Tertiary lymphoid structures in head and neck squamous cell carcinoma (Review)
- Authors:
- Shiqin Hong
- Qiyue Wang
- Dilong Yu
- Juyan Zheng
- Ping Huang
- Jinping Gu
- Yiwen Zhang
-
Affiliations: College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China, Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China - Published online on: May 6, 2025 https://doi.org/10.3892/or.2025.8909
- Article Number: 76
This article is mentioned in:
Abstract
![]() |
![]() |
Li Q, Tie Y, Alu A, Ma X and Shi H: Targeted therapy for head and neck cancer: Signaling pathways and clinical studies. Sig Transduct Target Ther. 8:312023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Han J, Zhu Y, Huang N and Qu N: New advances in the therapeutic strategy of head and neck squamous cell carcinoma: A review of latest therapies and cutting-edge research. Biochim Biophys Acta Rev Cancer. 1880:1892302025. View Article : Google Scholar : PubMed/NCBI | |
Bhatia A and Burtness B: Treating head and neck cancer in the age of immunotherapy: A 2023 update. Drugs. 83:217–248. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al: Nivolumab for recurrent Squamous-Cell carcinoma of the head and neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL and Bruno TC: Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer. 23:173–188. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ruffin AT, Cillo AR, Tabib T, Liu A, Onkar S, Kunning SR, Lampenfeld C, Atiya HI, Abecassis I, Kürten CHL, et al: B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat Commun. 12:33492021. View Article : Google Scholar : PubMed/NCBI | |
Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et al: B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 577:549–555. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dieu-Nosjean MC, Goc J, Giraldo NA, Sautès-Fridman C and Fridman WH: Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 35:571–580. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maibach F, Sadozai H, Seyed Jafari SM, Hunger RE and Schenk M: Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front Immunol. 11:21052020. View Article : Google Scholar : PubMed/NCBI | |
Aloisi F and Pujol-Borrell R: Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 6:205–217. 2006. View Article : Google Scholar : PubMed/NCBI | |
N J J T Sl N and Gt, . B: Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncoimmunology. 10:19005082021. View Article : Google Scholar : PubMed/NCBI | |
Sautès-Fridman C, Lawand M, Giraldo NA, Kaplon H, Germain C, Fridman WH and Dieu-Nosjean MC: Tertiary lymphoid structures in cancers: Prognostic value, regulation, and manipulation for therapeutic intervention. Front Immunol. 7:4072016. View Article : Google Scholar : PubMed/NCBI | |
Kasikova L, Rakova J, Hensler M, Lanickova T, Tomankova J, Pasulka J, Drozenova J, Mojzisova K, Fialova A, Vosahlikova S, et al: Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer. Nat Commun. 15:25282024. View Article : Google Scholar : PubMed/NCBI | |
Hu C, You W, Kong D, Huang Y, Lu J, Zhao M, Jin Y, Peng R, Hua D, Kuang DM and Chen Y: Tertiary lymphoid Structure-associated B cells enhance CXCL13+CD103+CD8+ Tissue-resident memory T-cell response to programmed cell death protein 1 blockade in cancer immunotherapy. Gastroenterology. 166:1069–1084. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen CB, Hung SI, Chang JWC, Yang CK, Ma DHK, Teng YC, Lu CW, Chen WT, Yang HY, Tsai CC, et al: Immune checkpoint inhibitor-induced severe epidermal necrolysis mediated by macrophage-derived CXCL10 and abated by TNF blockade. Nat Commun. 15:107332024. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Schoenfeld JD, Egloff AM, Hanna GJ, Haddad RI, Adkins DR and Uppaluri R: T cell dynamics with neoadjuvant immunotherapy in head and neck cancer. Nat Rev Clin Oncol. 22:83–94. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D and Wu H: Tertiary lymphoid structures in diseases: Immune mechanisms and therapeutic advances. Sig Transduct Target Ther. 9:2252024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xu M, Ren Y, Ba Y, Liu S, Zuo A, Xu H, Weng S, Han X and Liu Z: Tertiary lymphoid structural heterogeneity determines tumour immunity and prospects for clinical application. Mol Cancer. 23:752024. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Feng D, Wei D, Li A, Wei F, Deng S, Shen M, Qin C, Yu Y and Liang L: Characterizing tertiary lymphoid structures associated single-cell atlas in breast cancer patients. Cancer Cell Int. 25:122025. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Xu J, Xu S, Tang L, Han Q and Sun Z: Research trends, hotspots and future directions of tertiary lymphoid structures in cancer: A comprehensive informatics analysis and visualization study. Discov Onc. 15:6652024. View Article : Google Scholar | |
Sun X, Liu W, Sun L, Mo H, Feng Y, Wu X, Li C, Chen C, Li J, Xin Y, et al: Maturation and abundance of tertiary lymphoid structures are associated with the efficacy of neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer. J Immunother Cancer. 10:e0055312022. View Article : Google Scholar : PubMed/NCBI | |
Wu SZ, Roden DL, Wang C, Holliday H, Harvey K, Cazet AS, Murphy KJ, Pereira B, Al-Eryani G, Bartonicek N, et al: Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 39:e1040632020. View Article : Google Scholar : PubMed/NCBI | |
Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, et al: Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 577:561–565. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmed A and Halama N: Tertiary lymphoid structures in colorectal cancer liver metastases: Association with immunological and clinical parameters and chemotherapy response. Anticancer Res. 40:6367–6373. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang NN, Qu FJ, Liu H, Li ZJ, Zhang YC, Han X, Zhu ZY and Lv Y: Prognostic impact of tertiary lymphoid structures in breast cancer prognosis: A systematic review and meta-analysis. Cancer Cell Int. 21:5362021. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Cao H, Ren S, Wu J, Liu X, Li Q, Xu Q, Chen J, Wang R, Chen S, et al: Tertiary lymphoid structure-related score as a predictor for survival prognosis and immunotherapy response in head and neck squamous cell carcinoma. Front Immunol. 15:14834972024. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Lu H, Wang K, Liu B and Yan J: Tertiary lymphoid structures in head and neck squamous cell carcinoma. Transl Oncol. 44:1019492024. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez AB and Engelhard VH: Insights into Tumor-associated tertiary lymphoid structures: Novel targets for antitumor immunity and cancer immunotherapy. Cancer Immunol Res. 8:1338–1345. 2020. View Article : Google Scholar : PubMed/NCBI | |
Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et al: B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 577:549–555. 2020. View Article : Google Scholar : PubMed/NCBI | |
Uranishi H, Tetsuka T, Yamashita M, Asamitsu K, Shimizu M, Itoh M and Okamoto T: Involvement of the Pro-oncoprotein TLS (Translocated in Liposarcoma) in Nuclear Factor-κB p65-mediated Transcription as a Coactivator. J Biol Chem. 276:13395–13401. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gräbner R, Lötzer K, Döpping S, Hildner M, Radke D, Beer M, Spanbroek R, Lippert B, Reardon CA, Getz GS, et al: Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice. J Exp Med. 206:233–248. 2009. View Article : Google Scholar : PubMed/NCBI | |
Luther SA, Ansel KM and Cyster JG: Overlapping roles of CXCL13, interleukin 7 receptor α, and CCR7 ligands in lymph node development. J Exp Med. 197:1191–1198. 2003. View Article : Google Scholar : PubMed/NCBI | |
Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD and Slingluff CL: Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol. 200:432–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Drayton DL, Ying X, Lee J, Lesslauer W and Ruddle NH: Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med. 197:1153–1163. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hess E, Duheron V, Decossas M, Lézot F, Berdal A, Chea S, Golub R, Bosisio MR, Bridal SL, Choi Y, et al: RANKL induces organized lymph node growth by stromal cell proliferation. J Immunol. 188:1245–1254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mueller CG and Hess E: Emerging functions of RANKL in lymphoid tissues. Front Immun. 3:2612012. View Article : Google Scholar | |
Fleig S, Kapanadze T, Bernier-Latmani J, Lill JK, Wyss T, Gamrekelashvili J, Kijas D, Liu B, Hüsing AM, Bovay E, et al: Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nat Commun. 13:20222022. View Article : Google Scholar : PubMed/NCBI | |
Vella G, Guelfi S and Bergers G: High endothelial venules: A vascular perspective on tertiary lymphoid structures in cancer. Front Immunol. 12:7366702021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu H, Fu H, Li J, Xu L, Wang G and Wu H: Peritumoral tertiary lymphoid structures correlate with protective immunity and improved prognosis in patients with hepatocellular carcinoma. Front Immunol. 12:6488122021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhu SW, Zhou JJ, Chen DR, Liu J, Wu ZZ, Wang WY, Zhang MJ and Sun ZJ: Tertiary lymphoid structure raises survival and immunotherapy in HPV− HNSCC. J Dent Res. 102:678–688. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Liu X, Wang D, Wang Y, Lu H, Wen S, Fang J, Cheng B and Wang Z: Prognostic value of tertiary lymphoid structure and tumour infiltrating lymphocytes in oral squamous cell carcinoma. Int J Oral Sci. 12:242020. View Article : Google Scholar : PubMed/NCBI | |
de Saint-Vis B, Vincent J, Vandenabeele S, Vanbervliet B, Pin JJ, Aït-Yahia S, Patel S, Mattei MG, Banchereau J, Zurawski S, et al: A Novel Lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC Class II compartment. Immunity. 9:325–336. 1998. View Article : Google Scholar : PubMed/NCBI | |
Economopoulou P, Kotsantis I and Psyrri A: B cells and their role in shaping the immune response in squamous cell carcinoma of the head and neck. Immunotherapy. 13:723–726. 2021. View Article : Google Scholar : PubMed/NCBI | |
Werner F, Wagner C, Simon M, Glatz K, Mertz KD, Läubli H, Griss J and Wagner SN: A standardized analysis of tertiary lymphoid structures in human melanoma: Disease progression- and tumor Site-associated changes with germinal center alteration. Front Immunol. 12:6751462021. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Zhang Z, Guan Z, Zheng S, Lou J, Liu W, Cai Q and Si Y: Follicle-like tertiary lymphoid structures: A potential biomarker for prognosis and immunotherapy response in patients with laryngeal squamous cell carcinoma. Front Immunol. 14:10962202023. View Article : Google Scholar : PubMed/NCBI | |
Paijens ST, Vledder A, de Bruyn M and Nijman HW: Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 18:842–859. 2021. View Article : Google Scholar : PubMed/NCBI | |
Munoz-Erazo L, Rhodes JL, Marion VC and Kemp RA: Tertiary lymphoid structures in cancer-considerations for patient prognosis. Cell Mol Immunol. 17:570–575. 2020. View Article : Google Scholar : PubMed/NCBI | |
van Herpen CM, van der Voort R, van der Laak JA, Klasen IS, de Graaf AO, van Kempen LC, de Vries IJ, Boer TD, Dolstra H, Torensma R, et al: Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation. Int J Cancer. 123:2354–2361. 2008. View Article : Google Scholar : PubMed/NCBI | |
Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, Lepelley A, Becht E, Katsahian S, Bizouard G, et al: Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med. 189:832–8344. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Wu Y, Ma L, Yang X, Zhang T, Song G, Li T, Gao K, Shen X, Lin J, et al: A blueprint for tumor-infiltrating B cells across human cancers. Science. 384:eadj48572025. View Article : Google Scholar : PubMed/NCBI | |
Schumacher T and Thommen DS: Tertiary lymphoid structures in cancer. Science. 375:eabf94192022. View Article : Google Scholar : PubMed/NCBI | |
Siliņa K, Soltermann A, Attar FM, Casanova R, Uckeley ZM, Thut H, Wandres M, Isajevs S, Cheng P, Curioni-Fontecedro A, et al: Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res. 78:1308–1320. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB, Singhal S, Mitchell JD, Franklin WA, Merrick DT, et al: Antigen-presenting intratumoral B cells affect CD4+ TIL phenotypes in Non-small cell lung cancer patients. Cancer Immunol Res. 5:898–907. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cillo AR, Kürten CHL, Tabib T, Qi Z, Onkar S, Wang T, Liu A, Duvvuri U, Kim S, Soose RJ, et al: Immune landscape of Viral- and Carcinogen-driven head and neck cancer. Immunity. 52:183–199.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lechner A, Schlößer HA, Thelen M, Wennhold K, Rothschild SI, Gilles R, Quaas A, Siefer OG, Huebbers CU, Cukuroglu E, et al: Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma. Oncoimmunology. 8:15352932019. View Article : Google Scholar : PubMed/NCBI | |
Wusiman D, Li W, Guo L, Huang Z, Zhang Y, Zhang X, Li L, An Z, Li Z, Ying J and An C: Comprehensive analysis of single-cell and bulk RNA-sequencing data identifies B cell marker genes signature that predicts prognosis and analysis of immune checkpoints expression in head and neck squamous cell carcinoma. Heliyon. 9:e226562023. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Peng H, Hu Y, Jia K, Yuan J, Liu D, Li Y, Feng X, Li J, Zhang X, et al: Immune microenvironment spatial landscapes of tertiary lymphoid structures in gastric cancer. BMC Med. 23:592025. View Article : Google Scholar : PubMed/NCBI | |
Kinker GS, Vitiello GAF, Ferreira WAS, Chaves AS, Cordeiro de Lima VC and Medina TDS: B cell orchestration of Anti-tumor immune responses: A matter of cell localization and communication. Front Cell Dev Biol. 9:6781272021. View Article : Google Scholar : PubMed/NCBI | |
Hladíková K, Koucký V, Bouček J, Laco J, Grega M, Hodek M, Zábrodský M, Vošmik M, Rozkošová K, Vošmiková H, et al: Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8+ T cells. J Immunotherapy Cancer. 7:2612019. View Article : Google Scholar : PubMed/NCBI | |
Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, Ravoet M, Le Buanec H, Sibille C, Manfouo-Foutsop G, et al: CD4+ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 123:2873–2892. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Zhai R, Wang M, Zhu W, Zhang J, Yu M, Zhang W, Ye J and Liu L: Tertiary lymphoid structures in head and neck squamous cell carcinoma improve prognosis by recruiting CD8+ T cells. Mol Oncol. 17:1514–1530. 2023. View Article : Google Scholar : PubMed/NCBI | |
Goc J, Germain C, Vo-Bourgais TKD, Lupo A, Klein C, Knockaert S, de Chaisemartin L, Ouakrim H, Becht E, Alifano M, et al: Dendritic cells in Tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 74:705–715. 2014. View Article : Google Scholar : PubMed/NCBI | |
Trüb M and Zippelius A: Tertiary lymphoid structures as a predictive biomarker of response to cancer immunotherapies. Front Immunol. 12:6745652021. View Article : Google Scholar : PubMed/NCBI | |
Brownlie RJ, Zamoyska R and Salmond RJ: Regulation of autoimmune and Anti-tumour T-cell responses by PTPN22. Immunology. 154:377–382. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Xiao L, Rong H, Ou Z, Cai T, Liu N, Li B, Zhang L, Wu F, Lan T, et al: Single-cell profiling of tumor-infiltrating TCF1/TCF7+ T cells reveals a T lymphocyte subset associated with tertiary lymphoid structures/organs and a superior prognosis in oral cancer. Oral Oncol. 119:1053482021. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi S, Yamaguchi T, Nomura T and Ono M: Regulatory T cells and immune tolerance. Cell. 133:775–787. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Zhu W, Zhang J, Yu M, Zhai R and Liu L: Tertiary lymphoid structures in oral lichen planus and oral epithelial dysplasia with lichenoid features: A comparative study. Oral Dis. 29:154–164. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ning J, Hao J, Guo F, Hou X, Li L, Wang J, Wang S, Gao Y, Zheng X and Gao M: ABCB11 accumulated in immature tertiary lymphoid structures participates in xenobiotic metabolic process and predicts resistance to PD-1/PD-L1 inhibitors in head and neck squamous cell carcinoma. Transl Oncol. 36:1017472023. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Germain C, Liu Z, Sebastian Y, Devi P, Knockaert S, Brohawn P, Lehmann K, Damotte D, Validire P, et al: A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality. Oncoimmunology. 4:e10519222015. View Article : Google Scholar : PubMed/NCBI | |
Brummelman J, Pilipow K and Lugli E: The Single-cell phenotypic identity of human CD8+ and CD4+ T cells. Int Rev Cell Mol Biol. 341:63–124. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moretta A: Natural killer cells and dendritic cells: Rendezvous in abused tissues. Nat Rev Immunol. 2:957–965. 2002. View Article : Google Scholar : PubMed/NCBI | |
Farhood B, Najafi M and Mortezaee K: CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rustamkhanov RA, Gantsev KSh and Tursumetov DS: Tertiary lymphoid structures and cancer prognosis (brief review). Kreativnaâ Hirurgiâ i Onkologiâ. 9:293–296. 2020. View Article : Google Scholar | |
Giraldo NA, Becht E, Pagès F, Skliris G, Verkarre V, Vano Y, Mejean A, Saint-Aubert N, Lacroix L, Natario I, et al: Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res. 21:3031–3040. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dieu-Nosjean M, Giraldo NA, Kaplon H, Germain C, Fridman WH and Sautès-Fridman C: Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev. 271:260–275. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gordon S and Martinez-Pomares L: Physiological roles of macrophages. Pflugers Arch. 469:365–374. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen WC, Lai CH, Chuang HC, Lin PY and Chen MF: Inflammation-induced myeloid-derived suppressor cells associated with squamous cell carcinoma of the head and neck: Myeloid-derived suppressor cells in HNSCC. Head Neck. 39:347–355. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koscsó B, Kurapati S, Rodrigues RR, Nedjic J, Gowda K, Shin C, Soni C, Ashraf AZ, Purushothaman I, Palisoc M, et al: Gut-resident CX3CR1hi macrophages induce tertiary lymphoid structures and IgA response in situ. Sci Immunol. 5:eaax00622020. View Article : Google Scholar : PubMed/NCBI | |
Sautès-Fridman C, Petitprez F, Calderaro J and Fridman WH: Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 19:307–325. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Meng X, Tang X, Zou W and He Y: Intratumoral tertiary lymphoid structures promote patient survival and immunotherapy response in head neck squamous cell carcinoma. Cancer Immunol Immunother. 72:1505–1521. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ruddle NH: High endothelial venules and lymphatic vessels in tertiary lymphoid organs: Characteristics, functions, and regulation. Front Immunol. 7:4912016. View Article : Google Scholar : PubMed/NCBI | |
Ager A and May MJ: Understanding high endothelial venules: Lessons for cancer immunology. Oncoimmunology. 4:e10087912015. View Article : Google Scholar : PubMed/NCBI | |
Martinet L, Filleron T, Le Guellec S, Rochaix P, Garrido I and Girard JP: High Endothelial venule blood vessels for Tumor-infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer. J Immunol. 191:2001–2008. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moussion C and Girard JP: Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature. 479:542–546. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weed DT, Zilio S, McGee C, Marnissi B, Sargi Z, Franzmann E, Thomas G, Leibowitz J, Nicolli E, Arnold D, et al: The tumor immune microenvironment architecture correlates with risk of recurrence in head and neck squamous cell carcinoma. Cancer Res. 83:3886–3900. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sosa J, Glathar A and Sinha S: Architecture of head and neck squamous cell carcinoma tumor microenvironment revealed: Can tertiary lymphoid structures predict post-surgery recurrence? Transl Cancer Res. 13:484–489. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X and Wang X, Hou L, Xu Z, Liu Y and Wang X: Nanoparticles overcome adaptive immune resistance and enhance immunotherapy via targeting tumor microenvironment in lung cancer. Front Pharmacol. 14:11309372023. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal C, Saba NF, Algazi A, Sukari A, Seiwert TY, Haigentz M, Porosnicu M, Bonomi M, Boyer J, Esser MT, et al: Safety and efficacy of MEDI0457 plus durvalumab in patients with human Papillomavirus-associated Recurrent/metastatic head and neck squamous cell carcinoma. Clin Cancer Res. 29:560–570. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pisani S, Bertino G, Prina-Mello A, Locati LD, Mauramati S, Genta I, Dorati R, Conti B and Benazzo M: Electroporation in Head-and-Neck Cancer: An innovative approach with immunotherapy and nanotechnology combination. Cancers (Basel). 14:53632022. View Article : Google Scholar : PubMed/NCBI | |
Bauman JE, Julian R, Saba NF, Wise-Draper TM, Adkins DR, O'Brien P, Fidler MJ, Gibson MK, Duvvuri U, Heath-Chiozzi M, et al: Phase II trial of CDX-3379 and Cetuximab in Recurrent/Metastatic, HPV-Negative, Cetuximab-resistant head and neck cancer. Cancers. 14:23552022. View Article : Google Scholar : PubMed/NCBI | |
Hanoteau A, Newton JM, Krupar R, Huang C, Liu HC, Gaspero A, Gartrell RD, Saenger YM, Hart TD, Santegoets SJ, et al: Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J Immunother Cancer. 7:102019. View Article : Google Scholar : PubMed/NCBI | |
Colbeck EJ, Ager A, Gallimore A and Jones GW: Tertiary lymphoid structures in cancer: Drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front Immunol. 8:18302017. View Article : Google Scholar : PubMed/NCBI | |
Li H, Ding JY, Zhang MJ, Yu HJ and Sun ZJ: Tertiary lymphoid structures and cytokines interconnections: The implication in cancer immunotherapy. Cancer Lett. 568:2162932023. View Article : Google Scholar : PubMed/NCBI | |
Lukashev M, LePage D, Wilson C, Bailly V, Garber E, Lukashin A, Ngam-ek A, Zeng W, Allaire N, Perrin S, et al: Targeting the Lymphotoxin-β receptor with agonist antibodies as a potential cancer therapy. Cancer Res. 66:9617–9624. 2006. View Article : Google Scholar : PubMed/NCBI | |
Girard JP, Moussion C and Förster R: HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 12:762–773. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wen Z, Liu H, Qiao D, Chen H, Li L, Yang Z, Zhu C, Zeng Z, Chen Y and Liu L: Nanovaccines fostering tertiary lymphoid structure to attack mimicry nasopharyngeal carcinoma. ACS Nano. 17:7194–7206. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nishino M, Ramaiya NH, Hatabu H and Hodi FS: Monitoring immune-checkpoint blockade: Response evaluation and biomarker development. Nat Rev Clin Oncol. 14:655–668. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Zhou J, Xiao Y, Ming J, Zhou J, Dong F, Zhou X, Xu Z, Zhao X, Lei P and Huang T: CD20+CD22+ADAM28+ B cells in tertiary lymphoid structures promote immunotherapy response. Front Immunol. 13:8655962022. View Article : Google Scholar : PubMed/NCBI | |
Lee DJ, Lee HJ, Farmer JR and Reynolds KL: Mechanisms driving immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Curr Cardiol Rep. 23:982021. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L and Liu X: Application of PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J. 17:661–674. 2019. View Article : Google Scholar : PubMed/NCBI | |
Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim AM, Chang ALS, et al: PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 379:341–351. 2018. View Article : Google Scholar : PubMed/NCBI | |
Solomon B, Young RJ and Rischin D: Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 52:228–240. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teillaud JL and Dieu-Nosjean MC: Tertiary lymphoid structures: An Anti-tumor school for adaptive immune cells and an antibody factory to fight cancer? Front Immunol. 8:8302017. View Article : Google Scholar : PubMed/NCBI | |
Sadeghirad H, Monkman J, Tan CW, Liu N, Yunis J, Donovan ML, Moradi A, Jhaveri N, Perry C, Adams MN, et al: Spatial dynamics of tertiary lymphoid aggregates in head and neck cancer: Insights into immunotherapy response. J Transl Med. 22:6772024. View Article : Google Scholar : PubMed/NCBI | |
Misra R, Sarkar K, Lee J, Pizzuti VJ, Lee DS, Currie MP, Torregrosa-Allen SE, Long DE, Durm GA, Langer MP, et al: Radioluminescent nanoparticles for radiation-controlled release of drugs. J Control Release. 303:237–252. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shahbazi MA, Fernández TD, Mäkilä EM, Le Guével X, Mayorga C, Kaasalainen MH, Salonen JJ, Hirvonen JT and Santos HA: Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials. 35:9224–9235. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huayamares SG, Lokugamage MP, Rab R, Da Silva Sanchez AJ, Kim H, Radmand A, Loughrey D, Lian L, Hou Y, Achyut BR, et al: High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J Control Release. 357:394–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
Groeneveld CS, Fontugne J, Cabel L, Bernard-Pierrot I, Radvanyi F, Allory Y and de Reyniès A: Tertiary lymphoid structures marker CXCL13 is associated with better survival for patients with advanced-stage bladder cancer treated with immunotherapy. Eur J Cancer. 148:181–189. 2021. View Article : Google Scholar : PubMed/NCBI | |
Personeni N, Pressiani T, D'Alessio A, Prete MG, Bozzarelli S, Terracciano L, Dal Buono A, Capogreco A, Aghemo A, Lleo A, et al: Hepatotoxicity in patients with hepatocellular carcinoma on treatment with immune checkpoint inhibitors. Cancers. 13:56652021. View Article : Google Scholar : PubMed/NCBI | |
Tian C, Li C, Zeng Y, Liang J, Yang Q, Gu F, Hu Y and Liu L: Identification of CXCL13/CXCR5 axis's crucial and complex effect in human lung adenocarcinoma. Int Immunopharmacol. 94:1074162021. View Article : Google Scholar : PubMed/NCBI | |
Sweeney KJ, Tetzlaff MT, Vega F, Gillenwater A, Zuo Z, Gross N, Nagarajan P, Wargo J, Nelson K, Prieto VG, et al: Tertiary lymphoid structures with overlapping histopathologic features of cutaneous marginal zone lymphoma during neoadjuvant cemiplimab therapy are associated with antitumor response. J Cutan Pathol. 48:674–679. 2021. View Article : Google Scholar : PubMed/NCBI | |
Clubb JHA, Kudling TV, Heiniö C, Basnet S, Pakola S, Cervera Carrascón V, Santos JM, Quixabeira DCA, Havunen R, Sorsa S, et al: Adenovirus encoding tumor necrosis factor alpha and interleukin 2 induces a tertiary lymphoid structure signature in immune checkpoint inhibitor refractory head and neck cancer. Front Immunol. 13:7942512022. View Article : Google Scholar : PubMed/NCBI | |
Maldonado L, Teague JE, Morrow MP, Jotova I, Wu TC, Wang C, Desmarais C, Boyer JD, Tycko B, Robins HS, et al: Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci Transl Med. 6:221ra132014. View Article : Google Scholar : PubMed/NCBI | |
Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S, Kiialainen A, Hanhart J, Schill C, Hess C, et al: A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med. 24:994–1004. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mei Z, Huang J, Qiao B and Lam AK: Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma. Int J Oral Sci. 12:162020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Venet D, Lifrange F, Larsimont D, Rediti M, Stenbeck L, Dupont F, Rouas G, Garcia AJ, Craciun L, et al: Spatial transcriptomics reveals substantial heterogeneity in triple-negative breast cancer with potential clinical implications. Nat Commun. 15:102322024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang D, Huang X, Wu G, Wang C, Li J, Wang S, Xian X, Fu B and Li K: From heterogeneity to prognosis: Understanding the complexity of tertiary lymphoid structures in tumors. Mol Biol Rep. 52:1972025. View Article : Google Scholar : PubMed/NCBI |