You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Simmons JK, Hildreth BE III, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, Toribio RE and Rosol TJ: Animal models of bone metastasis. Vet Pathol. 52:827–841. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang SH, Kao YH, Muller CJF, Joubert E and Chuu CP: Aspalathin-rich green Aspalathus linearis extract suppresses migration and invasion of human castration-resistant prostate cancer cells via inhibition of YAP signaling. Phytomedicine. 69:1532102020. View Article : Google Scholar : PubMed/NCBI | |
|
Gebrael G, Fortuna GG, Sayegh N, Swami U and Agarwal N: Advances in the treatment of metastatic prostate cancer. Trends Cancer. 9:840–854. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Skotheim RI, Bogaard M, Carm KT, Axcrona U and Axcrona K: Prostate cancer: Molecular aspects, consequences, and opportunities of the multifocal nature. Biochim Biophys Acta Rev Cancer. 1879:1890802024. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Z, Zou H, Wang H, Li Q and Yu D: Identification of key gene signatures associated with bone metastasis in castration-resistant prostate cancer using co-expression analysis. Front Oncol. 10:5715242020. View Article : Google Scholar : PubMed/NCBI | |
|
Qu L, Li S, Zhuo Y, Chen J, Qin X and Guo G: Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncol Lett. 14:7467–7472. 2017.PubMed/NCBI | |
|
Morale MG, Tamura RE and Rubio IGS: Metformin and cancer hallmarks: Molecular mechanisms in thyroid, prostate and head and neck cancer models. Biomolecules. 12:3572022. View Article : Google Scholar : PubMed/NCBI | |
|
Chi JT, Lin PH, Tolstikov V, Oyekunle T, Chen EY, Bussberg V, Greenwood B, Sarangarajan R, Narain NR, Kiebish MA and Freedland SJ: Metabolomic effects of androgen deprivation therapy treatment for prostate cancer. Cancer Med. 9:3691–3702. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Salji M, Hendry J, Patel A, Ahmad I, Nixon C and Leung HY: Peri-prostatic fat volume measurement as a predictive tool for castration resistance in advanced prostate cancer. Eur Urol Focus. 4:858–866. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Jin M, Park SJ, Seo SY and Jeong KW: SETD1A promotes proliferation of castration-resistant prostate cancer cells via FOXM1 transcription. Cancers (Basel). 12:17362020. View Article : Google Scholar : PubMed/NCBI | |
|
Boopathi E, Birbe R, Shoyele SA, Den RB and Thangavel C: Bone health management in the continuum of prostate cancer disease. Cancers (Basel). 14:43052022. View Article : Google Scholar : PubMed/NCBI | |
|
Talreja DB: Importance of antiresorptive therapies for patients with bone metastases from solid tumors. Cancer Manag Res. 4:287–297. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB and Holen I: Bone metastasis: Mechanisms, therapies, and biomarkers. Physiol Rev. 101:797–855. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sgouros G, Bodei L, McDevitt MR and Nedrow JR: Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat Rev Drug Discov. 19:589–608. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lawal IO, Ndlovu H, Kgatle M, Mokoala KMG and Sathekge MM: Prognostic value of PSMA PET/CT in prostate cancer. Semin Nucl Med. 54:46–59. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Houshmand S, Lawhn-Heath C and Behr S: PSMA PET imaging in the diagnosis and management of prostate cancer. Abdom Radiol (NY). 48:3610–3623. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Pyka T, Okamoto S, Dahlbender M, Tauber R, Retz M, Heck M, Tamaki N, Schwaiger M, Maurer T and Eiber M: Comparison of bone scintigraphy and (68)Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging. 43:2114–2121. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Harmon SA, Bergvall E, Mena E, Shih JH, Adler S, McKinney Y, Mehralivand S, Citrin DE, Couvillon A, Madan RA, et al: A prospective comparison of 18F-sodium fluoride PET/CT and PSMA-Targeted 18F-DCFBC PET/CT in metastatic prostate cancer. J Nucl Med. 59:1665–1671. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Luna A, Vilanova JC and Alcalá Mata L: Total body MRI in early detection of bone metastasis and its indication in comparison to bone scan and other imaging techniques. Arch Esp Urol. 68:371–390. 2015.(In Spanish). PubMed/NCBI | |
|
Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN and Karkampouna S: Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 530:156–169. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q, Chen X, Yao K, Zhang Y, He H, Huang H, Chen H, Peng S, Huang M, Cheng L, et al: TSPAN18 facilitates bone metastasis of prostate cancer by protecting STIM1 from TRIM32-mediated ubiquitination. J Exp Clin Cancer Res. 42:1952023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Chen L, Fan Y, Hong Y, Yang X, Li Y, Lu J, Lv J, Pan X, Qu F, et al: IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-β signaling pathway. Cell Death Dis. 10:5172019. View Article : Google Scholar : PubMed/NCBI | |
|
Abramovic I, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D and Sincic N: miRNA in prostate cancer: Challenges toward translation. Epigenomics. 12:543–558. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y and Peng X: m6A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med. 11:e4262021. View Article : Google Scholar : PubMed/NCBI | |
|
Li FX, Liu JJ, Xu F, Lin X, Zhong JY, Wu F and Yuan LQ: Role of tumor-derived exosomes in bone metastasis. Oncol Lett. 18:3935–3945. 2019.PubMed/NCBI | |
|
Yin J, Liu YN, Tillman H, Barrett B, Hewitt S, Ylaya K, Fang L, Lake R, Corey E, Morrissey C, et al: AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Res. 74:4306–4317. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Weng H and Chen J: m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell. 37:270–288. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kolonin MG, Sergeeva A, Staquicini DI, Smith TL, Tarleton CA, Molldrem JJ, Sidman RL, Marchiò S, Pasqualini R and Arap W: Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone. Cancer Res. 77:3144–3150. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Park M, Cho YJ, Kim B, Ko YJ, Jang Y, Moon YH, Hyun H and Lim W: RANKL immunisation inhibits prostate cancer metastasis by modulating EMT through a RANKL-dependent pathway. Sci Rep. 11:121862021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, Guo W, Lai Y, Du H, Li J, et al: FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 402:166–176. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nandana S, Tripathi M, Duan P, Chu CY, Mishra R, Liu C, Jin R, Yamashita H, Zayzafoon M, Bhowmick NA, et al: Bone metastasis of prostate cancer can be therapeutically targeted at the TBX2-WNT signaling axis. Cancer Res. 77:1331–1344. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Q, Lang C, Wu Z, Dai Y, He S, Guo W, Huang S, Du H, Ren D and Peng X: MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway. J Exp Clin Cancer Res. 38:3912019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Lv C, Niu Y, Li C, Li X, Shang Y, Zhang Y, Zhang Y, Zhang Y and Zeng Y: RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis. 14:912023. View Article : Google Scholar : PubMed/NCBI | |
|
Yamaguchi M, Murata T and Ramos JW: Extracellular regucalcin suppresses the growth, migration, invasion, and adhesion of metastatic human prostate cancer cells. Oncology. 100:399–412. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yamaguchi M, Murata T and Ramos JW: Overexpression of regucalcin blocks the migration, invasion, and bone metastatic activity of human prostate cancer cells: Crosstalk between cancer cells and bone cells. Prostate. 82:1025–1039. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lagunas-Rangel FA: Role of SIRT5 in cancer. Friend or Foe? Biochimie. 209:131–141. 2023.PubMed/NCBI | |
|
Wang X, Li Z and Sun Y: T-box transcription factor 2 mediates antitumor immune response in cutaneous squamous cell carcinoma by regulating the expression of programmed death ligand 1. Skin Res Technol. 29:e132542023. View Article : Google Scholar : PubMed/NCBI | |
|
Trivedi T, Pagnotti GM, Guise TA and Mohammad KS: The role of TGF-β in bone metastases. Biomolecules. 11:16432021. View Article : Google Scholar : PubMed/NCBI | |
|
Gerratana L, Davis AA, Polano M, Zhang Q, Shah AN, Lin C, Basile D, Toffoli G, Wehbe F, Puglisi F, et al: Understanding the organ tropism of metastatic breast cancer through the combination of liquid biopsy tools. Eur J Cancer. 143:147–157. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yonezawa I, Waki M, Tamura Y, Onoda R, Narushima M, Ishizuka T and Tajima S: Gemcitabine-based regimen for primary ovarian angiosarcoma with MYC amplification. Curr Oncol. 21:e782–e789. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Stopsack KH, Nandakumar S, Wibmer AG, Haywood S, Weg ES, Barnett ES, Kim CJ, Carbone EA, Vasselman SE, Nguyen B, et al: Oncogenic genomic alterations, clinical phenotypes, and outcomes in metastatic castration-sensitive prostate cancer. Clin Cancer Res. 26:3230–3238. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Archer Goode E, Wang N and Munkley J: Prostate cancer bone metastases biology and clinical management (Review). Oncol Lett. 25:1632023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Zhang M, Lu W and Yuan C: Prostate cancer cell-derived spondin 2 boosts osteogenic factor levels in osteoblasts via the PI3K/AKT/mTOR pathway. Oncol Rep. 49:232023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li W, Guo S, Wu Z, Zhang L, Liu Y, Li X, Guo X, Cao J, Yang C and Wang Z: FBXO22 mediates the NGF/TRKA signaling pathway in bone metastases in prostate cancer. Am J Pathol. 193:1248–1266. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ziaee S and Chung LWK: Induction of integrin α2 in a highly bone metastatic human prostate cancer cell line: Roles of RANKL and AR under three-dimensional suspension culture. Mol Cancer. 13:2082014. View Article : Google Scholar : PubMed/NCBI | |
|
Ye XC, Choueiri M, Tu SM and Lin SH: Biology and clinical management of prostate cancer bone metastasis. Front Biosci. 12:3273–3286. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Nayerpour Dizaj T, Doustmihan A, Sadeghzadeh Oskouei B, Akbari M, Jaymand M, Mazloomi M and Jahanban-Esfahlan R: Significance of PSCA as a novel prognostic marker and therapeutic target for cancer. Cancer Cell Int. 24:1352024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z, Li E, Luo L, Zhao S, Liu L, Wang J, Kang R and Luo J: A PSCA/PGRN-NF-κB-integrin-α4 axis promotes prostate cancer cell adhesion to bone marrow endothelium and enhances metastatic potential. Mol Cancer Res. 18:501–513. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Azemikhah M, Ashtiani HA, Aghaei M and Rastegar H: Evaluation of discoidin domain receptor-2 (DDR2) expression level in normal, benign, and malignant human prostate tissues. Res Pharm Sci. 10:356–363. 2015.PubMed/NCBI | |
|
Yan Z, Jin S, Wei Z, Huilian H, Zhanhai Y, Yue T, Juan L, Jing L, Libo Y and Xu L: Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein. Biochim Biophys Acta. 1842:1350–1363. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Calderwood DA, Campbell ID and Critchley DR: Talins and kindlins: Partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol. 14:503–517. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jin JK, Tien PC, Cheng CJ, Song JH, Huang C, Lin SH and Gallick GE: Talin1 phosphorylation activates β1 integrins: A novel mechanism to promote prostate cancer bone metastasis. Oncogene. 34:1811–1821. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Holbourn KP, Acharya KR and Perbal B: The CCN family of proteins: Structure-function relationships. Trends Biochem Sci. 33:461–473. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Tai HC, Chang AC, Yu HJ, Huang CY, Tsai YC, Lai YW, Sun HL, Tang CH and Wang SW: Osteoblast-derived WNT-induced secreted protein 1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating miR-126. Oncotarget. 5:7589–7598. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chang AC, Chen PC, Lin YF, Su CM, Liu JF, Lin TH, Chuang SM and Tang CH: Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system. Cancer Lett. 426:47–56. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yao L and Zhang X: Interaction between prostate cancer stem cells and bone microenvironment regulates prostate cancer bone metastasis and treatment resistance. J Cancer. 13:2757–2767. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Choi SY, Jeon JM, Na AY, Kwon OK, Bang IH, Ha YS, Bae EJ, Park BH, Lee EH, Kwon TG, et al: SIRT5 directly inhibits the PI3K/AKT pathway in prostate cancer cell lines. Cancer Genomics Proteomics. 19:50–59. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Siddiqui JA, Seshacharyulu P, Muniyan S, Pothuraju R, Khan P, Vengoji R, Chaudhary S, Maurya SK, Lele SM, Jain M, et al: GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res. 10:62022. View Article : Google Scholar : PubMed/NCBI | |
|
Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : PubMed/NCBI | |
|
Loganathan T and Doss CGP: Non-coding RNAs in human health and disease: Potential function as biomarkers and therapeutic targets. Funct Integr Genomics. 23:332023. View Article : Google Scholar : PubMed/NCBI | |
|
Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ and Chen H: Exosomal RNAs: Novel potential biomarkers for diseases-a review. Int J Mol Sci. 23:24612022. View Article : Google Scholar : PubMed/NCBI | |
|
Prigol AN, Rode MP, da Luz Efe F, Saleh NA and Creczynski-Pasa TB: The bone microenvironment soil in prostate cancer metastasis: An miRNA approach. Cancers (Basel). 15:40272023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Yang C, Chen S, Liu W, Liang J, He S and Hui J: Cancer-derived exosomal miR-375 targets DIP2C and promotes osteoblastic metastasis and prostate cancer progression by regulating the Wnt signaling pathway. Cancer Gene Ther. 30:437–449. 2023.PubMed/NCBI | |
|
Zheng Y, Qi F, Li L, Yu B, Cheng Y, Ge M, Qin C and Li X: LncNAP1L6 activates MMP pathway by stabilizing the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Ther. 30:209–218. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Zhao J, Li X, Sun F, Qin Y, Yang X, Xiong X, Yin Q, Wang X, Gao L, et al: Identification of miR-1-3p, miR-143-3p and miR-145-5p association with bone metastasis of Gleason 3+4 prostate cancer and involvement of LASP1 regulation. Mol Cell Probes. 68:1019012023. View Article : Google Scholar : PubMed/NCBI | |
|
Josson S, Gururajan M, Hu P, Shao C, Chu GY, Zhau HE, Liu C, Lao K, Lu CL, Lu YT, et al: miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res. 20:4636–4646. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Dai Y, Ren D, Yang Q, Cui Y, Guo W, Lai Y, Du H, Lin C, Li J, Song L and Peng X: The TGF-β signalling negative regulator PICK1 represses prostate cancer metastasis to bone. Br J Cancer. 117:685–694. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Y, Li SL, Ma YY, Diao YJ, Yang L, Su MQ, Li Z, Ji Y, Wang J, Lei L, et al: Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget. 8:94834–94849. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wa Q, Zou C, Lin Z, Huang S, Peng X, Yang C, Ren D, Xu D, Guo Y, Liao Z, et al: Ectopic expression of miR-532-3p suppresses bone metastasis of prostate cancer cells via inactivating NF-κB signaling. Mol Ther Oncolytics. 17:267–277. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ren D, Yang Q, Dai Y, Guo W, Du H, Song L and Peng X: Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway. Mol Cancer. 16:1172017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Zhang H, Zhang J, Shen L, Yang J, Wang Y, Ma J and Zhuan B: miR-210-3p promotes lung cancer development and progression by modulating USF1 and PCGF3. Onco Targets Ther. 14:3687–3700. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tuo X, Zhou Y, Yang X, Ma S, Liu D, Zhang X, Hou H, Wang R, Li X and Zhao L: miR-532-3p suppresses proliferation and invasion of ovarian cancer cells via GPNMB/HIF-1α/HK2 axis. Pathol Res Pract. 237:1540322022. View Article : Google Scholar : PubMed/NCBI | |
|
Luo B, Yuan Y, Zhu Y, Liang S, Dong R, Hou J, Li P, Xing Y, Lu Z, Lo R and Kuang GM: microRNA-145-5p inhibits prostate cancer bone metastatic by modulating the epithelial-mesenchymal transition. Front Oncol. 12:9887942022. View Article : Google Scholar : PubMed/NCBI | |
|
Chang YS, Chen WY, Yin JJ, Sheppard-Tillman H, Huang J and Liu YN: EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Res. 75:3077–3086. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Q, Liu X, Liu Y, Yang J, Lv G and Dong S: MicroRNA-335 and −543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase. Int J Mol Med. 36:1417–1425. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Colden M, Dar AA, Saini S, Dahiya PV, Shahryari V, Yamamura S, Tanaka Y, Stein G, Dahiya R and Majid S: MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis. 8:e25722017. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Wa Q, Pan J, Peng X, Ren D, Huang Y, Chen X and Tang Y: Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. J Exp Clin Cancer Res. 36:1732017. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Wa Q, Pan J, Peng X, Ren D, Li Q, Dai Y, Yang Q, Huang Y, Zhang X, et al: Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling. Cell Death Dis. 9:7792018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Zou C, Tang Y, Wa Q, Peng X, Chen X, Yang C, Ren D, Huang Y, Liao Z, et al: miR-582-3p and miR-582-5p suppress prostate cancer metastasis to bone by repressing TGF-β signaling. Mol Ther Nucleic Acids. 16:91–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wa Q, Huang S, Pan J, Tang Y, He S, Fu X, Peng X, Chen X, Yang C, Ren D, et al: miR-204-5p represses bone metastasis via inactivating NF-κB signaling in prostate cancer. Mol Ther Nucleic Acids. 18:567–579. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wa Q, Li L, Lin H, Peng X, Ren D, Huang Y, He P and Huang S: Downregulation of miR-19a-3p promotes invasion, migration and bone metastasis via activating TGF-β signaling in prostate cancer. Oncol Rep. 39:81–90. 2018.PubMed/NCBI | |
|
Qu L, Li Z and Liu P: mir-204-5p Acts as a tumor suppressor by targeting DNM2 in osteosarcoma cells. J Healthc Eng. 2022:89445882022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun R, Wei T, Ding D, Zhang J, Chen S, He HH, Wang L and Huang H: CYCLIN K down-regulation induces androgen receptor gene intronic polyadenylation, variant expression and PARP inhibitor vulnerability in castration-resistant prostate cancer. Proc Natl Acad Sci USA. 119:e22055091192022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S, Chen B, Zhang B, Li C, Qiu Y, Yang H and Huang Z: miR-204-5p promotes apoptosis and inhibits migration of gastric cancer cells by targeting HER-2. Mol Med Rep. 22:2645–2654. 2020.PubMed/NCBI | |
|
Peng L, Li P and Peng Z: miR-141-3p enhanced radiosensitivity of CRC cells. Comb Chem High Throughput Screen. 27:118–126. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Fu W, Yin F, Xia L, Zhang Y, Wang B, Li T, Zhang T, Cheng L, Wei Y and Gao B: miR-141-3p suppresses development of clear cell renal cell carcinoma by regulating NEK6. Anticancer Drugs. 33:e125–e133. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ferraz RS, Cavalcante JVF, Magalhães L, Ribeiro-Dos-Santos  and Dalmolin RJS: Revealing metastatic castration-resistant prostate cancer master regulator through lncRNAs-centered regulatory network. Cancer Med. 12:19279–19290. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Yin C, Wu Z, Wang X, Lin Q, Jiang X, Du H, Lang C, Peng X and Dai Y: The long transcript of lncRNA TMPO-AS1 promotes bone metastases of prostate cancer by regulating the CSNK2A1/DDX3X complex in Wnt/β-catenin signaling. Cell Death Discov. 9:2872023. View Article : Google Scholar : PubMed/NCBI | |
|
Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J, Liao J, Zhang Z, Hu Y, Zhong X and Bao Y: High expression of small nucleolar RNA host gene 3 predicts poor prognosis and promotes bone metastasis in prostate cancer by activating transforming growth factor-beta signaling. Bioengineered. 13:1895–1907. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Misawa A, Kondo Y, Takei H and Takizawa T: Long noncoding RNA HOXA11-AS and transcription factor HOXB13 modulate the expression of bone metastasis-related genes in prostate cancer. Genes (Basel). 12:1822021. View Article : Google Scholar : PubMed/NCBI | |
|
Lang C, Dai Y, Wu Z, Yang Q, He S, Zhang X, Guo W, Lai Y, Du H, Wang H, et al: SMAD3/SP1 complex-mediated constitutive active loop between lncRNA PCAT7 and TGF-β signaling promotes prostate cancer bone metastasis. Mol Oncol. 14:808–828. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hao H, Chen H, Xie L, Liu H and Wang D: LncRNA KCNQ1OT1 promotes proliferation, invasion and metastasis of prostate cancer by regulating miR-211-5p/CHI3L1 pathway. Onco Targets Ther. 14:1659–1671. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu CY, Chen J, Qin XH, You P, Ma J, Zhang J, Zhang H and Xu JD: Long non-coding RNA NORAD promotes the prostate cancer cell extracellular vesicle release via microRNA-541-3p-regulated PKM2 to induce bone metastasis of prostate cancer. J Exp Clin Cancer Res. 40:982021. View Article : Google Scholar : PubMed/NCBI | |
|
Mo C, Huang B, Zhuang J, Jiang S, Guo S and Mao X: LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin Transl Med. 11:e4932021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Q, Qi X, Lin X, Li L, Chen L and Hu W: LncRNA SNHG3 promotes cell proliferation and invasion through the miR-384/hepatoma-derived growth factor axis in breast cancer. Hum Cell. 33:232–242. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng S, Jiang F, Ge D, Tang J, Chen H, Yang J, Yao Y, Yan J, Qiu J, Yin Z, et al: LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. Biomed Pharmacother. 112:1086952019. View Article : Google Scholar : PubMed/NCBI | |
|
Xuan Y and Wang Y: Long non-coding RNA SNHG3 promotes progression of gastric cancer by regulating neighboring MED18 gene methylation. Cell Death Dis. 10:6942019. View Article : Google Scholar : PubMed/NCBI | |
|
Fendler WP, Eiber M, Beheshti M, Bomanji J, Calais J, Ceci F, Cho SY, Fanti S, Giesel FL, Goffin K, et al: PSMA PET/CT: Joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur J Nucl Med Mol Imaging. 50:1466–1486. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Eiber M, Herrmann K, Calais J, Hadaschik B, Giesel FL, Hartenbach M, Hope T, Reiter R, Maurer T, Weber WA and Fendler WP: Prostate cancer molecular imaging standardized evaluation (PROMISE): Proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 59:469–478. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Regula N, Kostaras V, Johansson S, Trampal C, Lindström E, Lubberink M, Iyer V, Velikyan I and Sörensen J: Comparison of 68Ga-PSMA PET/CT with fluoride PET/CT for detection of bone metastatic disease in prostate cancer. Eur J Hybrid Imaging. 6:52022. View Article : Google Scholar : PubMed/NCBI | |
|
Brenner AI, Koshy J, Morey J, Lin C and DiPoce J: The bone scan. Semin Nucl Med. 42:11–26. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H and Leibovitch I: The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 47:287–297. 2006.PubMed/NCBI | |
|
Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, Bach-Gansmo T, Nanni C, Savir-Baruch B, Elashoff D, et al: 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: A prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 20:1286–1294. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
van Boxtel W, Lütje S, van Engen-van Grunsven ICH, Verhaegh GW, Schalken JA, Jonker MA, Nagarajah J, Gotthardt M and van Herpen CML: 68Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: A phase 2 imaging study. Theranostics. 10:2273–2283. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sonni I, Felker ER, Lenis AT, Sisk AE, Bahri S, Allen-Auerbach M, Armstrong WR, Suvannarerg V, Tubtawee T, Grogan T, et al: Head-to-head comparison of 68Ga-PSMA-11 PET/CT and mpMRI with a histopathology gold standard in the detection, intraprostatic localization, and determination of local extension of primary prostate cancer: Results from a prospective single-center imaging trial. J Nucl Med. 63:847–854. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Gou Z, Wu R, Yuan Y, Yu G and Zhao Y: Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A systematic review and meta-analysis. Skeletal Radiol. 48:1915–1924. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Wu R, Wang W, Zhao Y and Liu X: 68Ga-PSMA PET/CT for the detection of bone metastases in prostate cancer: A systematic review of the published literature. Clin Physiol Funct Imaging. Oct 29–2017.(Epub ahead of print). | |
|
Coleman RE, Croucher PI, Padhani AR, Clézardin P, Chow E, Fallon M, Guise T, Colangeli S, Capanna R and Costa L: Bone metastases. Nat Rev Dis Primers. 6:832020. View Article : Google Scholar : PubMed/NCBI | |
|
Urabe F, Kosaka N, Yamamoto Y, Ito K, Otsuka K, Soekmadji C, Egawa S, Kimura T and Ochiya T: Metastatic prostate cancer-derived extracellular vesicles facilitate osteoclastogenesis by transferring the CDCP1 protein. J Extracell Vesicles. 12:e123122023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Chen Q, Wu T, Du X, Dong Y, Peng Z, Xue W, Sunkara V, Cho YK and Dong L: The role of extracellular vesicles in the treatment of prostate cancer. Small. 20:e23110712024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Fang YX, Dong B, Du X, Wang J, Wang X, Gao WQ and Xue W: Discovery of extracellular vesicles derived miR-181a-5p in patient's serum as an indicator for bone-metastatic prostate cancer. Theranostics. 11:878–892. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu L, Sui B, Fan W, Lei L, Zhou L, Yang L, Diao Y, Zhang Y, Li Z, Liu J and Hao X: Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p. J Extracell Vesicles. 10:e120562021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Du X, Wang X, Xiao H, Jing N, Xue W, Dong B, Gao WQ and Fang YX: Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Lett. 526:76–90. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng F, Zhao C, Wang R, Ren L, Qiu H, Zou Z, Ding H, Sun Z, Li J and Dong S: Antagonizing exosomal miR-18a-5p derived from prostate cancer cells ameliorates metastasis-induced osteoblastic lesions by targeting Hist1h2bc and activating Wnt/β-catenin pathway. Genes Dis. 10:1626–1640. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D'Agostino E, Pugliese G, et al: Bone metastases and health in prostate cancer: From pathophysiology to clinical implications. Cancers (Basel). 15:15182023. View Article : Google Scholar : PubMed/NCBI | |
|
Schwartz GG: Prostate cancer, serum parathyroid hormone, and the progression of skeletal metastases. Cancer Epidemiol Biomarkers Prev. 17:478–483. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan S, Hoggard NK, Kantake N, Hildreth BE III and Rosol TJ: Effects of dickkopf-1 (DKK-1) on prostate cancer growth and bone metastasis. Cells. 12:26952023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, Li X, Wu D, Xia S, Chen J, et al: Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun. 12:17142021. View Article : Google Scholar : PubMed/NCBI | |
|
Gomez-Veiga F, Ponce-Reixa J, Martinez-Breijo S, Planas J and Morote J: Advances in prevention and treatment of bone metastases in prostate cancer. Role of RANK/RANKL inhibition. Actas Urol Esp. 37:292–304. 2013.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI | |
|
Mizuta K, Oshiro H, Katsuki R, Tsuha Y, Aoki Y, Tome Y and Nishida K: Denosumab administration for bone metastases from solid tumors: A retrospective cross-sectional study. BMC Cancer. 23:9992023. View Article : Google Scholar : PubMed/NCBI | |
|
Agarwal N, McGregor B, Maughan BL, Dorff TB, Kelly W, Fang B, McKay RR, Singh P, Pagliaro L, Dreicer R, et al: Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: Results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021). Lancet Oncol. 23:899–909. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yu EY, Wilding G, Posadas E, Gross M, Culine S, Massard C, Morris MJ, Hudes G, Calabrò F, Cheng S, et al: Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 15:7421–7428. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Qiao L, Liang Y, Li N, Hu X, Luo D, Gu J, Lu Y and Zheng Q: Endothelin-A receptor antagonists in prostate cancer treatment-a meta-analysis. Int J Clin Exp Med. 8:3465–3473. 2015.PubMed/NCBI | |
|
Lee YT, Tan YJ and Oon CE: Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 834:188–196. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Reichert ZR, Urrutia J and Alumkal JJ: Microsatellite Instability as an emerging biomarker for checkpoint inhibitor response in advanced prostate cancer. JAMA Oncology. 5:478–479. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mitsogiannis I, Tzelves L, Dellis A, Issa H, Papatsoris A and Moussa M: Prostate cancer immunotherapy. Expert Opin Biol Ther. 22:577–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu YM, Cieślik M, Lonigro RJ, Vats P, Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, et al: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 173:1770–1782.e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bochum S, Berger S and Martens UM: Olaparib. Recent Results Cancer Res. 211:217–233. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Risdon EN, Chau CH, Price DK, Sartor O and Figg WD: PARP inhibitors and prostate cancer: To infinity and beyond BRCA. Oncologist. 26:e115–e129. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen A: PARP inhibitors: Its role in treatment of cancer. Chin J Cancer. 30:463–471. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Stamatakos PV, Fragkoulis C, Leventi A, Gklinos K, Kontolatis N, Papatsoris A and Dellis A: PSMA-based therapeutics for prostate cancer. Expert Opin Pharmacother. 25:1405–1419. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Combes AD, Palma CA, Calopedos R, Wen L, Woo H, Fulham M and Leslie S: PSMA PET-CT in the diagnosis and staging of prostate cancer. Diagnostics (Basel). 12:25942022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun M, Niaz MO, Nelson A, Skafida M and Niaz MJ: Review of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Cureus. 12:e89212020.PubMed/NCBI | |
|
Narayan V, Barber-Rotenberg JS, Jung IY, Lacey SF, Rech AJ, Davis MM, Hwang WT, Lal P, Carpenter EL, Maude SL, et al: PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: A phase 1 trial. Nat Med. 28:724–734. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Almuradova E, Seyyar M, Arak H, Tamer F, Kefeli U, Koca S, Sen E, Telli TA, Karatas F, Gokmen I, et al: The real-world outcomes of Lutetium-177 PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer: Turkish oncology group multicenter study. Int J Cancer. 154:692–700. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Maharaj M, Heslop L, Govender T, Korowlay N, Singh A, Choudhary P and Sathekge M: The outcome and safety of re-challenge Lutetium-177 PSMA (177Lu-PSMA) therapy with low-dose docetaxel as a radiosensitizer-a promising combination in metastatic castrate-resistant prostate cancer (mCRPC): A case report. Nucl Med Mol Imaging. 55:136–140. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Flegar L, Thoduka SG, Librizzi D, Luster M, Zacharis A, Heers H, Eisenmenger N, Ahmadzadehfar H, Eiber M, Weber W, et al: Adoption of Lutetium-177 PSMA radioligand therapy for metastatic castration resistant prostate cancer: A total population analysis in Germany from 2016 to 2020. Eur J Nucl Med Mol Imaging. 50:2188–2195. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Khreish F, Ghazal Z, Marlowe RJ, Rosar F, Sabet A, Maus S, Linxweiler J, Bartholomä M and Ezziddin S: 177 Lu-PSMA-617 radioligand therapy of metastatic castration-resistant prostate cancer: Initial 254-patient results from a prospective registry (REALITY study). Eur J Nucl Med Mol Imaging. 49:1075–1085. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zarrabi KK, Narayan V, Mille PJ, Zibelman MR, Miron B, Bashir B and Kelly WK: Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate cancer. Ther Adv Urol. 15:175628722311822192023. View Article : Google Scholar : PubMed/NCBI | |
|
Lund ME, Howard CB, Thurecht KJ, Campbell DH, Mahler SM and Walsh BJ: A bispecific T cell engager targeting Glypican-1 redirects T cell cytolytic activity to kill prostate cancer cells. BMC Cancer. 20:12142020. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto K, Trad A, Baumgart A, Hüske L, Lorenzen I, Chalaris A, Grötzinger J, Dechow T, Scheller J and Rose-John S: A novel bispecific single-chain antibody for ADAM17 and CD3 induces T-cell-mediated lysis of prostate cancer cells. Biochem J. 445:135–144. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nyquist MD, Corella A, Coleman I, De Sarkar N, Kaipainen A, Ha G, Gulati R, Ang L, Chatterjee P, Lucas J, et al: Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep. 31:1076692020. View Article : Google Scholar : PubMed/NCBI | |
|
Patel SA: Managing the unmanageable: Evidence-driven approaches to real-world patient prototypes of TP53-mutant myelodysplastic neoplasms and acute myeloid leukemia. Leukemia. Sep 30–2024.(Epub ahead of print). View Article : Google Scholar | |
|
Lee YC, Lee YL and Li CY: BRCA genes and related cancers: A meta-analysis from epidemiological cohort studies. Medicina (Kaunas). 57:9052021. View Article : Google Scholar : PubMed/NCBI | |
|
Sweeney C, Bracarda S, Sternberg CN, Chi KN, Olmos D, Sandhu S, Massard C, Matsubara N, Alekseev B, Parnis F, et al: Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): A multicentre, randomised, double-blind, phase 3 trial. Lancet. 398:131–142. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, et al: Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet. 377:813–822. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shenderov E, Boudadi K, Fu W, Wang H, Sullivan R, Jordan A, Dowling D, Harb R, Schonhoft J, Jendrisak A, et al: Nivolumab plus ipilimumab, with or without enzalutamide, in AR-V7-expressing metastatic castration-resistant prostate cancer: A phase-2 nonrandomized clinical trial. Prostate. 81:326–338. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Graff JN, Beer TM, Alumkal JJ, Slottke RE, Redmond WL, Thomas GV, Thompson RF, Wood MA, Koguchi Y, Chen Y, et al: A phase II single-arm study of pembrolizumab with enzalutamide in men with metastatic castration-resistant prostate cancer progressing on enzalutamide alone. J Immunother Cancer. 8:e0006422020. View Article : Google Scholar : PubMed/NCBI | |
|
McNeel DG, Eickhoff JC, Wargowski E, Johnson LE, Kyriakopoulos CE, Emamekhoo H, Lang JM, Brennan MJ and Liu G: Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). J Immunother Cancer. 10:e0041982022. View Article : Google Scholar : PubMed/NCBI | |
|
Xia QD, Zhang SH, Zeng N, Lu YC, Qin BL and Wang SG: Novel androgen receptor inhibitors for metastatic hormone-sensitive prostate cancer: Current application and future perspectives. Biomed Pharmacother. 168:1158062023. View Article : Google Scholar : PubMed/NCBI | |
|
Shah H and Vaishampayan U: Therapy of advanced prostate cancer: Targeting the androgen receptor axis in earlier lines of treatment. Target Oncol. 13:679–689. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Ming A, Wang J, Chen W and Fang Z: PROTACs targeting androgen receptor signaling: Potential therapeutic agents for castration-resistant prostate cancer. Pharmacol Res. 205:1072342024. View Article : Google Scholar : PubMed/NCBI | |
|
Petrylak DP, Vaishampayan UN, Patel KR, Higano CS, Albany C, Dawson NA, Mehlhaff BA, Quinn DI, Nordquist LT, Wagner VJ, et al: A randomized phase IIa study of quantified bone scan response in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with radium-223 dichloride alone or in combination with abiraterone acetate/prednisone or enzalutamide. ESMO Open. 6:1000822021. View Article : Google Scholar : PubMed/NCBI | |
|
Manna F, Karkampouna S, Zoni E, De Menna M, Hensel J, Thalmann GN and Kruithof-de Julio M: Metastases in prostate cancer. Cold Spring Harb Perspect Med. 9:a0336882019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X: Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond). 39:762019. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J, Hu D, Zhang Y, Ma C, Shen L and Shuai B: Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front Oncol. 13:11338282023. View Article : Google Scholar : PubMed/NCBI | |
|
Shiota M, Akamatsu S, Tsukahara S, Nagakawa S, Matsumoto T and Eto M: Androgen receptor mutations for precision medicine in prostate cancer. Endocr Relat Cancer. 29:R143–R155. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Farahzadi R, Valipour B, Montazersaheb S and Fathi E: Targeting the stem cell niche micro-environment as therapeutic strategies in aging. Front Cell Dev Biol. 11:11621362023. View Article : Google Scholar : PubMed/NCBI | |
|
Fathi E, Farahzadi R, Sheervalilou R, Sanaat Z and Vietor I: A general view of CD33+ leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Res. 55:10–16. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fathi E, Valipour B, Vietor I and Farahzadi R: An overview of the myocardial regeneration potential of cardiac c-Kit+ progenitor cells via PI3K and MAPK signaling pathways. Future Cardiol. 16:199–209. 2020. View Article : Google Scholar : PubMed/NCBI |