|
1
|
Suehara Y, Alex D, Bowman A, Middha S,
Zehir A, Chakravarty D, Wang L, Jour G, Nafa K, Hayashi T, et al:
Clinical genomic sequencing of pediatric and adult osteosarcoma
reveals distinct molecular subsets with potentially targetable
alterations. Clin Cancer Res. 25:6346–6356. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Matsuoka K, Bakiri L, Wolff LI, Linder M,
Mikels-Vigdal A, Patiño-García A, Lecanda F, Hartmann C, Sibilia M
and Wagner EF: Wnt signaling and Loxl2 promote aggressive
osteosarcoma. Cell Res. 30:885–901. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gambera S, Abarrategi A, González-Camacho
F, Morales-Molina Á, Roma J, Alfranca A and García-Castro J: Clonal
dynamics in osteosarcoma defined by RGB marking. Nat Commun.
9:39942018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Arvanitis C, Bendapudi PK, Tseng JR,
Gambhir SS and Felsher DW: (18)F and (18)FDG PET imaging of
osteosarcoma to non-invasively monitor in situ changes in cellular
proliferation and bone differentiation upon MYC inactivation.
Cancer Biol Ther. 7:1947–1951. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Asano N, Matsuzaki J, Ichikawa M, Kawauchi
J, Takizawa S, Aoki Y, Sakamoto H, Yoshida A, Kobayashi E, Tanzawa
Y, et al: A serum microRNA classifier for the diagnosis of sarcomas
of various histological subtypes. Nat Commun. 10:12992019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu H, Li P, Chen L, Jian C, Li Z and Yu
A: MicroRNAs as a novel class of diagnostic biomarkers for the
detection of osteosarcoma: A meta-analysis. Onco Targets Ther.
10:5229–5236. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xia WK, Lin QF, Shen D, Liu ZL, Su J and
Mao WD: Clinical implication of long noncoding RNA 91H expression
profile in osteosarcoma patients. Onco Targets Ther. 9:4645–4652.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Xiao-Long M, Kun-Peng Z and Chun-Lin Z:
Circular RNA circ_HIPK3 is down-regulated and suppresses cell
proliferation, migration and invasion in osteosarcoma. J Cancer.
9:1856–1862. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu C, Yang Z, Wu J, Zhang L, Lee S, Shin
DJ, Tran M and Wang L: Long noncoding RNA H19 interacts with
polypyrimidine tract-binding protein 1 to reprogram hepatic lipid
homeostasis. Hepatology. 67:1768–1783. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sztuba-Solinska J, Rausch JW, Smith R,
Miller JT, Whitby D and Le Grice SFJ: Kaposi's sarcoma-associated
herpesvirus polyadenylated nuclear RNA: A structural scaffold for
nuclear, cytoplasmic and viral proteins. Nucleic Acids Res.
45:6805–6821. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bester AC, Lee JD, Chavez A, Lee YR,
Nachmani D, Vora S, Victor J, Sauvageau M, Monteleone E, Rinn JL,
et al: An integrated genome-wide CRISPRa approach to functionalize
lncRNAs in drug resistance. Cell. 173:649–664.e20. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wright MW: A short guide to long
non-coding RNA gene nomenclature. Hum Genomics. 8:72014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Liu Y, Ding W, Yu W, Zhang Y, Ao X and
Wang J: Long non-coding RNAs: Biogenesis, functions, and clinical
significance in gastric cancer. Mol Ther Oncolytics. 23:458–476.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu Y, Ao X, Wang Y, Li X and Wang J: Long
non-coding RNA in gastric cancer: Mechanisms and clinical
implications for drug resistance. Front Oncol. 12:8414112022.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gao H, Hao G, Sun Y, Li L and Wang Y: Long
noncoding RNA H19 mediated the chemosensitivity of breast cancer
cells via Wnt pathway and EMT process. Onco Targets Ther.
11:8001–8012. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Feng L, Wei W, Heng Z, Yantao H and Chunbo
W: Knockdown of REV7 inhibits breast cancer cell migration and
invasion. Oncol Res. 24:315–325. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ji M, Li Z, Lin Z and Chen L: Antitumor
activity of the novel HDAC inhibitor CUDC-101 combined with
gemcitabine in pancreatic cancer. Am J Cancer Res. 8:2402–2418.
2018.PubMed/NCBI
|
|
18
|
Zhong G, Lin Y, Wang X, Wang K, Liu J and
Wei W: H19 knockdown suppresses proliferation and induces apoptosis
by regulating miR-130a-3p/SATB1 in breast cancer cells. Onco
Targets Ther. 13:12501–12513. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
McFaline-Figueroa JL, Hill AJ, Qiu X,
Jackson D, Shendure J and Trapnell C: A pooled single-cell genetic
screen identifies regulatory checkpoints in the continuum of the
epithelial-to-mesenchymal transition. Nat Genet. 51:1389–1398.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lu W and Kang Y: Epithelial-Mesenchymal
plasticity in cancer progression and metastasis. Dev Cell.
49:361–374. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Williams ED, Gao D, Redfern A and Thompson
EW: Controversies around epithelial-mesenchymal plasticity in
cancer metastasis. Nat Rev Cancer. 19:716–732. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Latil M, Nassar D, Beck B, Boumahdi S,
Wang L, Brisebarre A, Dubois C, Nkusi E, Lenglez S, Checinska A, et
al: Cell-type-specific chromatin states differentially prime
squamous cell carcinoma tumor-initiating cells for epithelial to
mesenchymal transition. Cell Stem Cell. 20:191–204.e5. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sun WW, Xu ZH, Lian P, Gao BL and Hu JA:
Characteristics of circulating tumor cells in organ metastases,
prognosis, and T lymphocyte mediated immune response. Onco Targets
Ther. 10:2413–2424. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen S, Shen J, Zhao J, Wang J, Shan T, Li
J, Xu M, Chen X, Liu Y and Cao G: Magnolol suppresses pancreatic
cancer development in vivo and in vitro via negatively regulating
TGF-β/Smad signaling. Front Oncol. 10:5976722020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yoo YG, Christensen J and Huang LE: HIF-1α
confers aggressive malignant traits on human tumor cells
independent of its canonical transcriptional function. Cancer Res.
71:1244–1252. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Han G, Guo Q, Ma N, Bi W, Xu M, Jia J and
Wang W: LncRNA BCRT1 facilitates osteosarcoma progression via
regulating miR-1303/FGF7 axis. Aging. 13:15501–15510. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sun MX, An HY, Sun YB, Sun YB and Bai B:
LncRNA EBLN3P attributes methotrexate resistance in osteosarcoma
cells through miR-200a-3p/O-GlcNAc transferase pathway. J Orthop
Surg Res. 17:5572022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang L, Zhou J, Zhang Y, Hu T and Sun Y:
Long non-coding RNA HCG11 aggravates osteosarcoma carcinogenesis
via regulating the microRNA-579/MMP13 axis. Int J Gen Med.
13:1685–1695. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhao H, Wang Y, Hou W, Ding X and Wang W:
Long non-coding RNA MALAT1 promotes cell proliferation, migration
and invasion by targeting miR-590-3p in osteosarcoma. Exp Ther Med.
24:6722022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sun Y, Jia X, Wang M and Deng Y: Long
noncoding RNA MIR31HG abrogates the availability of tumor
suppressor microRNA-361 for the growth of osteosarcoma. Cancer
Manag Res. 11:8055–8064. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang Z, Wei Y, Zhu H, Yu L, Zhu J, Han Q,
Liu Z, Huang J, Zhu Y, Fan G, et al: LncRNA NDRG1 aggravates
osteosarcoma progression and regulates the PI3K/AKT pathway by
sponging miR-96-5p. BMC Cancer. 22:7282022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tan H and Zhao L: lncRNA nuclear-enriched
abundant transcript 1 promotes cell proliferation and invasion by
targeting miR-186-5p/HIF-1α in osteosarcoma. J Cell Biochem.
120:6502–6514. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chen Y, Li J, Xiao JK, Xiao L, Xu BW and
Li C: The lncRNA NEAT1 promotes the epithelial-mesenchymal
transition and metastasis of osteosarcoma cells by sponging miR-483
to upregulate STAT3 expression. Cancer Cell Int. 21:902021.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li J, Zhang Y, Sun F, Zhang G, Pan XA and
Zhou Q: Long noncoding RNA PCGEM1 facilitates tumor growth and
metastasis of osteosarcoma by sponging miR-433-3p and targeting
OMA1. Orthop Surg. 15:1060–1071. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
He F, Ding G, Jiang W, Fan X and Zhu L:
Effect of tumor-associated macrophages on lncRNA
PURPL/miR-363/PDZD2 axis in osteosarcoma cells. Cell Death Discov.
7:3072021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jiang Z, Jiang C and Fang J: Up-regulated
lnc-SNHG1 contributes to osteosarcoma progression through
sequestration of miR-577 and activation of WNT2B/Wnt/β-catenin
pathway. Biochem Biophys Res Commun. 495:238–245. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Deng Y, Zhao F, Zhang Z, Sun F and Wang M:
Long noncoding RNA SNHG7 promotes the tumor growth and
epithelial-to-mesenchymal transition via regulation of miR-34a
signals in osteosarcoma. Cancer Biother Radiopharm. 33:365–372.
2018.PubMed/NCBI
|
|
38
|
Zhu S, Liu Y, Wang X, Wang J and Xi G:
lncRNA SNHG10 promotes the proliferation and invasion of
osteosarcoma via Wnt/β-catenin signaling. Mol Ther Nucleic Acids.
22:957–970. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bu J, Guo R, Xu XZ, Luo Y and Liu JF:
LncRNA SNHG16 promotes epithelial-mesenchymal transition by
upregulating ITGA6 through miR-488 inhibition in osteosarcoma. J
Bone Oncol. 27:1003482021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cao J, Han X, Qi X, Jin X and Li X: TUG1
promotes osteosarcoma tumorigenesis by upregulating EZH2 expression
via miR-144-3p. Int J Oncol. 51:1115–1123. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ma H, Su R, Feng H, Guo Y and Su G: Long
noncoding RNA UCA1 promotes osteosarcoma metastasis through
CREB1-mediated epithelial-mesenchymal transition and activating
PI3K/AKT/mTOR pathway. J Bone Oncol. 16:1002282019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wen JF, Jiang YQ, Li C, Dai XK, Wu T and
Yin WZ: LncRNA-XIST promotes the oxidative stress-induced
migration, invasion, and epithelial-to-mesenchymal transition of
osteosarcoma cancer cells through miR-153-SNAI1 axis. Cell Biol
Int. 44:1991–2001. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu W, Long Q, Zhang L, Zeng D, Hu B,
Zhang W, Liu S, Deng S and Chen L: Long non-coding RNA X-inactive
specific transcript promotes osteosarcoma metastasis via modulating
microRNA-758/Rab16. Ann Transl Med. 9:8412021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yao W, Hou J, Liu G, Wu F, Yan Q, Guo L
and Wang C: LncRNA CBR3-AS1 promotes osteosarcoma progression
through the network of miR-140-5p/DDX54-NUCKS1-mTOR signaling
pathway. Mol Ther Oncolytics. 25:189–200. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gui D and Cao H: Long non-coding RNA
CDKN2B-AS1 promotes osteosarcoma by increasing the expression of
MAP3K3 via sponging miR-4458. In Vitro Cell Dev Biol Anim.
56:24–33. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang H, Lin J, Chen J, Gu W, Mao Y, Wang
H, Zhang Y and Liu W: DDX11-AS1 contributes to osteosarcoma
progression via stabilizing DDX11. Life Sci. 254:1173922020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ning Y and Bai Z: DSCAM-AS1 accelerates
cell proliferation and migration in osteosarcoma through
miR-186-5p/GPRC5A signaling. Cancer Biomark. 30:29–39. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang L: ELF1-activated FOXD3-AS1 promotes
the migration, invasion and EMT of osteosarcoma cells via sponging
miR-296-5p to upregulate ZCCHC3. J Bone Oncol. 26:1003352021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang Y, Zhang R, Cheng G, Xu R and Han X:
Long non-coding RNA HOXA-AS2 promotes migration and invasion by
acting as a ceRNA of miR-520c-3p in osteosarcoma cells. Cell Cycle.
17:1637–1648. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
He JW, Li DJ, Zhou JH, Zhu YL and Yu BQ:
SP1-mediated upregulation of lncRNA LMCD1-AS1 functions a ceRNA for
miR-106b-5p to facilitate osteosarcoma progression. Biochem Biophys
Res Commun. 526:670–677. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu W, Liu P, Gao H, Wang X and Yan M:
Long non-coding RNA PGM5-AS1 promotes epithelial-mesenchymal
transition, invasion and metastasis of osteosarcoma cells by
impairing miR-140-5p-mediated FBN1 inhibition. Mol Oncol.
14:2660–2677. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tong CJ, Deng QC, Ou DJ, Long X, Liu H and
Huang K: LncRNA RUSC1-AS1 promotes osteosarcoma progression through
regulating the miR-340-5p and PI3K/AKT pathway. Aging (Albany NY).
13:20116–20130. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jiang R, Zhang Z, Zhong Z and Zhang C:
Long-non-coding RNA RUSC1-AS1 accelerates osteosarcoma development
by miR-101-3p-mediated Notch1 signalling pathway. J Bone Oncol.
30:1003822021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu X, Wang H, Tao GL, Chu TB, Wang YX and
Liu L: LncRNA-TMPO-AS1 promotes apoptosis of osteosarcoma cells by
targeting miR-329 and regulating E2F1. Eur Rev Med Pharmacol Sci.
24:11006–11015. 2020.PubMed/NCBI
|
|
55
|
Meng X, Zhang Z, Chen L, Wang X, Zhang Q
and Liu S: Silencing of the long non-coding RNA TTN-AS1 attenuates
the malignant progression of osteosarcoma cells by regulating the
miR-16-1-3p/TFAP4 axis. Front Oncol. 11:6528352021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang Z, Wang J, Zhang X, Ran B, Wen J and
Zhang H: TYMSOS-miR-101-3p-NETO2 axis promotes osteosarcoma
progression. Mol Cell Probes. 67:1018872022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu X, Wang M, Zhang L and Huang L: LncRNA
ZFAS1 contributes to osteosarcoma progression via miR-520b and
miR-520e-mediated inhibition of RHOC signaling. Clinics (Sao
Paulo). 78:1001432023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ma HZ, Wang J, Shi J, Zhang W and Zhou DS:
LncRNA LINC00467 contributes to osteosarcoma growth and metastasis
through regulating HMGA1 by directly targeting miR-217. Eur Rev Med
Pharmacol Sci. 24:5933–5945. 2020.PubMed/NCBI
|
|
59
|
Zheng Y, Chen Z, Zhou Z, Xu X and Yang H:
Silencing of long non-coding RNA LINC00607 Prevents tumor
proliferation of osteosarcoma by acting as a sponge of miR-607 to
downregulate E2F6. Front Oncol. 10:5844522020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhou Y, Li X and Yang H: LINC00612
functions as a ceRNA for miR-214-5p to promote the proliferation
and invasion of osteosarcoma in vitro and in vivo. Exp Cell Res.
392:1120122020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Bai J, Zhang X, Jiang F, Shan H, Gao X, Bo
L and Zhang Y: A feedback loop of LINC00665 and the wnt signaling
pathway expedites osteosarcoma cell proliferation, invasion, and
epithelial-mesenchymal transition. Orthop Surg. 15:286–300. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu W, Zhang Q, Shen K, Li K, Chang J, Li
H, Duan A, Zhang S and Huang Y: Long noncoding RNA LINC00909
induces epithelial-mesenchymal transition and contributes to
osteosarcoma tumorigenesis and metastasis. J Oncol.
2022:86609652022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li R, Ruan Q, Zheng J, Zhang B and Yang H:
LINC01116 promotes doxorubicin resistance in osteosarcoma by
epigenetically silencing miR-424-5p and inducing
epithelial-mesenchymal transition. Front Pharmacol. 12:6322062021.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang S and Chen R: LINC01140 regulates
osteosarcoma proliferation and invasion by targeting the
miR-139-5p/HOXA9 axis. Biochem Biophys Rep.
31:1013012022.PubMed/NCBI
|
|
65
|
Gu Z, Wu S, Wang J and Zhao S: Long
non-coding RNA LINC01419 mediates miR-519a-3p/PDRG1 axis to promote
cell progression in osteosarcoma. Cancer Cell Int. 20:1472020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang H and Zhang P: lncRNA-CASC15 promotes
osteosarcoma proliferation and metastasis by regulating epithelial-
mesenchymal transition via the Wnt/β-catenin signaling pathway.
Oncol Rep. 45:762021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li Z, Tang Y, Xing W, Dong W and Wang Z:
LncRNA, CRNDE promotes osteosarcoma cell proliferation, invasion
and migration by regulating Notch1 signaling and
epithelial-mesenchymal transition. Exp Mol Pathol. 104:19–25. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ding Q, Mo F, Cai X, Zhang W, Wang J, Yang
S and Liu X: LncRNA CRNDE is activated by SP1 and promotes
osteosarcoma proliferation, invasion, and epithelial-mesenchymal
transition via Wnt/β-catenin signaling pathway. J Cell Biochem.
121:3358–3371. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang Y, Zhao Z, Zhang S, Li Z, Li D, Yang
S, Zhang H, Zeng X and Liu J: LncRNA FAL1 is a negative prognostic
biomarker and exhibits pro-oncogenic function in osteosarcoma. J
Cell Biochem. 119:8481–8489. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li B, Ren P and Wang Z: Long non-coding
RNA Ftx promotes osteosarcoma progression via the epithelial to
mesenchymal transition mechanism and is associated with poor
prognosis in patients with osteosarcoma. Int J Clin Exp Pathol.
11:4503–4511. 2018.PubMed/NCBI
|
|
71
|
Yang W, Shan Z, Zhou X, Peng L, Zhi C,
Chai J, Liu H, Yang J and Zhang Z: Knockdown of lncRNA GHET1
inhibits osteosarcoma cells proliferation, invasion, migration and
EMT in vitro and in vivo. Cancer Biomark. 23:589–601. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhao W and Li L: SP1-induced upregulation
of long non-coding RNA HCP5 promotes the development of
osteosarcoma. Pathol Res Pract. 215:439–445. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang N, Meng X, Liu Y, Chen Y and Liang Q:
LPS promote osteosarcoma invasion and migration through
TLR4/HOTAIR. Gene. 680:1–8. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tang Y and Ji F: lncRNA HOTTIP facilitates
osteosarcoma cell migration, invasion and epithelial-mesenchymal
transition by forming a positive feedback loop with c-Myc. Oncol
Lett. 18:1649–1656. 2019.PubMed/NCBI
|
|
75
|
Fang D, Yang H, Lin J, Teng Y, Jiang Y,
Chen J and Li Y: 17β-estradiol regulates cell proliferation, colony
formation, migration, invasion and promotes apoptosis by
upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell
MG-63 in an estrogen receptor-independent manner. Biochem Biophys
Res Commun. 457:500–506. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bai S, Li Y, Wang Y, Zhou G, Liu C, Xiong
W and Chen J: Long non-coding RNA MINCR regulates the growth and
metastasis of human osteosarcoma cells via Wnt/β-catenin signaling
pathway. Acta Biochim Pol. 69:551–557. 2022.PubMed/NCBI
|
|
77
|
Shi C, Huang CM, Wang B, Sun TF, Zhu AX
and Zhu YC: Pseudogene MSTO2P enhances hypoxia-induced osteosarcoma
malignancy by upregulating PD-L1. Biochem Biophys Res Commun.
530:673–679. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li Y and Cheng C: Long noncoding RNA NEAT1
promotes the metastasis of osteosarcoma via interaction with the
G9a-DNMT1-Snail complex. Am J Cancer Res. 8:81–90. 2018.PubMed/NCBI
|
|
79
|
Zhang X, Zhang Y, Mao Y and Ma X: The
lncRNA PCAT1 is correlated with poor prognosis and promotes cell
proliferation, invasion, migration and EMT in osteosarcoma. Onco
Targets Ther. 11:629–638. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Xun C, Jiang D, Tian Z, Yunus A and Chen
J: Long noncoding RNA plasmacytoma variant translocation gene 1
promotes epithelial-mesenchymal transition in osteosarcoma. J Clin
Lab Anal. 35:e235872021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gao S, Guo J, Li F, Zhang K, Zhang Y,
Zhang Y, Zhang Y and Guo Y: Long non-coding RNA lncTCF7 predicts
poor prognosis and promotes tumor metastasis in osteosarcoma. Int J
Clin Exp Pathol. 10:10918–10925. 2017.PubMed/NCBI
|
|
82
|
Huang Y, Xu YQ, Feng SY, Zhang X and Ni
JD: LncRNA TDRG1 promotes proliferation, invasion and
epithelial-mesenchymal transformation of osteosarcoma through
PI3K/AKT signal pathway. Cancer Manag Res. 12:4531–4540. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xu B, Jin X, Yang T, Zhang Y, Liu S, Wu L,
Ying H and Wang Z: Upregulated lncRNA THRIL/TNF-α signals promote
cell growth and predict poor clinical outcomes of osteosarcoma.
Onco Targets Ther. 13:119–129. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liu Y, Zhang Y, Zhang J, Ma J, Xu X, Wang
Y, Zhou Z, Jiang D, Shen S, Ding Y, et al: Silencing of HuR
inhibits osteosarcoma cell epithelial-mesenchymal transition via
AGO2 in association with long non-coding RNA XIST. Front Oncol.
11:6019822021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Shi D, Wu F, Mu S, Hu B, Zhong B, Gao F,
Qing X, Liu J, Zhang Z and Shao Z: LncRNA AFAP1-AS1 promotes
tumorigenesis and epithelial-mesenchymal transition of osteosarcoma
through RhoC/ROCK1/p38MAPK/Twist1 signaling pathway. J Exp Clin
Cancer Res. 38:3752019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Luo Y, Tao H, Jin L, Xiang W and Guo W:
CDKN2B-AS1 exerts oncogenic role in osteosarcoma by promoting cell
proliferation and epithelial to mesenchymal transition. Cancer
Biother Radiopharm. 35:58–65. 2020.PubMed/NCBI
|
|
87
|
Cai L, Lv J, Zhang Y, Li J, Wang Y and
Yang H: The lncRNA HNF1A-AS1 is a negative prognostic factor and
promotes tumorigenesis in osteosarcoma. J Cell Mol Med.
21:2654–2662. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yang J, Zou Y, Wu J, Chen B, Luo C, Chen
X, Shen H and Luo L: The long noncoding RNA ZEB2-AS1 contributes to
proliferation and epithelial-to-mesenchymal transition of
osteosarcoma. Cancer Biother Radiopharm. 38:596–603.
2020.PubMed/NCBI
|
|
89
|
Jiang Y and Luo Y: LINC01354 promotes
osteosarcoma cell invasion by up-regulating integrin β1. Arch Med
Res. 51:115–123. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xu J, Ding R and Xu Y: Effects of long
non-coding RNA SPRY4-IT1 on osteosarcoma cell biological behavior.
Am J Transl Res. 8:5330–5337. 2016.PubMed/NCBI
|
|
91
|
Ye F, Tian L, Zhou Q and Feng D: LncRNA
FER1L4 induces apoptosis and suppresses EMT and the activation of
PI3K/AKT pathway in osteosarcoma cells via inhibiting miR-18a-5p to
promote SOCS5. Gene. 721:1440932019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang Y, Ren X, Yuan Y and Yuan BS:
Downregulated lncRNA GAS5 and upregulated miR-21 lead to
epithelial-mesenchymal transition and lung metastasis of
osteosarcomas. Front Cell Dev Biol. 9:7076932021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ye K, Wang S, Zhang H, Han H, Ma B and Nan
W: Long noncoding RNA GAS5 suppresses cell growth and
epithelial-mesenchymal transition in osteosarcoma by regulating the
miR-221/ARHI pathway. J Cell Biochem. 118:4772–4781. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zheng HL, Yang RZ, Xu WN, Liu T, Chen PB,
Zheng XF, Li B, Jiang LS and Jiang SD: Characterization of LncRNA
SNHG22 as a protector of NKIRAS2 through miR-4492 binding in
osteosarcoma. Aging. 12:18571–18587. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Fan H, Liu T, Tian H and Zhang S: TUSC8
inhibits the development of osteosarcoma by sponging miR-197-3p and
targeting EHD2. Int J Mol Med. 46:1311–1320. 2020.PubMed/NCBI
|
|
96
|
Zhang R and Xia T: Long non-coding RNA
XIST regulates PDCD4 expression by interacting with miR-21-5p and
inhibits osteosarcoma cell growth and metastasis. Int J Oncol.
51:1460–1470. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhou FC, Zhang YH, Liu HT, Song J and Shao
J: LncRNA LINC00588 suppresses the progression of osteosarcoma by
acting as a ceRNA for miRNA-1972. Front Pharmacol. 11:2552020.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wan D, Qu Y, Zhang L, Ai S and Cheng L:
The lncRNA LINC00691Functions as a ceRNA for miRNA-1256 to suppress
osteosarcoma by regulating the expression of ST5. Onco Targets
Ther. 13:13171–13181. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Liu L, Zheng M, Wang X, Gao Y and Gu Q:
LncRNA NR_136400 suppresses cell proliferation and invasion by
acting as a ceRNA of TUSC5 that is modulated by miR-8081 in
osteosarcoma. Front Pharmacol. 11:6412020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ma L, Zhang L, Guo A, Liu LC, Yu F, Diao
N, Xu C and Wang D: Overexpression of FER1L4 promotes the apoptosis
and suppresses epithelial-mesenchymal transition and stemness
markers via activating PI3K/AKT signaling pathway in osteosarcoma
cells. Pathol Res Pract. 215:1524122019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tian H, Tang L, Yang Z, Xiang Y, Min Q,
Yin M, You H, Xiao Z and Shen J: Current understanding of
functional peptides encoded by lncRNA in cancer. Cancer Cell Int.
24:2522024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yi Q, Feng J, Lan W, Shi H and Sun W and
Sun W: CircRNA and lncRNA-encoded peptide in diseases, an update
review. Mol Cancer. 23:2142024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang Y: LncRNA-encoded peptides in
cancer. J Hematol Oncol. 17:662024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Pan J, Liu M, Duan X and Wang D: A short
peptide LINC00665_18aa encoded by lncRNA LINC00665 suppresses the
proliferation and migration of osteosarcoma cells through the
regulation of the CREB1/RPS6KA3 interaction. PLoS One.
18:e02864222023. View Article : Google Scholar : PubMed/NCBI
|