMed/NCBI

34 

Gu J, Yang S, Wang X, Wu Y, Wei J and Xu J: Hypoxic lung adenocarcinoma-derived exosomal miR-1290 induces M2 macrophage polarization by targeting SOCS3. Cancer Med. 12:12639–12652. 2023. View Article : Google Scholar : PubMed/NCBI

35 

Jackson AL, Zhou B and Kim WY: HIF, hypoxia and the role of angiogenesis in non-small cell lung cancer. Expert Opin Ther Targets. 14:1047–1057. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Eales KL, Hollinshead KER and Tennant DA: Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 5:e1902016. View Article : Google Scholar : PubMed/NCBI

37 

Dai E, Wang W and Li Y, Ye D and Li Y: Lactate and lactylation: Behind the development of tumors. Cancer Lett. 591:2168962024. View Article : Google Scholar : PubMed/NCBI

38 

Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM and Karagiannis TC: Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep. 42:841–851. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Luo F, Liu X, Yan N, Li S, Cao G, Cheng Q, Xia Q and Wang H: Hypoxia-inducible transcription factor-1α promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway. BMC Cancer. 6:262006. View Article : Google Scholar : PubMed/NCBI

40 

Shang S, Wang MZ, Xing Z, He N and Li S: Lactate regulators contribute to tumor microenvironment and predict prognosis in lung adenocarcinoma. Front Immunol. 13:10249252022. View Article : Google Scholar : PubMed/NCBI

41 

Nisar H, Sanchidrián González PM, Brauny M, Labonté FM, Schmitz C, Roggan MD, Konda B and Hellweg CE: Hypoxia changes energy metabolism and growth rate in non-small cell lung cancer cells. Cancers (Basel). 15:24722023. View Article : Google Scholar : PubMed/NCBI

42 

Guo Z, Hu L, Wang Q, Wang Y, Liu XP, Chen C, Li S and Hu W: Molecular characterization and prognosis of lactate-related genes in lung adenocarcinoma. Curr Oncol. 30:2845–2861. 2023. View Article : Google Scholar : PubMed/NCBI

43 

Zhang X, Liang C, Wu C, Wan S and Xu L, Wang S, Wang J, Huang X and Xu L: A rising star involved in tumour immunity: Lactylation. J Cell Mol Med. 28:e701462024. View Article : Google Scholar : PubMed/NCBI

44 

Zhang C, Zhou L, Zhang M, Du Y, Li C, Ren H and Zheng L: H3K18 lactylation potentiates immune escape of non-small cell lung cancer. Cancer Res. 84:3589–3601. 2024. View Article : Google Scholar : PubMed/NCBI

45 

Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Brustugun OT: Hypoxia as a cause of treatment failure in non-small cell carcinoma of the lung. Semin Radiat Oncol. 25:87–92. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Huang RX and Zhou PK: DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 5:602020. View Article : Google Scholar : PubMed/NCBI

48 

Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L and Zuo H: Radiotherapy modulates tumor cell fate decisions: A review. Radiat Oncol. 17:1962022. View Article : Google Scholar : PubMed/NCBI

49 

Gong L, Zhang Y, Liu C, Zhang M and Han S: Application of radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 16:1083–1102. 2021. View Article : Google Scholar : PubMed/NCBI

50 

Zhou T, Zhang LY, He JZ, Miao ZM, Li YY, Zhang YM, Liu ZW, Zhang SZ, Chen Y, Zhou GC and Liu YQ: Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol. 14:11338992023. View Article : Google Scholar : PubMed/NCBI

51 

Gray LH, Conger AD, Ebert M, Hornsey S and Scott OC: The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 26:638–648. 1953. View Article : Google Scholar : PubMed/NCBI

52 

Herrera-Campos AB, Zamudio-Martinez E, Delgado-Bellido D, Fernández-Cortés M, Montuenga LM, Oliver FJ and Garcia-Diaz A: Implications of hyperoxia over the tumor microenvironment: An overview highlighting the importance of the immune system. Cancers (Basel). 14:27402022. View Article : Google Scholar : PubMed/NCBI

53 

Guo Q, Lan F, Yan X, Xiao Z, Wu Y and Zhang Q: Hypoxia exposure induced cisplatin resistance partially via activating p53 and hypoxia inducible factor-1α in non-small cell lung cancer A549 cells. Oncol Lett. 16:801–808. 2018.PubMed/NCBI

54 

Roy S, Kumaravel S, Sharma A, Duran CL, Bayless KJ and Chakraborty S: Hypoxic tumor microenvironment: Implications for cancer therapy. Exp Biol Med (Maywood). 245:1073–1086. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Hu CY, Hung CF, Chen PC, Hsu JY, Wang CT, Lai MD, Tsai YS, Shiau AL, Shieh GS and Wu CL: Oct4 and hypoxia dual-regulated oncolytic adenovirus armed with shRNA-targeting dendritic cell immunoreceptor exerts potent antitumor activity against bladder cancer. Biomedicines. 11:25982023. View Article : Google Scholar : PubMed/NCBI

56 

Mancino A, Schioppa T, Larghi P, Pasqualini F, Nebuloni M, Chen IH, Sozzani S, Austyn JM, Mantovani A and Sica A: Divergent effects of hypoxia on dendritic cell functions. Blood. 112:3723–3734. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Peng X, He Y, Huang J, Tao Y and Liu S: Metabolism of dendritic cells in tumor microenvironment: For immunotherapy. Front Immunol. 12:6134922021. View Article : Google Scholar : PubMed/NCBI

58 

Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC and Colgan SP: Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: Coordination by extracellular nucleotide metabolism. Blood. 104:3986–3992. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Li J, Wang L, Chen X, Li L, Li Y, Ping Y, Huang L, Yue D, Zhang Z, Wang F, et al: CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology. 6:e13200112017. View Article : Google Scholar : PubMed/NCBI

60 

An SM, Lei HM, Ding XP, Sun F, Zhang C, Tang YB, Chen HZ, Shen Y and Zhu L: Interleukin-6 identified as an important factor in hypoxia- and aldehyde dehydrogenase-based gefitinib adaptive resistance in non-small cell lung cancer cells. Oncol Lett. 14:3445–3454. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Kogita A, Togashi Y, Hayashi H, Sogabe S, Terashima M, De Velasco MA, Sakai K, Fujita Y, Tomida S, Takeyama Y, et al: Hypoxia induces resistance to ALK inhibitors in the H3122 non-small cell lung cancer cell line with an ALK rearrangement via epithelial-mesenchymal transition. Int J Oncol. 45:1430–1436. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Karan S, Cho MY, Lee H, Lee H, Park HS, Sundararajan M, Sessler JL and Hong KS: Near-infrared fluorescent probe activated by nitroreductase for in vitro and in vivo hypoxic tumor detection. J Med Chem. 64:2971–2981. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Cheng MHY, Mo Y and Zheng G: Nano versus molecular: Optical imaging approaches to detect and monitor tumor hypoxia. Adv Healthc Mater. 10:e20015492021. View Article : Google Scholar : PubMed/NCBI

64 

Clark LC Jr, Wolf R, Granger D and Taylor Z: Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 6:189–193. 1953. View Article : Google Scholar : PubMed/NCBI

65 

Sun X, Niu G, Chan N, Shen B and Chen X: Tumor hypoxia imaging. Mol Imaging Biol. 13:399–410. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Shirmanova MV, Lukina MM, Sirotkina MA, Shimolina LE, Dudenkova VV, Ignatova NI, Tobita S, Shcheslavskiy VI and Zagaynova EV: Effects of photodynamic therapy on tumor metabolism and oxygenation revealed by fluorescence and phosphorescence lifetime imaging. Int J Mol Sci. 25:17032024. View Article : Google Scholar : PubMed/NCBI

67 

Vanderkooi JM, Maniara G, Green TJ and Wilson DF: An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem. 262:5476–5482. 1987. View Article : Google Scholar : PubMed/NCBI

68 

Koch CJ and Evans SM: Optimizing hypoxia detection and treatment strategies. Semin Nucl Med. 45:163–176. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Horsman MR, Sørensen BS, Busk M and Siemann DW: Therapeutic modification of hypoxia. Clin Oncol (R Coll Radiol). 33:e492–e509. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Huang C, Liang J, Lei X, Xu X, Xiao Z and Luo L: Diagnostic performance of perfusion computed tomography for differentiating lung cancer from benign lesions: A meta-analysis. Med Sci Monit. 25:3485–3494. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Hu X, Gou J, Wang L, Lin W, Li W and Yang F: Diagnostic accuracy of low-dose dual-input computed tomography perfusion in the differential diagnosis of pulmonary benign and malignant ground-glass nodules. Sci Rep. 14:170982024. View Article : Google Scholar : PubMed/NCBI

72 

Liao C, Liu X, Zhang C and Zhang Q: Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol. 88:172–186. 2023. View Article : Google Scholar : PubMed/NCBI

73 

Nasri D, Manwar R, Kaushik A, Er EE and Avanaki K: Photoacoustic imaging for investigating tumor hypoxia: A strategic assessment. Theranostics. 13:3346–3367. 2023. View Article : Google Scholar : PubMed/NCBI

74 

Krohn KA, Link JM and Mason RP: Molecular imaging of hypoxia. J Nucl Med. 49 (Suppl 2):129S–148S. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Brender JR, Saida Y, Devasahayam N, Krishna MC and Kishimoto S: Hypoxia imaging as a guide for hypoxia-modulated and hypoxia-activated therapy. Antioxid Redox Signal. 36:144–159. 2022. View Article : Google Scholar : PubMed/NCBI

76 

Godet I, Doctorman S, Wu F and Gilkes DM: Detection of hypoxia in cancer models: Significance, challenges, and advances. Cells. 11:6862022. View Article : Google Scholar : PubMed/NCBI

77 

Matsumoto K, Mitchell JB and Krishna MC: Multimodal functional imaging for cancer/tumor microenvironments based on MRI, EPRI, and PET. Molecules. 26:16142021. View Article : Google Scholar : PubMed/NCBI

78 

Qin W, Xu C, Zhao Y, Yu C, Shen S, Li L and Huang W: Recent progress in small molecule fluorescent probes for nitroreductase. Chin Chem Lett. 29:1451–1455. 2018. View Article : Google Scholar

79 

Vikram DS, Zweier JL and Kuppusamy P: Methods for noninvasive imaging of tissue hypoxia. Antioxid Redox Signal. 9:1745–1756. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Epel B, Bowman MK, Mailer C and Halpern HJ: Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance. Magn Reson Med. 72:362–368. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Hao B, Dong H, Xiong R, Song C, Xu C, Li N and Geng Q: Identification of SLC2A1 as a predictive biomarker for survival and response to immunotherapy in lung squamous cell carcinoma. Comput Biol Med. 171:1081832024. View Article : Google Scholar : PubMed/NCBI

82 

Zhang R, Lai L, He J, Chen C, You D, Duan W, Dong X, Zhu Y, Lin L, Shen S, et al: EGLN2 DNA methylation and expression interact with HIF1A to affect survival of early-stage NSCLC. Epigenetics. 14:118–129. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Ostheimer C, Bache M, Güttler A, Kotzsch M and Vordermark D: A pilot study on potential plasma hypoxia markers in the radiotherapy of non-small cell lung cancer. Osteopontin, carbonic anhydrase IX and vascular endothelial growth factor. Strahlenther Onkol. 190:276–282. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Giatromanolaki A, Harris AL, Banham AH, Contrafouris CA and Koukourakis MI: Carbonic anhydrase 9 (CA9) expression in non-small-cell lung cancer: Correlation with regulatory FOXP3+T-cell tumour stroma infiltration. Br J Cancer. 122:1205–1210. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Geng H, Chen L, Lv S, Li M, Huang X, Li M and Liu C and Liu C: Photochemically controlled release of the glucose transporter 1 inhibitor for glucose deprivation responses and cancer suppression research. J Proteome Res. 23:653–662. 2024. View Article : Google Scholar : PubMed/NCBI

86 

Kim SJ, Rabbani ZN, Vollmer RT, Schreiber EG, Oosterwijk E, Dewhirst MW, Vujaskovic Z and Kelley MJ: Carbonic anhydrase IX in early-stage non-small cell lung cancer. Clin Cancer Res. 10:7925–7933. 2004. View Article : Google Scholar : PubMed/NCBI

87 

Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF and Yeatman TJ: Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res. 10((1 Pt 1)): 184–190. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Ostheimer C, Bache M, Güttler A, Reese T and Vordermark D: Prognostic information of serial plasma osteopontin measurement in radiotherapy of non-small-cell lung cancer. BMC Cancer. 14:8582014. View Article : Google Scholar : PubMed/NCBI

89 

Stępień K, Ostrowski RP and Matyja E: Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol. 33:1012016. View Article : Google Scholar : PubMed/NCBI

90 

Kim SW, Kim IK, Ha JH, Yeo CD, Kang HH, Kim JW and Lee SH: Normobaric hyperoxia inhibits the progression of lung cancer by inducing apoptosis. Exp Biol Med (Maywood). 243:739–748. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Thews O and Vaupel P: Spatial oxygenation profiles in tumors during normo- and hyperbaric hyperoxia. Strahlenther Onkol. 191:875–882. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Heyboer M III, Sharma D, Santiago W and McCulloch N: Hyperbaric oxygen therapy: Side effects defined and quantified. Adv Wound Care (New Rochelle). 6:210–224. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Jones LW, Viglianti BL, Tashjian JA, Kothadia SM, Keir ST, Freedland SJ, Potter MQ, Moon EJ, Schroeder T, Herndon JE II and Dewhirst MW: Effect of aerobic exercise on tumor physiology in an animal model of human breast cancer. J Appl Physiol (1985). 108:343–348. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Jo S, Jeon J, Park G, Do HK, Kang J, Ahn KJ, Ma SY, Choi YM, Kim D, Youn B and Ki Y: Aerobic exercise improves radiation therapy efficacy in non-small cell lung cancer: Preclinical study using a xenograft mouse model. Int J Mol Sci. 25:27572024. View Article : Google Scholar : PubMed/NCBI

95 

Ghosh P, Vidal C, Dey S and Zhang L: Mitochondria targeting as an effective strategy for cancer therapy. Int J Mol Sci. 21:33632020. View Article : Google Scholar : PubMed/NCBI

96 

Ashton TM, McKenna WG, Kunz-Schughart LA and Higgins GS: Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res. 24:2482–2490. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Kalyanaraman B, Cheng G, Hardy M and You M: OXPHOS-targeting drugs in oncology: New perspectives. Expert Opin Ther Targets. 27:939–952. 2023. View Article : Google Scholar : PubMed/NCBI

98 

Shameem M, Bagherpoor AJ, Nakhi A, Dosa P, Georg G and Kassie F: Mitochondria-targeted metformin (mitomet) inhibits lung cancer in cellular models and in mice by enhancing the generation of reactive oxygen species. Mol Carcinog. 62:1619–1629. 2023. View Article : Google Scholar : PubMed/NCBI

99 

Skwarski M, McGowan DR, Belcher E, Di Chiara F, Stavroulias D, McCole M, Derham JL, Chu KY, Teoh E, Chauhan J, et al: Mitochondrial inhibitor atovaquone increases tumor oxygenation and inhibits hypoxic gene expression in patients with non-small cell lung cancer. Clin Cancer Res. 27:2459–2469. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Benej M, Hong X, Vibhute S, Scott S, Wu J, Graves E, Le QT, Koong AC, Giaccia AJ, Yu B, et al: Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc Natl Acad Sci USA. 115:10756–10761. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Sohoni S, Ghosh P, Wang T, Kalainayakan SP, Vidal C, Dey S, Konduri PC and Zhang L: Elevated heme synthesis and uptake underpin intensified oxidative metabolism and tumorigenic functions in non-small cell lung cancer cells. Cancer Res. 79:2511–2525. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Wang T, Ashrafi A, Konduri PC, Ghosh P, Dey S, Modareszadeh P, Salamat N, Alemi PS, Berisha E and Zhang L: Heme sequestration as an effective strategy for the suppression of tumor growth and progression. Mol Cancer Ther. 20:2506–2518. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Dewhirst MW and Secomb TW: Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer. 17:738–750. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Sukhatme V, Bouche G, Meheus L, Sukhatme VP and Pantziarka P: Repurposing drugs in oncology (ReDO)-nitroglycerin as an anti-cancer agent. Ecancermedicalscience. 9:5682015. View Article : Google Scholar : PubMed/NCBI

105 

Reymen BJT, van Gisbergen MW, Even AJG, Zegers CML, Das M, Vegt E, Wildberger JE, Mottaghy FM, Yaromina A, Dubois LJ, et al: Nitroglycerin as a radiosensitizer in non-small cell lung cancer: Results of a prospective imaging-based phase II trial. Clin Transl Radiat Oncol. 21:49–55. 2019.PubMed/NCBI

106 

Wong PP, Bodrug N and Hodivala-Dilke KM: Exploring novel methods for modulating tumor blood vessels in cancer treatment. Curr Biol. 26:R1161–R1166. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Guelfi S, Hodivala-Dilke K and Bergers G: Targeting the tumour vasculature: From vessel destruction to promotion. Nat Rev Cancer. 24:655–675. 2024. View Article : Google Scholar : PubMed/NCBI

108 

Wigerup C, Påhlman S and Bexell D: Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 164:152–169. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Xia Y, Choi HK and Lee K: Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem. 49:24–40. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Iommarini L, Porcelli AM, Gasparre G and Kurelac I: Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer. Front Oncol. 7:2862017. View Article : Google Scholar : PubMed/NCBI

111 

Albadari N, Deng S and Li W: The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov. 14:667–682. 2019. View Article : Google Scholar : PubMed/NCBI

112 

Ma J, Cao K, Ling X, Zhang P and Zhu J: LncRNA HAR1A suppresses the development of non-small cell lung cancer by inactivating the STAT3 pathway. Cancers (Basel). 14:28452022. View Article : Google Scholar : PubMed/NCBI

113 

Deng H, Chen Y, Li P, Hang Q, Zhang P, Jin Y and Chen M: PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism: Potential targets to overcome radioresistance in small cell lung cancer. Cancer Pathog Ther. 1:56–66. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Lara MS, Blakely CM and Riess JW: Targeting MEK in non-small cell lung cancer. Curr Probl Cancer. 49:1010652024. View Article : Google Scholar : PubMed/NCBI

115 

Zhu H and Zhang S: Hypoxia inducible factor-1α/vascular endothelial growth factor signaling activation correlates with response to radiotherapy and its inhibition reduces hypoxia-induced angiogenesis in lung cancer. J Cell Biochem. 119:7707–7718. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Tian W, Cao C, Shu L and Wu F: Anti-angiogenic therapy in the treatment of non-small cell lung cancer. Onco Targets Ther. 13:12113–12129. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Mahdi A, Darvishi B, Majidzadeh-A K, Salehi M and Farahmand L: Challenges facing antiangiogenesis therapy: The significant role of hypoxia-inducible factor and MET in development of resistance to anti-vascular endothelial growth factor-targeted therapies. J Cell Physiol. 234:5655–5663. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Yuan X, Xie Z and Zou T: Recent advances in hypoxia-activated compounds for cancer diagnosis and treatment. Bioorg Chem. 144:1071612024. View Article : Google Scholar : PubMed/NCBI

119 

Bryant JL, Meredith SL, Williams KJ and White A: Targeting hypoxia in the treatment of small cell lung cancer. Lung Cancer. 86:126–132. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Wilson WR and Hay MP: Targeting hypoxia in cancer therapy. Nat Rev Cancer. 11:393–410. 2011. View Article : Google Scholar : PubMed/NCBI

121 

Chen SX, Zhang J, Xue F, Liu W, Kuang Y, Gu B, Song S and Chen H: In situ forming oxygen/ROS-responsive niche-like hydrogel enabling gelation-triggered chemotherapy and inhibition of metastasis. Bioact Mater. 21:86–96. 2022.PubMed/NCBI

122 

Shepherd F, Koschel G, Von Pawel J, Gatzmeier U, Van Zandwiyk N, Woll P, Van Klavren R, Krasko P, Desimone P, Nicolson M, et al: Comparison of Tirazone (Tirapazamine) and cisplatin vs. etoposide and cisplatin in advanced non-small cell lung cancer (NSCLC): Final results of the International phase III CATAPULT II trial. Lung Cancer. 29:282000. View Article : Google Scholar

123 

Marcu L and Olver I: Tirapazamine: From bench to clinical trials. Curr Clin Pharmacol. 1:71–79. 2006. View Article : Google Scholar : PubMed/NCBI

124 

Graham K and Unger E: Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine. 13:6049–6058. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Lindsay D, Garvey CM, Mumenthaler SM and Foo J: Leveraging hypoxia-activated prodrugs to prevent drug resistance in solid tumors. PLoS Comput Biol. 12:e10050772016. View Article : Google Scholar : PubMed/NCBI

126 

Meaney C, Powathil GG, Yaromina A, Dubois LJ, Lambin P and Kohandel M: Role of hypoxia-activated prodrugs in combination with radiation therapy: An in silico approach. Math Biosci Eng. 16:6257–6273. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Oronsky BT, Knox SJ and Scicinski JJ: Is nitric oxide (NO) the last word in radiosensitization? A review. Transl Oncol. 5:66–71. 2012. View Article : Google Scholar : PubMed/NCBI

128 

Oronsky B, Scicinski J, Ning S, Peehl D, Oronsky A, Cabrales P, Bednarski M and Knox S: RRx-001, A novel dinitroazetidine radiosensitizer. Invest New Drugs. 34:371–377. 2016. View Article : Google Scholar : PubMed/NCBI

129 

Zhao L, Li M, Shen C and Luo Y, Hou X, Qi Y, Huang Z, Li W, Gao L, Wu M and Luo Y: Nano-assisted radiotherapy strategies: New opportunities for treatment of non-small cell lung cancer. Research (Wash D C). 7:04292024.PubMed/NCBI

130 

Chen Y, Zhou Y, Feng X, Wu Z, Yang Y, Rao X, Zhou R, Meng R, Dong X, Xu S, et al: Targeting FBXO22 enhances radiosensitivity in non-small cell lung cancer by inhibiting the FOXM1/Rad51 axis. Cell Death Dis. 15:1042024. View Article : Google Scholar : PubMed/NCBI

131 

Dey P, Das R, Chatterjee S, Paul R and Ghosh U: Combined effects of carbon ion radiation and PARP inhibitor on non-small cell lung carcinoma cells: Insights into DNA repair pathways and cell death mechanisms. DNA Repair (Amst). 144:1037782024. View Article : Google Scholar : PubMed/NCBI

132 

Demizu Y, Fujii O, Iwata H and Fuwa N: Carbon ion therapy for early-stage non-small-cell lung cancer. Biomed Res Int. 2014:7279622014. View Article : Google Scholar : PubMed/NCBI

133 

Bentzen SM and Gregoire V: Molecular-imaging-based dose painting: A novel paradigm for radiation therapy prescription. Semin Radiat Oncol. 21:101–110. 2011. View Article : Google Scholar : PubMed/NCBI

134 

Meijer G, Steenhuijsen J, Bal M, De Jaeger K, Schuring D and Theuws J: Dose painting by contours versus dose painting by numbers for stage II/III lung cancer: Practical implications of using a broad or sharp brush. Radiother Oncol. 100:396–401. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou S, Sun J, Zhu W, Yang Z, Wang P and Zeng Y: Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review). Oncol Rep 53: 29, 2025.
APA
Zhou, S., Sun, J., Zhu, W., Yang, Z., Wang, P., & Zeng, Y. (2025). Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review). Oncology Reports, 53, 29. https://doi.org/10.3892/or.2024.8862
MLA
Zhou, S., Sun, J., Zhu, W., Yang, Z., Wang, P., Zeng, Y."Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review)". Oncology Reports 53.2 (2025): 29.
Chicago
Zhou, S., Sun, J., Zhu, W., Yang, Z., Wang, P., Zeng, Y."Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review)". Oncology Reports 53, no. 2 (2025): 29. https://doi.org/10.3892/or.2024.8862
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou S, Sun J, Zhu W, Yang Z, Wang P and Zeng Y: Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review). Oncol Rep 53: 29, 2025.
APA
Zhou, S., Sun, J., Zhu, W., Yang, Z., Wang, P., & Zeng, Y. (2025). Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review). Oncology Reports, 53, 29. https://doi.org/10.3892/or.2024.8862
MLA
Zhou, S., Sun, J., Zhu, W., Yang, Z., Wang, P., Zeng, Y."Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review)". Oncology Reports 53.2 (2025): 29.
Chicago
Zhou, S., Sun, J., Zhu, W., Yang, Z., Wang, P., Zeng, Y."Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review)". Oncology Reports 53, no. 2 (2025): 29. https://doi.org/10.3892/or.2024.8862
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team