1
|
Jones GS and Baldwin DR: Recent advances
in the management of lung cancer. Clin Med (Lond). 18 (Suppl
2):S41–S46. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nasim F, Sabath BF and Eapen GA: Lung
cancer. Med Clin North Am. 103:463–473. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Denisenko TV, Budkevich IN and Zhivotovsky
B: Cell death-based treatment of lung adenocarcinoma. Cell Death
Dis. 9:1172018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kuhn E, Morbini P, Cancellieri A, Damiani
S, Cavazza A and Comin CE: Adenocarcinoma classification: Patterns
and prognosis. Pathologica. 110:5–11. 2018.PubMed/NCBI
|
6
|
Nguyen TT, Lee HS, Burt BM, Wu J, Zhang J,
Amos CI and Cheng C: A lepidic gene signature predicts patient
prognosis and sensitivity to immunotherapy in lung adenocarcinoma.
Genome Med. 14:52022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nooreldeen R and Bach H: Current and
future development in lung cancer diagnosis. Int J Mol Sci.
22:86612021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lahiri A, Maji A, Potdar PD, Singh N,
Parikh P, Bisht B, Mukherjee A and Paul MK: Lung cancer
immunotherapy: Progress, pitfalls, and promises. Mol Cancer.
22:402023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Glickman MH and Ciechanover A: The
ubiquitin-proteasome proteolytic pathway: Destruction for the sake
of construction. Physiol Rev. 82:373–428. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhao H, Li CC, Pardo J, Chu PC, Liao CX,
Huang J, Dong JG, Zhou X, Huang Q, Huang B, et al: A novel E3
ubiquitin ligase TRAC-1 positively regulates T cell activation. J
Immunol. 174:5288–5297. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Giannini AL, Gao Y and Bijlmakers MJ:
T-cell regulator RNF125/TRAC-1 belongs to a novel family of
ubiquitin ligases with zinc fingers and a ubiquitin-binding domain.
Biochem J. 410:101–111. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kodama T, Kodama M, Jenkins NA, Copeland
NG, Chen HJ and Wei Z: Ring finger protein 125 is an
anti-proliferative tumor suppressor in hepatocellular carcinoma.
Cancers (Basel). 14:25892022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Feng Z, Ke S, Wang C, Lu S, Xu Y, Yu H, Li
Z, Yin B, Li X, Hua Y, et al: RNF125 attenuates hepatocellular
carcinoma progression by downregulating SRSF1-ERK pathway.
Oncogene. 42:2017–2030. 2023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jiang C, He L, Xiao S, Wu W, Zhao Q and
Liu F: E3 ubiquitin ligase RNF125 suppresses immune escape in head
and neck squamous cell carcinoma by regulating PD-L1 expression.
Mol Biotechnol. 65:891–903. 2023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim H, Frederick DT, Levesque MP, Cooper
ZA, Feng Y, Krepler C, Brill L, Samuels Y, Hayward NK, Perlina A,
et al: Downregulation of the ubiquitin ligase RNF125 underlies
resistance of melanoma cells to BRAF inhibitors via JAK1
deregulation. Cell Rep. 11:1458–1473. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Han Y, Liu D and Li L: PD-1/PD-L1 pathway:
Current researches in cancer. Am J Cancer Res. 10:727–742.
2020.PubMed/NCBI
|
17
|
Cha JH, Chan LC, Li CW, Hsu JL and Hung
MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell.
76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen W, Saxton B, Tessema M and Belinsky
SA: Inhibition of GFAT1 in lung cancer cells destabilizes PD-L1
protein. Carcinogenesis. 42:1171–1178. 2021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ma J, Chi D, Wang Y, Yan Y, Zhao S, Liu H,
Jing J, Pu H and Zhang M: Prognostic value of PD-L1 expression in
resected lung adenocarcinoma and potential molecular mechanisms. J
Cancer. 9:3489–3499. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wei M, Mo Y, Liu J, Zhai J, Li H, Xu Y,
Peng Y, Tang Z, Wei T, Yang X, et al: Ubiquitin ligase RNF125
targets PD-L1 for ubiquitination and degradation. Front Oncol.
12:8356032022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fish L, Pencheva N, Goodarzi H, Tran H,
Yoshida M and Tavazoie SF: Muscleblind-like 1 suppresses breast
cancer metastatic colonization and stabilizes metastasis suppressor
transcripts. Genes Dev. 30:386–398. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Q, Wu Y, Chen J, Tan F, Mou J, Du Z,
Cai Y, Wang B and Yuan C: The regulatory role of both MBNL1 and
MBNL1-AS1 in several common cancers. Curr Pharm Des. 28:581–585.
2022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ray D, Yun YC, Idris M, Cheng S, Boot A,
Iain TBH, Rozen SG, Tan P and Epstein DM: A tumor-associated
splice-isoform of MAP2K7 drives dedifferentiation in MBNL1-low
cancers via JNK activation. Proc Natl Acad Sci USA.
117:16391–16400. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Voss DM, Sloan A, Spina R, Ames HM and Bar
EE: The alternative splicing factor, MBNL1, inhibits glioblastoma
tumor initiation and progression by reducing hypoxia-induced
stemness. Cancer Res. 80:4681–4692. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q,
Li B and Liu XS: TIMER2.0 for analysis of tumor-infiltrating immune
cells. Nucleic Acids Res. 48((W1)): W509–W514. 2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cook KB, Kazan H, Zuberi K, Morris Q and
Hughes TR: RBPDB: A database of RNA-binding specificities. Nucleic
Acids Res. 39:D301–D308. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Girard L, Rodriguez-Canales J, Behrens C,
Thompson DM, Botros IW, Tang H, Xie Y, Rekhtman N, Travis WD,
Wistuba II, et al: An expression signature as an aid to the
histologic classification of non-small cell lung cancer. Clin
Cancer Res. 22:4880–4889. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Okayama H, Kohno T, Ishii Y, Shimada Y,
Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S,
et al: Identification of genes upregulated in ALK-positive and
EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res.
72:100–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yamauchi M, Yamaguchi R, Nakata A, Kohno
T, Nagasaki M, Shimamura T, Imoto S, Saito A, Ueno K, Hatanaka Y,
et al: Epidermal growth factor receptor tyrosine kinase defines
critical prognostic genes of stage I lung adenocarcinoma. PLoS One.
7:e439232012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Leon LM, Gautier M, Allan R, Ilié M,
Nottet N, Pons N, Paquet A, Lebrigand K, Truchi M, Fassy J, et al:
The nuclear hypoxia-regulated NLUCAT1 long non-coding RNA
contributes to an aggressive phenotype in lung adenocarcinoma
through regulation of oxidative stress. Oncogene. 38:7146–7165.
2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pontén F, Jirström K and Uhlen M: The
human protein atlas-a tool for pathology. J Pathol. 216:387–393.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bartha Á and Győrffy B: TNMplot.com: A web
tool for the comparison of gene expression in normal, tumor and
metastatic tissues. Int J Mol Sci. 22:26222021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ru B, Wong CN, Tong Y, Zhong JY, Zhong
SSW, Wu WC, Chu KC, Wong CY, Lau CY, Chen I, et al: TISIDB: An
integrated repository portal for tumor-immune system interactions.
Bioinformatics. 35:4200–4202. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rousseaux S, Debernardi A, Jacquiau B,
Vitte AL, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY,
Lantuejoul S, Hainaut P, et al: Ectopic activation of germline and
placental genes identifies aggressive metastasis-prone lung
cancers. Sci Transl Med. 5:186ra662013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Takeuchi T, Tomida S, Yatabe Y, Kosaka T,
Osada H, Yanagisawa K, Mitsudomi T and Takahashi T: Expression
profile-defined classification of lung adenocarcinoma shows close
relationship with underlying major genetic changes and
clinicopathologic behaviors. J Clin Oncol. 24:1679–1688. 2006.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Matsuyama Y, Suzuki M, Arima C, Huang QM,
Tomida S, Takeuchi T, Sugiyama R, Itoh Y, Yatabe Y, Goto H and
Takahashi T: Proteasomal non-catalytic subunit PSMD2 as a potential
therapeutic target in association with various clinicopathologic
features in lung adenocarcinomas. Mol Carcinog. 50:301–309. 2011.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Goswami CP and Nakshatri H: PROGgeneV2:
Enhancements on the existing database. BMC Cancer. 14:9702014.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Stark C, Breitkreutz BJ, Reguly T, Boucher
L, Breitkreutz A and Tyers M: BioGRID: A general repository for
interaction datasets. Nucleic Acids Res. 34((Database issue)):
D535–D539. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Warde-Farley D, Donaldson SL, Comes O,
Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT,
et al: The GeneMANIA prediction server: Biological network
integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 38((Web Server issue)): W214–W220. 2010.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Sherman BT, Hao M, Qiu J, Jiao X, Baseler
MW, Lane HC, Imamichi T and Chang W: DAVID: A web server for
functional enrichment analysis and functional annotation of gene
lists (2021 update). Nucleic Acids Res. 50((W1)): W216–W221. 2022.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Stelzer G, Rosen N, Plaschkes I, Zimmerman
S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et
al: The GeneCards suite: From gene data mining to disease genome
sequence analyses. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33.
2016. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Paz I, Kosti I, Ares M Jr, Cline M and
Mandel-Gutfreund Y: RBPmap: A web server for mapping binding sites
of RNA-binding proteins. Nucleic Acids Res. 42:W361–W367. 2014.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Li Z, Chen S, Jhong JH, Pang Y, Huang KY,
Li S and Lee TY: UbiNet 2.0: A verified, classified, annotated and
updated database of E3 ubiquitin ligase-substrate interactions.
Database (Oxford). 8:baab0102021. View Article : Google Scholar
|
44
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Amin EM, Liu Y, Deng S, Tan KS, Chudgar N,
Mayo MW, Sanchez-Vega F, Adusumilli PS, Schultz N and Jones DR: The
RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and
invasion by stabilizing FAK. Sci Signal. 10:eaah39412017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Siang DTC, Lim YC, Kyaw AMM, Win KN, Chia
SY, Degirmenci U, Hu X, Tan BC, Walet ACE, Sun L and Xu D: The
RNA-binding protein HuR is a negative regulator in adipogenesis.
Nat Commun. 11:2132020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jia Y, Vong JS, Asafova A, Garvalov BK,
Caputo L, Cordero J, Singh A, Boettger T, Günther S, Fink L, et al:
Lamin B1 loss promotes lung cancer development and metastasis by
epigenetic derepression of RET. J Exp Med. 216:1377–1395. 2019.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Kostyrko K, Román M, Lee AG, Simpson DR,
Dinh PT, Leung SG, Marini KD, Kelly MR, Broyde J, Califano A, et
al: UHRF1 is a mediator of KRAS driven oncogenesis in lung
adenocarcinoma. Nat Commun. 14:39662023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Hong SY, Kao YR, Lee TC and Wu CW:
Upregulation of E3 ubiquitin ligase CBLC enhances EGFR
dysregulation and signaling in lung adenocarcinoma. Cancer Res.
78:4984–4996. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Volonte D, Sedorovitz M and Galbiati F:
Impaired Cdc20 signaling promotes senescence in normal cells and
apoptosis in non-small cell lung cancer cells. J Biol Chem.
298:1024052022. View Article : Google Scholar : PubMed/NCBI
|
51
|
Cai S, Zhang B, Huang C, Deng Y, Wang C,
Yang Y, Xiang Z, Ni Y, Wang Z, Wang L, et al: CTRP6 protects
against ferroptosis to drive lung cancer progression and metastasis
by destabilizing SOCS2 and augmenting the xCT/GPX4 pathway. Cancer
Lett. 579:2164652023. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhang S, You X, Zheng Y, Shen Y, Xiong X
and Sun Y: The UBE2C/CDH1/DEPTOR axis is an oncogene and tumor
suppressor cascade in lung cancer cells. J Clin Invest.
133:e1624342023. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hua TNM, Namkung J, Phan ANH, Vo VTA, Kim
MK, Jeong Y and Choi JW: PPARgamma-mediated ALDH1A3 suppression
exerts anti-proliferative effects in lung cancer by inducing lipid
peroxidation. J Recept Signal Transduct Res. 38:191–197. 2018.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Wu J, Wen T, Marzio A, Song D, Chen S,
Yang C, Zhao F, Zhang B, Zhao G, Ferri A, et al: FBXO32-mediated
degradation of PTEN promotes lung adenocarcinoma progression. Cell
Death Dis. 15:2822024. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kildey K, Gandhi NS, Sahin KB, Shah ET,
Boittier E, Duijf PHG, Molloy C, Burgess JT, Beard S, Bolderson E,
et al: Elevating CDCA3 levels in non-small cell lung cancer
enhances sensitivity to platinum-based chemotherapy. Commun Biol.
4:6382021. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhang R, Zhang W, Zeng Y, Li Y, Zhou J,
Zhang Y, Wang A, Lv Y, Zhu J, Liu Z and Huang JA: The regulation of
CPNE1 ubiquitination by the NEDD4L is involved in the pathogenesis
of non-small cell lung cancer. Cell Death Discov. 7:3362021.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Zheng N and Shabek N: Ubiquitin ligases:
Structure, function, and regulation. Annu Rev Biochem. 86:129–157.
2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Konoshenko M, Lansukhay Y, Krasilnikov S
and Laktionov P: MicroRNAs as predictors of lung-cancer resistance
and sensitivity to cisplatin. Int J Mol Sci. 23:75942022.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Taheri M, Shoorei H, Anamag FT,
Ghafouri-Fard S and Dinger ME: LncRNAs and miRNAs participate in
determination of sensitivity of cancer cells to cisplatin. Exp Mol
Pathol. 123:1046022021. View Article : Google Scholar : PubMed/NCBI
|
60
|
Lv P, Man S, Xie L, Ma L and Gao W:
Pathogenesis and therapeutic strategy in platinum resistance lung
cancer. Biochim Biophys Acta Rev Cancer. 1876:1885772021.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Gou Q, Dong C, Xu H, Khan B, Jin J, Liu Q,
Shi J and Hou Y: PD-L1 degradation pathway and immunotherapy for
cancer. Cell Death Dis. 11:9552020. View Article : Google Scholar : PubMed/NCBI
|
62
|
Xiong W, Gao Y, Wei W and Zhang J:
Extracellular and nuclear PD-L1 in modulating cancer immunotherapy.
Trends Cancer. 7:837–846. 2021. View Article : Google Scholar : PubMed/NCBI
|
63
|
Sun C, Mezzadra R and Schumacher TN:
Regulation and function of the PD-L1 checkpoint. Immunity.
48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI
|
64
|
Yu H, Boyle TA, Zhou C, Rimm DL and Hirsch
FR: PD-L1 expression in lung cancer. J Thorac Oncol. 11:964–975.
2016. View Article : Google Scholar : PubMed/NCBI
|
65
|
Hung CS and Lin JC: Alternatively spliced
MBNL1 isoforms exhibit differential influence on enhancing brown
adipogenesis. Biochim Biophys Acta Gene Regul Mech.
1863:1944372020. View Article : Google Scholar : PubMed/NCBI
|