Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review)
- Authors:
- Sirui Zhou
- Jiazheng Sun
- Weijian Zhu
- Zhiying Yang
- Ping Wang
- Yulan Zeng
-
Affiliations: Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China, Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China, Department of Radiation Oncology, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China - Published online on: December 30, 2024 https://doi.org/10.3892/or.2024.8862
- Article Number: 29
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Steeg PS: Targeting metastasis. Nat Rev Cancer. 16:201–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu FX, Zhang YL, Liu JJ, Zhang DD and Chen HB: Hypoxic markers in non-small cell lung cancer (NSCLC)-A review. Eur Rev Med Pharmacol Sci. 20:849–852. 2016.PubMed/NCBI | |
Saxena K and Jolly MK: Acute vs. chronic vs. cyclic hypoxia: Their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules. 9:3392019. View Article : Google Scholar : PubMed/NCBI | |
Bertout JA, Patel SA and Simon MC: The impact of O2 availability on human cancer. Nat Rev Cancer. 8:967–975. 2008. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Kong FM and Yu J: Implementation of hypoxia measurement into lung cancer therapy. Lung Cancer. 75:146–150. 2012. View Article : Google Scholar : PubMed/NCBI | |
Challapalli A, Carroll L and Aboagye EO: Molecular mechanisms of hypoxia in cancer. Clin Transl Imaging. 5:225–253. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI | |
Desai P, Takahashi N, Kumar R, Nichols S, Malin J, Hunt A, Schultz C, Cao Y, Tillo D, Nousome D, et al: Microenvironment shapes small-cell lung cancer neuroendocrine states and presents therapeutic opportunities. Cell Rep Med. 5:1016102024. View Article : Google Scholar : PubMed/NCBI | |
Tam FF, Ning KL, Lee M, Dumlao JM and Choy JC: Cytokine induction of HIF-1α during normoxia in A549 human lung carcinoma cells is regulated by STAT1 and JNK signalling pathways. Mol Immunol. 160:12–19. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tirpe AA, Gulei D, Ciortea SM, Crivii C and Berindan-Neagoe I: Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 20:61402019. View Article : Google Scholar : PubMed/NCBI | |
Rankin EB and Giaccia AJ: The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15:678–685. 2008. View Article : Google Scholar : PubMed/NCBI | |
Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI | |
Della Rocca Y, Fonticoli L, Rajan TS, Trubiani O, Caputi S, Diomede F, Pizzicannella J and Marconi GD: Hypoxia: molecular pathophysiological mechanisms in human diseases. J Physiol Biochem. 78:739–752. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zeng SG, Lin X, Liu JC and Zhou J: Hypoxia-induced internalization of connexin 26 and connexin 43 in pulmonary epithelial cells is involved in the occurrence of non-small cell lung cancer via the P53/MDM2 signaling pathway. Int J Oncol. 55:845–859. 2019.PubMed/NCBI | |
Hapke RY and Haake SM: Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett. 487:10–20. 2020. View Article : Google Scholar : PubMed/NCBI | |
Musleh Ud Din S, Streit SG, Huynh BT, Hana C, Abraham AN and Hussein A: Therapeutic targeting of hypoxia-inducible factors in cancer. Int J Mol Sci. 25:20602024. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Zhan Y, Luo J, Feng J, Lu J, Zheng H, Wen Q and Fan S: Roles of exosomes in the carcinogenesis and clinical therapy of non-small cell lung cancer. Biomed Pharmacother. 111:338–346. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Xu S and Yang X: Hypoxia-driven changes in tumor microenvironment: Insights into exosome-mediated cell interactions. Int J Nanomedicine. 19:8211–8236. 2024. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Wang D, Jin F, Bian Z, Li L, Liang H, Li M, Shi L, Pan C, Zhu D, et al: Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun. 8:140412017. View Article : Google Scholar : PubMed/NCBI | |
Ji X, Zhu R, Gao C, Xie H, Gong X and Luo J: Hypoxia-derived exosomes promote lung adenocarcinoma by regulating HS3ST1-GPC4-mediated glycolysis. Cancers (Basel). 16:6952024. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Zhao H, Zhang M, He Y, Li X, Xu Y and Liu X: Hypoxia induced changes of exosome cargo and subsequent biological effects. Front Immunol. 13:8241882022. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Wang R, Yan H, Jin L, Dou X and Chen D: MicroRNA-21 modulates radiation resistance through upregulation of hypoxia-inducible factor-1α-promoted glycolysis in non-small cell lung cancer cells. Mol Med Rep. 13:4101–4107. 2016. View Article : Google Scholar : PubMed/NCBI | |
Becker V, Yuan X, Boewe AS, Ampofo E, Ebert E, Hohneck J, Bohle RM, Meese E, Zhao Y, Menger MD, et al: Hypoxia-induced downregulation of microRNA-186-5p in endothelial cells promotes non-small cell lung cancer angiogenesis by upregulating protein kinase C alpha. Mol Ther Nucleic Acids. 31:421–436. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Qiao CR, Ding Z, Sheng YL, Li XN, Yang Y, Zhu DY, Zhang CY, Liu DL, Wu K and Zhao S: A novel pathway in NSCLC cells: miR-191, targeting NFIA, is induced by chronic hypoxia, and promotes cell proliferation and migration. Mol Med Rep. 15:1319–1325. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Han C, Zhang Y and Liu F: LncRNA PVT1 regulate expression of HIF1α via functioning as ceRNA for miR-199a-5p in non-small cell lung cancer under hypoxia. Mol Med Rep. 17:1105–1110. 2018.PubMed/NCBI | |
Ren J: Intermittent hypoxia BMSCs-derived exosomal miR-31-5p promotes lung adenocarcinoma development via WDR5-induced epithelial mesenchymal transition. Sleep Breath. 27:1399–1409. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yin HL, Xu HW and Lin QY: miR129-1 regulates protein phosphatase 1D protein expression under hypoxic conditions in non-small cell lung cancer cells harboring a TP53 mutation. Oncol Lett. 20:2239–2247. 2020. View Article : Google Scholar : PubMed/NCBI | |
Leone RD and Powell JD: Metabolism of immune cells in cancer. Nat Rev Cancer. 20:516–531. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Zou J and Xu F: Tumor-associated macrophages affect the treatment of lung cancer. Heliyon. 10:e293322024. View Article : Google Scholar : PubMed/NCBI | |
Jin J and Yu G: Hypoxic lung cancer cell-derived exosomal miR-21 mediates macrophage M2 polarization and promotes cancer cell proliferation through targeting IRF1. World J Surg Oncol. 20:2412022. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Yang S, Wang X, Wu Y, Wei J and Xu J: Hypoxic lung adenocarcinoma-derived exosomal miR-1290 induces M2 macrophage polarization by targeting SOCS3. Cancer Med. 12:12639–12652. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jackson AL, Zhou B and Kim WY: HIF, hypoxia and the role of angiogenesis in non-small cell lung cancer. Expert Opin Ther Targets. 14:1047–1057. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eales KL, Hollinshead KER and Tennant DA: Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 5:e1902016. View Article : Google Scholar : PubMed/NCBI | |
Dai E, Wang W and Li Y, Ye D and Li Y: Lactate and lactylation: Behind the development of tumors. Cancer Lett. 591:2168962024. View Article : Google Scholar : PubMed/NCBI | |
Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM and Karagiannis TC: Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep. 42:841–851. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo F, Liu X, Yan N, Li S, Cao G, Cheng Q, Xia Q and Wang H: Hypoxia-inducible transcription factor-1α promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway. BMC Cancer. 6:262006. View Article : Google Scholar : PubMed/NCBI | |
Shang S, Wang MZ, Xing Z, He N and Li S: Lactate regulators contribute to tumor microenvironment and predict prognosis in lung adenocarcinoma. Front Immunol. 13:10249252022. View Article : Google Scholar : PubMed/NCBI | |
Nisar H, Sanchidrián González PM, Brauny M, Labonté FM, Schmitz C, Roggan MD, Konda B and Hellweg CE: Hypoxia changes energy metabolism and growth rate in non-small cell lung cancer cells. Cancers (Basel). 15:24722023. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Hu L, Wang Q, Wang Y, Liu XP, Chen C, Li S and Hu W: Molecular characterization and prognosis of lactate-related genes in lung adenocarcinoma. Curr Oncol. 30:2845–2861. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Liang C, Wu C, Wan S and Xu L, Wang S, Wang J, Huang X and Xu L: A rising star involved in tumour immunity: Lactylation. J Cell Mol Med. 28:e701462024. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou L, Zhang M, Du Y, Li C, Ren H and Zheng L: H3K18 lactylation potentiates immune escape of non-small cell lung cancer. Cancer Res. 84:3589–3601. 2024. View Article : Google Scholar : PubMed/NCBI | |
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brustugun OT: Hypoxia as a cause of treatment failure in non-small cell carcinoma of the lung. Semin Radiat Oncol. 25:87–92. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang RX and Zhou PK: DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 5:602020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L and Zuo H: Radiotherapy modulates tumor cell fate decisions: A review. Radiat Oncol. 17:1962022. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Zhang Y, Liu C, Zhang M and Han S: Application of radiosensitizers in cancer radiotherapy. Int J Nanomedicine. 16:1083–1102. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Zhang LY, He JZ, Miao ZM, Li YY, Zhang YM, Liu ZW, Zhang SZ, Chen Y, Zhou GC and Liu YQ: Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol. 14:11338992023. View Article : Google Scholar : PubMed/NCBI | |
Gray LH, Conger AD, Ebert M, Hornsey S and Scott OC: The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 26:638–648. 1953. View Article : Google Scholar : PubMed/NCBI | |
Herrera-Campos AB, Zamudio-Martinez E, Delgado-Bellido D, Fernández-Cortés M, Montuenga LM, Oliver FJ and Garcia-Diaz A: Implications of hyperoxia over the tumor microenvironment: An overview highlighting the importance of the immune system. Cancers (Basel). 14:27402022. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Lan F, Yan X, Xiao Z, Wu Y and Zhang Q: Hypoxia exposure induced cisplatin resistance partially via activating p53 and hypoxia inducible factor-1α in non-small cell lung cancer A549 cells. Oncol Lett. 16:801–808. 2018.PubMed/NCBI | |
Roy S, Kumaravel S, Sharma A, Duran CL, Bayless KJ and Chakraborty S: Hypoxic tumor microenvironment: Implications for cancer therapy. Exp Biol Med (Maywood). 245:1073–1086. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu CY, Hung CF, Chen PC, Hsu JY, Wang CT, Lai MD, Tsai YS, Shiau AL, Shieh GS and Wu CL: Oct4 and hypoxia dual-regulated oncolytic adenovirus armed with shRNA-targeting dendritic cell immunoreceptor exerts potent antitumor activity against bladder cancer. Biomedicines. 11:25982023. View Article : Google Scholar : PubMed/NCBI | |
Mancino A, Schioppa T, Larghi P, Pasqualini F, Nebuloni M, Chen IH, Sozzani S, Austyn JM, Mantovani A and Sica A: Divergent effects of hypoxia on dendritic cell functions. Blood. 112:3723–3734. 2008. View Article : Google Scholar : PubMed/NCBI | |
Peng X, He Y, Huang J, Tao Y and Liu S: Metabolism of dendritic cells in tumor microenvironment: For immunotherapy. Front Immunol. 12:6134922021. View Article : Google Scholar : PubMed/NCBI | |
Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC and Colgan SP: Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: Coordination by extracellular nucleotide metabolism. Blood. 104:3986–3992. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang L, Chen X, Li L, Li Y, Ping Y, Huang L, Yue D, Zhang Z, Wang F, et al: CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology. 6:e13200112017. View Article : Google Scholar : PubMed/NCBI | |
An SM, Lei HM, Ding XP, Sun F, Zhang C, Tang YB, Chen HZ, Shen Y and Zhu L: Interleukin-6 identified as an important factor in hypoxia- and aldehyde dehydrogenase-based gefitinib adaptive resistance in non-small cell lung cancer cells. Oncol Lett. 14:3445–3454. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kogita A, Togashi Y, Hayashi H, Sogabe S, Terashima M, De Velasco MA, Sakai K, Fujita Y, Tomida S, Takeyama Y, et al: Hypoxia induces resistance to ALK inhibitors in the H3122 non-small cell lung cancer cell line with an ALK rearrangement via epithelial-mesenchymal transition. Int J Oncol. 45:1430–1436. 2014. View Article : Google Scholar : PubMed/NCBI | |
Karan S, Cho MY, Lee H, Lee H, Park HS, Sundararajan M, Sessler JL and Hong KS: Near-infrared fluorescent probe activated by nitroreductase for in vitro and in vivo hypoxic tumor detection. J Med Chem. 64:2971–2981. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cheng MHY, Mo Y and Zheng G: Nano versus molecular: Optical imaging approaches to detect and monitor tumor hypoxia. Adv Healthc Mater. 10:e20015492021. View Article : Google Scholar : PubMed/NCBI | |
Clark LC Jr, Wolf R, Granger D and Taylor Z: Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 6:189–193. 1953. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Niu G, Chan N, Shen B and Chen X: Tumor hypoxia imaging. Mol Imaging Biol. 13:399–410. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shirmanova MV, Lukina MM, Sirotkina MA, Shimolina LE, Dudenkova VV, Ignatova NI, Tobita S, Shcheslavskiy VI and Zagaynova EV: Effects of photodynamic therapy on tumor metabolism and oxygenation revealed by fluorescence and phosphorescence lifetime imaging. Int J Mol Sci. 25:17032024. View Article : Google Scholar : PubMed/NCBI | |
Vanderkooi JM, Maniara G, Green TJ and Wilson DF: An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem. 262:5476–5482. 1987. View Article : Google Scholar : PubMed/NCBI | |
Koch CJ and Evans SM: Optimizing hypoxia detection and treatment strategies. Semin Nucl Med. 45:163–176. 2015. View Article : Google Scholar : PubMed/NCBI | |
Horsman MR, Sørensen BS, Busk M and Siemann DW: Therapeutic modification of hypoxia. Clin Oncol (R Coll Radiol). 33:e492–e509. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Liang J, Lei X, Xu X, Xiao Z and Luo L: Diagnostic performance of perfusion computed tomography for differentiating lung cancer from benign lesions: A meta-analysis. Med Sci Monit. 25:3485–3494. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Gou J, Wang L, Lin W, Li W and Yang F: Diagnostic accuracy of low-dose dual-input computed tomography perfusion in the differential diagnosis of pulmonary benign and malignant ground-glass nodules. Sci Rep. 14:170982024. View Article : Google Scholar : PubMed/NCBI | |
Liao C, Liu X, Zhang C and Zhang Q: Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol. 88:172–186. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nasri D, Manwar R, Kaushik A, Er EE and Avanaki K: Photoacoustic imaging for investigating tumor hypoxia: A strategic assessment. Theranostics. 13:3346–3367. 2023. View Article : Google Scholar : PubMed/NCBI | |
Krohn KA, Link JM and Mason RP: Molecular imaging of hypoxia. J Nucl Med. 49 (Suppl 2):129S–148S. 2008. View Article : Google Scholar : PubMed/NCBI | |
Brender JR, Saida Y, Devasahayam N, Krishna MC and Kishimoto S: Hypoxia imaging as a guide for hypoxia-modulated and hypoxia-activated therapy. Antioxid Redox Signal. 36:144–159. 2022. View Article : Google Scholar : PubMed/NCBI | |
Godet I, Doctorman S, Wu F and Gilkes DM: Detection of hypoxia in cancer models: Significance, challenges, and advances. Cells. 11:6862022. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto K, Mitchell JB and Krishna MC: Multimodal functional imaging for cancer/tumor microenvironments based on MRI, EPRI, and PET. Molecules. 26:16142021. View Article : Google Scholar : PubMed/NCBI | |
Qin W, Xu C, Zhao Y, Yu C, Shen S, Li L and Huang W: Recent progress in small molecule fluorescent probes for nitroreductase. Chin Chem Lett. 29:1451–1455. 2018. View Article : Google Scholar | |
Vikram DS, Zweier JL and Kuppusamy P: Methods for noninvasive imaging of tissue hypoxia. Antioxid Redox Signal. 9:1745–1756. 2007. View Article : Google Scholar : PubMed/NCBI | |
Epel B, Bowman MK, Mailer C and Halpern HJ: Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance. Magn Reson Med. 72:362–368. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hao B, Dong H, Xiong R, Song C, Xu C, Li N and Geng Q: Identification of SLC2A1 as a predictive biomarker for survival and response to immunotherapy in lung squamous cell carcinoma. Comput Biol Med. 171:1081832024. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Lai L, He J, Chen C, You D, Duan W, Dong X, Zhu Y, Lin L, Shen S, et al: EGLN2 DNA methylation and expression interact with HIF1A to affect survival of early-stage NSCLC. Epigenetics. 14:118–129. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ostheimer C, Bache M, Güttler A, Kotzsch M and Vordermark D: A pilot study on potential plasma hypoxia markers in the radiotherapy of non-small cell lung cancer. Osteopontin, carbonic anhydrase IX and vascular endothelial growth factor. Strahlenther Onkol. 190:276–282. 2014. View Article : Google Scholar : PubMed/NCBI | |
Giatromanolaki A, Harris AL, Banham AH, Contrafouris CA and Koukourakis MI: Carbonic anhydrase 9 (CA9) expression in non-small-cell lung cancer: Correlation with regulatory FOXP3+T-cell tumour stroma infiltration. Br J Cancer. 122:1205–1210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Geng H, Chen L, Lv S, Li M, Huang X, Li M and Liu C and Liu C: Photochemically controlled release of the glucose transporter 1 inhibitor for glucose deprivation responses and cancer suppression research. J Proteome Res. 23:653–662. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Rabbani ZN, Vollmer RT, Schreiber EG, Oosterwijk E, Dewhirst MW, Vujaskovic Z and Kelley MJ: Carbonic anhydrase IX in early-stage non-small cell lung cancer. Clin Cancer Res. 10:7925–7933. 2004. View Article : Google Scholar : PubMed/NCBI | |
Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF and Yeatman TJ: Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res. 10((1 Pt 1)): 184–190. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ostheimer C, Bache M, Güttler A, Reese T and Vordermark D: Prognostic information of serial plasma osteopontin measurement in radiotherapy of non-small-cell lung cancer. BMC Cancer. 14:8582014. View Article : Google Scholar : PubMed/NCBI | |
Stępień K, Ostrowski RP and Matyja E: Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol. 33:1012016. View Article : Google Scholar : PubMed/NCBI | |
Kim SW, Kim IK, Ha JH, Yeo CD, Kang HH, Kim JW and Lee SH: Normobaric hyperoxia inhibits the progression of lung cancer by inducing apoptosis. Exp Biol Med (Maywood). 243:739–748. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thews O and Vaupel P: Spatial oxygenation profiles in tumors during normo- and hyperbaric hyperoxia. Strahlenther Onkol. 191:875–882. 2015. View Article : Google Scholar : PubMed/NCBI | |
Heyboer M III, Sharma D, Santiago W and McCulloch N: Hyperbaric oxygen therapy: Side effects defined and quantified. Adv Wound Care (New Rochelle). 6:210–224. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jones LW, Viglianti BL, Tashjian JA, Kothadia SM, Keir ST, Freedland SJ, Potter MQ, Moon EJ, Schroeder T, Herndon JE II and Dewhirst MW: Effect of aerobic exercise on tumor physiology in an animal model of human breast cancer. J Appl Physiol (1985). 108:343–348. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jo S, Jeon J, Park G, Do HK, Kang J, Ahn KJ, Ma SY, Choi YM, Kim D, Youn B and Ki Y: Aerobic exercise improves radiation therapy efficacy in non-small cell lung cancer: Preclinical study using a xenograft mouse model. Int J Mol Sci. 25:27572024. View Article : Google Scholar : PubMed/NCBI | |
Ghosh P, Vidal C, Dey S and Zhang L: Mitochondria targeting as an effective strategy for cancer therapy. Int J Mol Sci. 21:33632020. View Article : Google Scholar : PubMed/NCBI | |
Ashton TM, McKenna WG, Kunz-Schughart LA and Higgins GS: Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res. 24:2482–2490. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kalyanaraman B, Cheng G, Hardy M and You M: OXPHOS-targeting drugs in oncology: New perspectives. Expert Opin Ther Targets. 27:939–952. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shameem M, Bagherpoor AJ, Nakhi A, Dosa P, Georg G and Kassie F: Mitochondria-targeted metformin (mitomet) inhibits lung cancer in cellular models and in mice by enhancing the generation of reactive oxygen species. Mol Carcinog. 62:1619–1629. 2023. View Article : Google Scholar : PubMed/NCBI | |
Skwarski M, McGowan DR, Belcher E, Di Chiara F, Stavroulias D, McCole M, Derham JL, Chu KY, Teoh E, Chauhan J, et al: Mitochondrial inhibitor atovaquone increases tumor oxygenation and inhibits hypoxic gene expression in patients with non-small cell lung cancer. Clin Cancer Res. 27:2459–2469. 2021. View Article : Google Scholar : PubMed/NCBI | |
Benej M, Hong X, Vibhute S, Scott S, Wu J, Graves E, Le QT, Koong AC, Giaccia AJ, Yu B, et al: Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc Natl Acad Sci USA. 115:10756–10761. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sohoni S, Ghosh P, Wang T, Kalainayakan SP, Vidal C, Dey S, Konduri PC and Zhang L: Elevated heme synthesis and uptake underpin intensified oxidative metabolism and tumorigenic functions in non-small cell lung cancer cells. Cancer Res. 79:2511–2525. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Ashrafi A, Konduri PC, Ghosh P, Dey S, Modareszadeh P, Salamat N, Alemi PS, Berisha E and Zhang L: Heme sequestration as an effective strategy for the suppression of tumor growth and progression. Mol Cancer Ther. 20:2506–2518. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dewhirst MW and Secomb TW: Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer. 17:738–750. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sukhatme V, Bouche G, Meheus L, Sukhatme VP and Pantziarka P: Repurposing drugs in oncology (ReDO)-nitroglycerin as an anti-cancer agent. Ecancermedicalscience. 9:5682015. View Article : Google Scholar : PubMed/NCBI | |
Reymen BJT, van Gisbergen MW, Even AJG, Zegers CML, Das M, Vegt E, Wildberger JE, Mottaghy FM, Yaromina A, Dubois LJ, et al: Nitroglycerin as a radiosensitizer in non-small cell lung cancer: Results of a prospective imaging-based phase II trial. Clin Transl Radiat Oncol. 21:49–55. 2019.PubMed/NCBI | |
Wong PP, Bodrug N and Hodivala-Dilke KM: Exploring novel methods for modulating tumor blood vessels in cancer treatment. Curr Biol. 26:R1161–R1166. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guelfi S, Hodivala-Dilke K and Bergers G: Targeting the tumour vasculature: From vessel destruction to promotion. Nat Rev Cancer. 24:655–675. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wigerup C, Påhlman S and Bexell D: Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 164:152–169. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Choi HK and Lee K: Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem. 49:24–40. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iommarini L, Porcelli AM, Gasparre G and Kurelac I: Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer. Front Oncol. 7:2862017. View Article : Google Scholar : PubMed/NCBI | |
Albadari N, Deng S and Li W: The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov. 14:667–682. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Cao K, Ling X, Zhang P and Zhu J: LncRNA HAR1A suppresses the development of non-small cell lung cancer by inactivating the STAT3 pathway. Cancers (Basel). 14:28452022. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Chen Y, Li P, Hang Q, Zhang P, Jin Y and Chen M: PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism: Potential targets to overcome radioresistance in small cell lung cancer. Cancer Pathog Ther. 1:56–66. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lara MS, Blakely CM and Riess JW: Targeting MEK in non-small cell lung cancer. Curr Probl Cancer. 49:1010652024. View Article : Google Scholar : PubMed/NCBI | |
Zhu H and Zhang S: Hypoxia inducible factor-1α/vascular endothelial growth factor signaling activation correlates with response to radiotherapy and its inhibition reduces hypoxia-induced angiogenesis in lung cancer. J Cell Biochem. 119:7707–7718. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tian W, Cao C, Shu L and Wu F: Anti-angiogenic therapy in the treatment of non-small cell lung cancer. Onco Targets Ther. 13:12113–12129. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mahdi A, Darvishi B, Majidzadeh-A K, Salehi M and Farahmand L: Challenges facing antiangiogenesis therapy: The significant role of hypoxia-inducible factor and MET in development of resistance to anti-vascular endothelial growth factor-targeted therapies. J Cell Physiol. 234:5655–5663. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Xie Z and Zou T: Recent advances in hypoxia-activated compounds for cancer diagnosis and treatment. Bioorg Chem. 144:1071612024. View Article : Google Scholar : PubMed/NCBI | |
Bryant JL, Meredith SL, Williams KJ and White A: Targeting hypoxia in the treatment of small cell lung cancer. Lung Cancer. 86:126–132. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wilson WR and Hay MP: Targeting hypoxia in cancer therapy. Nat Rev Cancer. 11:393–410. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen SX, Zhang J, Xue F, Liu W, Kuang Y, Gu B, Song S and Chen H: In situ forming oxygen/ROS-responsive niche-like hydrogel enabling gelation-triggered chemotherapy and inhibition of metastasis. Bioact Mater. 21:86–96. 2022.PubMed/NCBI | |
Shepherd F, Koschel G, Von Pawel J, Gatzmeier U, Van Zandwiyk N, Woll P, Van Klavren R, Krasko P, Desimone P, Nicolson M, et al: Comparison of Tirazone (Tirapazamine) and cisplatin vs. etoposide and cisplatin in advanced non-small cell lung cancer (NSCLC): Final results of the International phase III CATAPULT II trial. Lung Cancer. 29:282000. View Article : Google Scholar | |
Marcu L and Olver I: Tirapazamine: From bench to clinical trials. Curr Clin Pharmacol. 1:71–79. 2006. View Article : Google Scholar : PubMed/NCBI | |
Graham K and Unger E: Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine. 13:6049–6058. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lindsay D, Garvey CM, Mumenthaler SM and Foo J: Leveraging hypoxia-activated prodrugs to prevent drug resistance in solid tumors. PLoS Comput Biol. 12:e10050772016. View Article : Google Scholar : PubMed/NCBI | |
Meaney C, Powathil GG, Yaromina A, Dubois LJ, Lambin P and Kohandel M: Role of hypoxia-activated prodrugs in combination with radiation therapy: An in silico approach. Math Biosci Eng. 16:6257–6273. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oronsky BT, Knox SJ and Scicinski JJ: Is nitric oxide (NO) the last word in radiosensitization? A review. Transl Oncol. 5:66–71. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oronsky B, Scicinski J, Ning S, Peehl D, Oronsky A, Cabrales P, Bednarski M and Knox S: RRx-001, A novel dinitroazetidine radiosensitizer. Invest New Drugs. 34:371–377. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Li M, Shen C and Luo Y, Hou X, Qi Y, Huang Z, Li W, Gao L, Wu M and Luo Y: Nano-assisted radiotherapy strategies: New opportunities for treatment of non-small cell lung cancer. Research (Wash D C). 7:04292024.PubMed/NCBI | |
Chen Y, Zhou Y, Feng X, Wu Z, Yang Y, Rao X, Zhou R, Meng R, Dong X, Xu S, et al: Targeting FBXO22 enhances radiosensitivity in non-small cell lung cancer by inhibiting the FOXM1/Rad51 axis. Cell Death Dis. 15:1042024. View Article : Google Scholar : PubMed/NCBI | |
Dey P, Das R, Chatterjee S, Paul R and Ghosh U: Combined effects of carbon ion radiation and PARP inhibitor on non-small cell lung carcinoma cells: Insights into DNA repair pathways and cell death mechanisms. DNA Repair (Amst). 144:1037782024. View Article : Google Scholar : PubMed/NCBI | |
Demizu Y, Fujii O, Iwata H and Fuwa N: Carbon ion therapy for early-stage non-small-cell lung cancer. Biomed Res Int. 2014:7279622014. View Article : Google Scholar : PubMed/NCBI | |
Bentzen SM and Gregoire V: Molecular-imaging-based dose painting: A novel paradigm for radiation therapy prescription. Semin Radiat Oncol. 21:101–110. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meijer G, Steenhuijsen J, Bal M, De Jaeger K, Schuring D and Theuws J: Dose painting by contours versus dose painting by numbers for stage II/III lung cancer: Practical implications of using a broad or sharp brush. Radiother Oncol. 100:396–401. 2011. View Article : Google Scholar : PubMed/NCBI |