|
1
|
Zhao B, Xu H, Ai X, Adalat Y, Tong Y,
Zhang J and Yang S: Expression profiles of long noncoding RNAs in
lung adenocarcinoma. Onco Targets Ther. 11:5383–5390. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wei X, Li X, Hu S, Cheng J and Cai R:
Regulation of ferroptosis in lung adenocarcinoma. Int J Mol Sci.
24:146142023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Denisenko TV, Budkevich IN and Zhivotovsky
B: Cell death-based treatment of lung adenocarcinoma. Cell Death
Dis. 9:1172018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen H, Xia R, Jiang L, Zhou Y, Xu H, Peng
W, Yao C, Zhou G, Zhang Y, Xia H and Wang Y: Overexpression of RhoV
promotes the progression and EGFR-TKI resistance of lung
adenocarcinoma. Front Oncol. 11:6190132021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li S, Choi YL, Gong Z, Liu X, Lira M, Kan
Z, Oh E, Wang J, Ting JC, Ye X, et al: Comprehensive
characterization of oncogenic drivers in asian lung adenocarcinoma.
J Thorac Oncol. 11:2129–2140. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang Y, Chen J, Tian J, Zhou Y and Liu Y:
Role and function of plakophilin 3 in cancer progression and skin
disease. Cancer Sci. 115:17–23. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Du Y, Hou S, Chen Z, Li W, Li X and Zhou
W: Comprehensive analysis identifies PKP3 overexpression in
pancreatic cancer related to unfavorable prognosis. Biomedicines.
11:24722023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lim V, Zhu H, Diao S, Hu L and Hu J: PKP3
interactions with MAPK-JNK-ERK1/2-mTOR pathway regulates autophagy
and invasion in ovarian cancer. Biochem Biophys Res Commun.
508:646–653. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu B, Feng Y, Xie N, Yang Y and Yang D:
FERMT1 promotes cell migration and invasion in non-small cell lung
cancer via regulating PKP3-mediated activation of p38 MAPK
signaling. BMC Cancer. 24:582024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lee LYW, Woolley C, Starkey T, Biswas S,
Mirshahi T, Bardella C, Segditsas S, Irshad S and Tomlinson I:
Serum- and Glucocorticoid-induced kinase sgk1 directly promotes the
differentiation of colorectal cancer cells and restrains
metastasis. Clin Cancer Res. 25:629–640. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Takahashi H, Nakatsuji H, Takahashi M,
Avirmed S, Fukawa T, Takemura M, Fukumori T and Kanayama H:
Up-regulation of plakophilin-2 and Down-regulation of plakophilin-3
are correlated with invasiveness in bladder cancer. Urology.
79:240.e1–e8. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Furukawa C, Daigo Y, Ishikawa N, Kato T,
Ito T, Tsuchiya E, Sone S and Nakamura Y: Plakophilin 3 oncogene as
prognostic marker and therapeutic target for lung cancer. Cancer
Res. 65:7102–7110. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Liu Z, Wang T, She Y, Wu K, Gu S, Li L,
Dong C, Chen C and Zhou Y: N6-methyladenosine-modified circIGF2BP3
inhibits CD8+ T-cell responses to facilitate tumor immune evasion
by promoting the deubiquitination of PD-L1 in non-small cell lung
cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kim HJ, Roh MS, Son CH, Kim AJ, Jee HJ,
Song N, Kim M, Seo SY, Yoo YH and Yun J: Loss of Med1/TRAP220
promotes the invasion and metastasis of human non-small-cell lung
cancer cells by modulating the expression of metastasis-related
genes. Cancer Lett. 321:195–202. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Qin X, Ma D, Tan YX, Wang HY and Cai Z:
The role of necroptosis in cancer: A double-edged sword? Biochim
Biophys Acta Rev Cancer. 1871:259–266. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhu F, Zhang W, Yang T and He SD: Complex
roles of necroptosis in cancer. J Zhejiang Univ Sci B. 20:399–413.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Philipp S, Sosna J and Adam D: Cancer and
necroptosis: Friend or foe? Cell Mol Life Sci. 73:2183–2193. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hayes J, Peruzzi PP and Lawler S:
MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol
Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Su Z, Yang Z, Xu Y, Chen Y and Yu Q:
MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget.
6:8474–8490. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Harari-Steinfeld R, Gefen M, Simerzin A,
Zorde-Khvalevsky E, Rivkin M, Ella E, Friehmann T, Gerlic M,
Zucman-Rossi J, Caruso S, et al: The lncRNA H19-Derived
MicroRNA-675 promotes liver necroptosis by targeting FADD. Cancers
(Basel). 13:4112021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li X, Tibenda JJ, Nan Y, Huang SC, Ning N,
Chen GQ, Du YH, Yang YT, Meng FD and Yuan L: MiR-204-3p
overexpression inhibits gastric carcinoma cell proliferation by
inhibiting the MAPK pathway and RIP1/MLK1 necroptosis pathway to
promote apoptosis. World J Gastroenterol. 29:4542–4556. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yan T, Wang X, Wei G, Li H, Hao L, Liu Y,
Yu X, Zhu W, Liu P, Zhu Y and Zhou X: Exosomal miR-10b-5p mediates
cell communication of gastric cancer cells and fibroblasts and
facilitates cell proliferation. J Cancer. 12:2140–2150. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xia M, Chen J, Hu Y, Qu B, Bu Q and Shen
H: miR-10b-5p promotes tumor growth by regulating cell metabolism
in liver cancer via targeting SLC38A2. Cancer Biol Ther.
25:23156512024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li S, Mao L, Song L, Xia X, Wang Z, Cheng
Y, Lai J, Tang X and Chen X: Extracellular vesicles derived from
glioma stem cells affect glycometabolic reprogramming of glioma
cells through the miR-10b-5p/PTEN/PI3K/Akt pathway. Stem Cell Rev
Rep. 20:779–796. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Song Y, Kelava L and Kiss I: MiRNAs in
lung adenocarcinoma: Role, diagnosis, prognosis, and therapy. Int J
Mol Sci. 24:133022023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu J, Zhang F, Wang J and Wang Y:
MicroRNA-mediated regulation in lung adenocarcinoma: Signaling
pathways and potential therapeutic implications (Review). Oncol
Rep. 50:2112023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Molina JR, Yang P, Cassivi SD, Schild SE
and Adjei AA: Non-small cell lung cancer: Epidemiology, risk
factors, treatment, and survivorship. Mayo Clin Proc. 83:584–594.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Du W, Chen D, Wei K, Yu D, Gan Z, Xu G and
Yao G: MiR-10b-5p impairs TET2-Mediated inhibition of PD-L1
transcription thus promoting immune evasion and tumor progression
in glioblastoma. Tohoku J Exp Med. 260:205–214. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhou Y, Xiang Y, Liu S, Li C, Dong J, Kong
X, Ji X, Cheng X and Zhang L: RIPK3 signaling and its role in
regulated cell death and diseases. Cell Death Discov. 10:2002024.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yuan J and Ofengeim D: A guide to cell
death pathways. Nat Rev Mol Cell Biol. 25:379–395. 2024. View Article : Google Scholar : PubMed/NCBI
|