|
1
|
Li Q, Tie Y, Alu A, Ma X and Shi H:
Targeted therapy for head and neck cancer: Signaling pathways and
clinical studies. Sig Transduct Target Ther. 8:312023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang Y, Han J, Zhu Y, Huang N and Qu N:
New advances in the therapeutic strategy of head and neck squamous
cell carcinoma: A review of latest therapies and cutting-edge
research. Biochim Biophys Acta Rev Cancer. 1880:1892302025.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bhatia A and Burtness B: Treating head and
neck cancer in the age of immunotherapy: A 2023 update. Drugs.
83:217–248. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ferris RL, Blumenschein G, Fayette J,
Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE,
Even C, et al: Nivolumab for recurrent Squamous-Cell carcinoma of
the head and neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ruffin AT, Li H, Vujanovic L, Zandberg DP,
Ferris RL and Bruno TC: Improving head and neck cancer therapies by
immunomodulation of the tumour microenvironment. Nat Rev Cancer.
23:173–188. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ruffin AT, Cillo AR, Tabib T, Liu A, Onkar
S, Kunning SR, Lampenfeld C, Atiya HI, Abecassis I, Kürten CHL, et
al: B cell signatures and tertiary lymphoid structures contribute
to outcome in head and neck squamous cell carcinoma. Nat Commun.
12:33492021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Helmink BA, Reddy SM, Gao J, Zhang S,
Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et
al: B cells and tertiary lymphoid structures promote immunotherapy
response. Nature. 577:549–555. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dieu-Nosjean MC, Goc J, Giraldo NA,
Sautès-Fridman C and Fridman WH: Tertiary lymphoid structures in
cancer and beyond. Trends Immunol. 35:571–580. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Maibach F, Sadozai H, Seyed Jafari SM,
Hunger RE and Schenk M: Tumor-infiltrating lymphocytes and their
prognostic value in cutaneous melanoma. Front Immunol. 11:21052020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Aloisi F and Pujol-Borrell R: Lymphoid
neogenesis in chronic inflammatory diseases. Nat Rev Immunol.
6:205–217. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
N J J T Sl N and Gt, . B: Tertiary
lymphoid structures and B lymphocytes in cancer prognosis and
response to immunotherapies. Oncoimmunology. 10:19005082021.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sautès-Fridman C, Lawand M, Giraldo NA,
Kaplon H, Germain C, Fridman WH and Dieu-Nosjean MC: Tertiary
lymphoid structures in cancers: Prognostic value, regulation, and
manipulation for therapeutic intervention. Front Immunol.
7:4072016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kasikova L, Rakova J, Hensler M, Lanickova
T, Tomankova J, Pasulka J, Drozenova J, Mojzisova K, Fialova A,
Vosahlikova S, et al: Tertiary lymphoid structures and B cells
determine clinically relevant T cell phenotypes in ovarian cancer.
Nat Commun. 15:25282024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hu C, You W, Kong D, Huang Y, Lu J, Zhao
M, Jin Y, Peng R, Hua D, Kuang DM and Chen Y: Tertiary lymphoid
Structure-associated B cells enhance CXCL13+CD103+CD8+
Tissue-resident memory T-cell response to programmed cell death
protein 1 blockade in cancer immunotherapy. Gastroenterology.
166:1069–1084. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen CB, Hung SI, Chang JWC, Yang CK, Ma
DHK, Teng YC, Lu CW, Chen WT, Yang HY, Tsai CC, et al: Immune
checkpoint inhibitor-induced severe epidermal necrolysis mediated
by macrophage-derived CXCL10 and abated by TNF blockade. Nat
Commun. 15:107332024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhao M, Schoenfeld JD, Egloff AM, Hanna
GJ, Haddad RI, Adkins DR and Uppaluri R: T cell dynamics with
neoadjuvant immunotherapy in head and neck cancer. Nat Rev Clin
Oncol. 22:83–94. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X,
Chen Z, Wang X, Huang S, Zhang D and Wu H: Tertiary lymphoid
structures in diseases: Immune mechanisms and therapeutic advances.
Sig Transduct Target Ther. 9:2252024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang Y, Xu M, Ren Y, Ba Y, Liu S, Zuo A,
Xu H, Weng S, Han X and Liu Z: Tertiary lymphoid structural
heterogeneity determines tumour immunity and prospects for clinical
application. Mol Cancer. 23:752024. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fan X, Feng D, Wei D, Li A, Wei F, Deng S,
Shen M, Qin C, Yu Y and Liang L: Characterizing tertiary lymphoid
structures associated single-cell atlas in breast cancer patients.
Cancer Cell Int. 25:122025. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yu C, Xu J, Xu S, Tang L, Han Q and Sun Z:
Research trends, hotspots and future directions of tertiary
lymphoid structures in cancer: A comprehensive informatics analysis
and visualization study. Discov Onc. 15:6652024. View Article : Google Scholar
|
|
21
|
Sun X, Liu W, Sun L, Mo H, Feng Y, Wu X,
Li C, Chen C, Li J, Xin Y, et al: Maturation and abundance of
tertiary lymphoid structures are associated with the efficacy of
neoadjuvant chemoimmunotherapy in resectable non-small cell lung
cancer. J Immunother Cancer. 10:e0055312022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wu SZ, Roden DL, Wang C, Holliday H,
Harvey K, Cazet AS, Murphy KJ, Pereira B, Al-Eryani G, Bartonicek
N, et al: Stromal cell diversity associated with immune evasion in
human triple-negative breast cancer. EMBO J. 39:e1040632020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cabrita R, Lauss M, Sanna A, Donia M,
Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K,
Vallon-Christersson J, et al: Tertiary lymphoid structures improve
immunotherapy and survival in melanoma. Nature. 577:561–565. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ahmed A and Halama N: Tertiary lymphoid
structures in colorectal cancer liver metastases: Association with
immunological and clinical parameters and chemotherapy response.
Anticancer Res. 40:6367–6373. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang NN, Qu FJ, Liu H, Li ZJ, Zhang YC,
Han X, Zhu ZY and Lv Y: Prognostic impact of tertiary lymphoid
structures in breast cancer prognosis: A systematic review and
meta-analysis. Cancer Cell Int. 21:5362021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wu F, Cao H, Ren S, Wu J, Liu X, Li Q, Xu
Q, Chen J, Wang R, Chen S, et al: Tertiary lymphoid
structure-related score as a predictor for survival prognosis and
immunotherapy response in head and neck squamous cell carcinoma.
Front Immunol. 15:14834972024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhu J, Lu H, Wang K, Liu B and Yan J:
Tertiary lymphoid structures in head and neck squamous cell
carcinoma. Transl Oncol. 44:1019492024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Rodriguez AB and Engelhard VH: Insights
into Tumor-associated tertiary lymphoid structures: Novel targets
for antitumor immunity and cancer immunotherapy. Cancer Immunol
Res. 8:1338–1345. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Helmink BA, Reddy SM, Gao J, Zhang S,
Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et
al: B cells and tertiary lymphoid structures promote immunotherapy
response. Nature. 577:549–555. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Uranishi H, Tetsuka T, Yamashita M,
Asamitsu K, Shimizu M, Itoh M and Okamoto T: Involvement of the
Pro-oncoprotein TLS (Translocated in Liposarcoma) in Nuclear
Factor-κB p65-mediated Transcription as a Coactivator. J Biol Chem.
276:13395–13401. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gräbner R, Lötzer K, Döpping S, Hildner M,
Radke D, Beer M, Spanbroek R, Lippert B, Reardon CA, Getz GS, et
al: Lymphotoxin β receptor signaling promotes tertiary lymphoid
organogenesis in the aorta adventitia of aged ApoE-/- mice. J Exp
Med. 206:233–248. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Luther SA, Ansel KM and Cyster JG:
Overlapping roles of CXCL13, interleukin 7 receptor α, and CCR7
ligands in lymph node development. J Exp Med. 197:1191–1198. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Engelhard VH, Rodriguez AB, Mauldin IS,
Woods AN, Peske JD and Slingluff CL: Immune cell infiltration and
tertiary lymphoid structures as determinants of antitumor immunity.
J Immunol. 200:432–442. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Drayton DL, Ying X, Lee J, Lesslauer W and
Ruddle NH: Ectopic LTαβ directs lymphoid organ neogenesis with
concomitant expression of peripheral node addressin and a
HEV-restricted sulfotransferase. J Exp Med. 197:1153–1163. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hess E, Duheron V, Decossas M, Lézot F,
Berdal A, Chea S, Golub R, Bosisio MR, Bridal SL, Choi Y, et al:
RANKL induces organized lymph node growth by stromal cell
proliferation. J Immunol. 188:1245–1254. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Mueller CG and Hess E: Emerging functions
of RANKL in lymphoid tissues. Front Immun. 3:2612012. View Article : Google Scholar
|
|
37
|
Fleig S, Kapanadze T, Bernier-Latmani J,
Lill JK, Wyss T, Gamrekelashvili J, Kijas D, Liu B, Hüsing AM,
Bovay E, et al: Loss of vascular endothelial notch signaling
promotes spontaneous formation of tertiary lymphoid structures. Nat
Commun. 13:20222022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Vella G, Guelfi S and Bergers G: High
endothelial venules: A vascular perspective on tertiary lymphoid
structures in cancer. Front Immunol. 12:7366702021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li H, Liu H, Fu H, Li J, Xu L, Wang G and
Wu H: Peritumoral tertiary lymphoid structures correlate with
protective immunity and improved prognosis in patients with
hepatocellular carcinoma. Front Immunol. 12:6488122021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li H, Zhu SW, Zhou JJ, Chen DR, Liu J, Wu
ZZ, Wang WY, Zhang MJ and Sun ZJ: Tertiary lymphoid structure
raises survival and immunotherapy in HPV− HNSCC. J Dent
Res. 102:678–688. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li Q, Liu X, Wang D, Wang Y, Lu H, Wen S,
Fang J, Cheng B and Wang Z: Prognostic value of tertiary lymphoid
structure and tumour infiltrating lymphocytes in oral squamous cell
carcinoma. Int J Oral Sci. 12:242020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
de Saint-Vis B, Vincent J, Vandenabeele S,
Vanbervliet B, Pin JJ, Aït-Yahia S, Patel S, Mattei MG, Banchereau
J, Zurawski S, et al: A Novel Lysosome-associated membrane
glycoprotein, DC-LAMP, induced upon DC maturation, is transiently
expressed in MHC Class II compartment. Immunity. 9:325–336. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Economopoulou P, Kotsantis I and Psyrri A:
B cells and their role in shaping the immune response in squamous
cell carcinoma of the head and neck. Immunotherapy. 13:723–726.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Werner F, Wagner C, Simon M, Glatz K,
Mertz KD, Läubli H, Griss J and Wagner SN: A standardized analysis
of tertiary lymphoid structures in human melanoma: Disease
progression- and tumor Site-associated changes with germinal center
alteration. Front Immunol. 12:6751462021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liang H, Zhang Z, Guan Z, Zheng S, Lou J,
Liu W, Cai Q and Si Y: Follicle-like tertiary lymphoid structures:
A potential biomarker for prognosis and immunotherapy response in
patients with laryngeal squamous cell carcinoma. Front Immunol.
14:10962202023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Paijens ST, Vledder A, de Bruyn M and
Nijman HW: Tumor-infiltrating lymphocytes in the immunotherapy era.
Cell Mol Immunol. 18:842–859. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Munoz-Erazo L, Rhodes JL, Marion VC and
Kemp RA: Tertiary lymphoid structures in cancer-considerations for
patient prognosis. Cell Mol Immunol. 17:570–575. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
van Herpen CM, van der Voort R, van der
Laak JA, Klasen IS, de Graaf AO, van Kempen LC, de Vries IJ, Boer
TD, Dolstra H, Torensma R, et al: Intratumoral rhIL-12
administration in head and neck squamous cell carcinoma patients
induces B cell activation. Int J Cancer. 123:2354–2361. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Germain C, Gnjatic S, Tamzalit F,
Knockaert S, Remark R, Goc J, Lepelley A, Becht E, Katsahian S,
Bizouard G, et al: Presence of B cells in tertiary lymphoid
structures is associated with a protective immunity in patients
with lung cancer. Am J Respir Crit Care Med. 189:832–8344. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ma J, Wu Y, Ma L, Yang X, Zhang T, Song G,
Li T, Gao K, Shen X, Lin J, et al: A blueprint for
tumor-infiltrating B cells across human cancers. Science.
384:eadj48572025. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Schumacher T and Thommen DS: Tertiary
lymphoid structures in cancer. Science. 375:eabf94192022.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Siliņa K, Soltermann A, Attar FM, Casanova
R, Uckeley ZM, Thut H, Wandres M, Isajevs S, Cheng P,
Curioni-Fontecedro A, et al: Germinal centers determine the
prognostic relevance of tertiary lymphoid structures and are
impaired by corticosteroids in lung squamous cell carcinoma. Cancer
Res. 78:1308–1320. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bruno TC, Ebner PJ, Moore BL, Squalls OG,
Waugh KA, Eruslanov EB, Singhal S, Mitchell JD, Franklin WA,
Merrick DT, et al: Antigen-presenting intratumoral B cells affect
CD4+ TIL phenotypes in Non-small cell lung cancer
patients. Cancer Immunol Res. 5:898–907. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Cillo AR, Kürten CHL, Tabib T, Qi Z, Onkar
S, Wang T, Liu A, Duvvuri U, Kim S, Soose RJ, et al: Immune
landscape of Viral- and Carcinogen-driven head and neck cancer.
Immunity. 52:183–199.e9. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lechner A, Schlößer HA, Thelen M, Wennhold
K, Rothschild SI, Gilles R, Quaas A, Siefer OG, Huebbers CU,
Cukuroglu E, et al: Tumor-associated B cells and humoral immune
response in head and neck squamous cell carcinoma. Oncoimmunology.
8:15352932019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wusiman D, Li W, Guo L, Huang Z, Zhang Y,
Zhang X, Li L, An Z, Li Z, Ying J and An C: Comprehensive analysis
of single-cell and bulk RNA-sequencing data identifies B cell
marker genes signature that predicts prognosis and analysis of
immune checkpoints expression in head and neck squamous cell
carcinoma. Heliyon. 9:e226562023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xie Y, Peng H, Hu Y, Jia K, Yuan J, Liu D,
Li Y, Feng X, Li J, Zhang X, et al: Immune microenvironment spatial
landscapes of tertiary lymphoid structures in gastric cancer. BMC
Med. 23:592025. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kinker GS, Vitiello GAF, Ferreira WAS,
Chaves AS, Cordeiro de Lima VC and Medina TDS: B cell orchestration
of Anti-tumor immune responses: A matter of cell localization and
communication. Front Cell Dev Biol. 9:6781272021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hladíková K, Koucký V, Bouček J, Laco J,
Grega M, Hodek M, Zábrodský M, Vošmik M, Rozkošová K, Vošmiková H,
et al: Tumor-infiltrating B cells affect the progression of
oropharyngeal squamous cell carcinoma via cell-to-cell interactions
with CD8+ T cells. J Immunotherapy Cancer. 7:2612019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gu-Trantien C, Loi S, Garaud S, Equeter C,
Libin M, de Wind A, Ravoet M, Le Buanec H, Sibille C,
Manfouo-Foutsop G, et al: CD4+ follicular helper T cell
infiltration predicts breast cancer survival. J Clin Invest.
123:2873–2892. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang M, Zhai R, Wang M, Zhu W, Zhang J, Yu
M, Zhang W, Ye J and Liu L: Tertiary lymphoid structures in head
and neck squamous cell carcinoma improve prognosis by recruiting
CD8+ T cells. Mol Oncol. 17:1514–1530. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Goc J, Germain C, Vo-Bourgais TKD, Lupo A,
Klein C, Knockaert S, de Chaisemartin L, Ouakrim H, Becht E,
Alifano M, et al: Dendritic cells in Tumor-associated tertiary
lymphoid structures signal a Th1 cytotoxic immune contexture and
license the positive prognostic value of infiltrating
CD8+ T cells. Cancer Res. 74:705–715. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Trüb M and Zippelius A: Tertiary lymphoid
structures as a predictive biomarker of response to cancer
immunotherapies. Front Immunol. 12:6745652021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Brownlie RJ, Zamoyska R and Salmond RJ:
Regulation of autoimmune and Anti-tumour T-cell responses by
PTPN22. Immunology. 154:377–382. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Peng Y, Xiao L, Rong H, Ou Z, Cai T, Liu
N, Li B, Zhang L, Wu F, Lan T, et al: Single-cell profiling of
tumor-infiltrating TCF1/TCF7+ T cells reveals a T lymphocyte subset
associated with tertiary lymphoid structures/organs and a superior
prognosis in oral cancer. Oral Oncol. 119:1053482021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sakaguchi S, Yamaguchi T, Nomura T and Ono
M: Regulatory T cells and immune tolerance. Cell. 133:775–787.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang M, Zhu W, Zhang J, Yu M, Zhai R and
Liu L: Tertiary lymphoid structures in oral lichen planus and oral
epithelial dysplasia with lichenoid features: A comparative study.
Oral Dis. 29:154–164. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ning J, Hao J, Guo F, Hou X, Li L, Wang J,
Wang S, Gao Y, Zheng X and Gao M: ABCB11 accumulated in immature
tertiary lymphoid structures participates in xenobiotic metabolic
process and predicts resistance to PD-1/PD-L1 inhibitors in head
and neck squamous cell carcinoma. Transl Oncol. 36:1017472023.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhu W, Germain C, Liu Z, Sebastian Y, Devi
P, Knockaert S, Brohawn P, Lehmann K, Damotte D, Validire P, et al:
A high density of tertiary lymphoid structure B cells in lung
tumors is associated with increased CD4+ T cell receptor
repertoire clonality. Oncoimmunology. 4:e10519222015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Brummelman J, Pilipow K and Lugli E: The
Single-cell phenotypic identity of human CD8+ and CD4+ T cells. Int
Rev Cell Mol Biol. 341:63–124. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Moretta A: Natural killer cells and
dendritic cells: Rendezvous in abused tissues. Nat Rev Immunol.
2:957–965. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
72
|
Farhood B, Najafi M and Mortezaee K:
CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A
review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rustamkhanov RA, Gantsev KSh and
Tursumetov DS: Tertiary lymphoid structures and cancer prognosis
(brief review). Kreativnaâ Hirurgiâ i Onkologiâ. 9:293–296. 2020.
View Article : Google Scholar
|
|
74
|
Giraldo NA, Becht E, Pagès F, Skliris G,
Verkarre V, Vano Y, Mejean A, Saint-Aubert N, Lacroix L, Natario I,
et al: Orchestration and prognostic significance of immune
checkpoints in the microenvironment of primary and metastatic renal
cell cancer. Clin Cancer Res. 21:3031–3040. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Dieu-Nosjean M, Giraldo NA, Kaplon H,
Germain C, Fridman WH and Sautès-Fridman C: Tertiary lymphoid
structures, drivers of the anti-tumor responses in human cancers.
Immunol Rev. 271:260–275. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Gordon S and Martinez-Pomares L:
Physiological roles of macrophages. Pflugers Arch. 469:365–374.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen WC, Lai CH, Chuang HC, Lin PY and
Chen MF: Inflammation-induced myeloid-derived suppressor cells
associated with squamous cell carcinoma of the head and neck:
Myeloid-derived suppressor cells in HNSCC. Head Neck. 39:347–355.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Koscsó B, Kurapati S, Rodrigues RR, Nedjic
J, Gowda K, Shin C, Soni C, Ashraf AZ, Purushothaman I, Palisoc M,
et al: Gut-resident CX3CR1hi macrophages induce tertiary
lymphoid structures and IgA response in situ. Sci Immunol.
5:eaax00622020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sautès-Fridman C, Petitprez F, Calderaro J
and Fridman WH: Tertiary lymphoid structures in the era of cancer
immunotherapy. Nat Rev Cancer. 19:307–325. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu Z, Meng X, Tang X, Zou W and He Y:
Intratumoral tertiary lymphoid structures promote patient survival
and immunotherapy response in head neck squamous cell carcinoma.
Cancer Immunol Immunother. 72:1505–1521. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ruddle NH: High endothelial venules and
lymphatic vessels in tertiary lymphoid organs: Characteristics,
functions, and regulation. Front Immunol. 7:4912016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ager A and May MJ: Understanding high
endothelial venules: Lessons for cancer immunology. Oncoimmunology.
4:e10087912015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Martinet L, Filleron T, Le Guellec S,
Rochaix P, Garrido I and Girard JP: High Endothelial venule blood
vessels for Tumor-infiltrating lymphocytes are associated with
lymphotoxin β-producing dendritic cells in human breast cancer. J
Immunol. 191:2001–2008. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Moussion C and Girard JP: Dendritic cells
control lymphocyte entry to lymph nodes through high endothelial
venules. Nature. 479:542–546. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Weed DT, Zilio S, McGee C, Marnissi B,
Sargi Z, Franzmann E, Thomas G, Leibowitz J, Nicolli E, Arnold D,
et al: The tumor immune microenvironment architecture correlates
with risk of recurrence in head and neck squamous cell carcinoma.
Cancer Res. 83:3886–3900. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sosa J, Glathar A and Sinha S:
Architecture of head and neck squamous cell carcinoma tumor
microenvironment revealed: Can tertiary lymphoid structures predict
post-surgery recurrence? Transl Cancer Res. 13:484–489. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang X and Wang X, Hou L, Xu Z, Liu Y and
Wang X: Nanoparticles overcome adaptive immune resistance and
enhance immunotherapy via targeting tumor microenvironment in lung
cancer. Front Pharmacol. 14:11309372023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Aggarwal C, Saba NF, Algazi A, Sukari A,
Seiwert TY, Haigentz M, Porosnicu M, Bonomi M, Boyer J, Esser MT,
et al: Safety and efficacy of MEDI0457 plus durvalumab in patients
with human Papillomavirus-associated Recurrent/metastatic head and
neck squamous cell carcinoma. Clin Cancer Res. 29:560–570. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Pisani S, Bertino G, Prina-Mello A, Locati
LD, Mauramati S, Genta I, Dorati R, Conti B and Benazzo M:
Electroporation in Head-and-Neck Cancer: An innovative approach
with immunotherapy and nanotechnology combination. Cancers (Basel).
14:53632022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bauman JE, Julian R, Saba NF, Wise-Draper
TM, Adkins DR, O'Brien P, Fidler MJ, Gibson MK, Duvvuri U,
Heath-Chiozzi M, et al: Phase II trial of CDX-3379 and Cetuximab in
Recurrent/Metastatic, HPV-Negative, Cetuximab-resistant head and
neck cancer. Cancers. 14:23552022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hanoteau A, Newton JM, Krupar R, Huang C,
Liu HC, Gaspero A, Gartrell RD, Saenger YM, Hart TD, Santegoets SJ,
et al: Tumor microenvironment modulation enhances immunologic
benefit of chemoradiotherapy. J Immunother Cancer. 7:102019.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Colbeck EJ, Ager A, Gallimore A and Jones
GW: Tertiary lymphoid structures in cancer: Drivers of antitumor
immunity, immunosuppression, or bystander sentinels in disease?
Front Immunol. 8:18302017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li H, Ding JY, Zhang MJ, Yu HJ and Sun ZJ:
Tertiary lymphoid structures and cytokines interconnections: The
implication in cancer immunotherapy. Cancer Lett. 568:2162932023.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lukashev M, LePage D, Wilson C, Bailly V,
Garber E, Lukashin A, Ngam-ek A, Zeng W, Allaire N, Perrin S, et
al: Targeting the Lymphotoxin-β receptor with agonist antibodies as
a potential cancer therapy. Cancer Res. 66:9617–9624. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Girard JP, Moussion C and Förster R: HEVs,
lymphatics and homeostatic immune cell trafficking in lymph nodes.
Nat Rev Immunol. 12:762–773. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wen Z, Liu H, Qiao D, Chen H, Li L, Yang
Z, Zhu C, Zeng Z, Chen Y and Liu L: Nanovaccines fostering tertiary
lymphoid structure to attack mimicry nasopharyngeal carcinoma. ACS
Nano. 17:7194–7206. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ferris RL, Blumenschein G, Fayette J,
Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE,
Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of
the head and neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Nishino M, Ramaiya NH, Hatabu H and Hodi
FS: Monitoring immune-checkpoint blockade: Response evaluation and
biomarker development. Nat Rev Clin Oncol. 14:655–668. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wu Z, Zhou J, Xiao Y, Ming J, Zhou J, Dong
F, Zhou X, Xu Z, Zhao X, Lei P and Huang T: CD20+CD22+ADAM28+ B
cells in tertiary lymphoid structures promote immunotherapy
response. Front Immunol. 13:8655962022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lee DJ, Lee HJ, Farmer JR and Reynolds KL:
Mechanisms driving immune-related adverse events in cancer patients
treated with immune checkpoint inhibitors. Curr Cardiol Rep.
23:982021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L
and Liu X: Application of PD-1 blockade in cancer immunotherapy.
Comput Struct Biotechnol J. 17:661–674. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Migden MR, Rischin D, Schmults CD,
Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim
AM, Chang ALS, et al: PD-1 blockade with cemiplimab in advanced
cutaneous squamous-cell carcinoma. N Engl J Med. 379:341–351. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Solomon B, Young RJ and Rischin D: Head
and neck squamous cell carcinoma: Genomics and emerging biomarkers
for immunomodulatory cancer treatments. Semin Cancer Biol.
52:228–240. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Teillaud JL and Dieu-Nosjean MC: Tertiary
lymphoid structures: An Anti-tumor school for adaptive immune cells
and an antibody factory to fight cancer? Front Immunol. 8:8302017.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Sadeghirad H, Monkman J, Tan CW, Liu N,
Yunis J, Donovan ML, Moradi A, Jhaveri N, Perry C, Adams MN, et al:
Spatial dynamics of tertiary lymphoid aggregates in head and neck
cancer: Insights into immunotherapy response. J Transl Med.
22:6772024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Misra R, Sarkar K, Lee J, Pizzuti VJ, Lee
DS, Currie MP, Torregrosa-Allen SE, Long DE, Durm GA, Langer MP, et
al: Radioluminescent nanoparticles for radiation-controlled release
of drugs. J Control Release. 303:237–252. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Shahbazi MA, Fernández TD, Mäkilä EM, Le
Guével X, Mayorga C, Kaasalainen MH, Salonen JJ, Hirvonen JT and
Santos HA: Surface chemistry dependent immunostimulative potential
of porous silicon nanoplatforms. Biomaterials. 35:9224–9235. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Huayamares SG, Lokugamage MP, Rab R, Da
Silva Sanchez AJ, Kim H, Radmand A, Loughrey D, Lian L, Hou Y,
Achyut BR, et al: High-throughput screens identify a lipid
nanoparticle that preferentially delivers mRNA to human tumors in
vivo. J Control Release. 357:394–403. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Groeneveld CS, Fontugne J, Cabel L,
Bernard-Pierrot I, Radvanyi F, Allory Y and de Reyniès A: Tertiary
lymphoid structures marker CXCL13 is associated with better
survival for patients with advanced-stage bladder cancer treated
with immunotherapy. Eur J Cancer. 148:181–189. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Personeni N, Pressiani T, D'Alessio A,
Prete MG, Bozzarelli S, Terracciano L, Dal Buono A, Capogreco A,
Aghemo A, Lleo A, et al: Hepatotoxicity in patients with
hepatocellular carcinoma on treatment with immune checkpoint
inhibitors. Cancers. 13:56652021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Tian C, Li C, Zeng Y, Liang J, Yang Q, Gu
F, Hu Y and Liu L: Identification of CXCL13/CXCR5 axis's crucial
and complex effect in human lung adenocarcinoma. Int
Immunopharmacol. 94:1074162021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sweeney KJ, Tetzlaff MT, Vega F,
Gillenwater A, Zuo Z, Gross N, Nagarajan P, Wargo J, Nelson K,
Prieto VG, et al: Tertiary lymphoid structures with overlapping
histopathologic features of cutaneous marginal zone lymphoma during
neoadjuvant cemiplimab therapy are associated with antitumor
response. J Cutan Pathol. 48:674–679. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Clubb JHA, Kudling TV, Heiniö C, Basnet S,
Pakola S, Cervera Carrascón V, Santos JM, Quixabeira DCA, Havunen
R, Sorsa S, et al: Adenovirus encoding tumor necrosis factor alpha
and interleukin 2 induces a tertiary lymphoid structure signature
in immune checkpoint inhibitor refractory head and neck cancer.
Front Immunol. 13:7942512022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Maldonado L, Teague JE, Morrow MP, Jotova
I, Wu TC, Wang C, Desmarais C, Boyer JD, Tycko B, Robins HS, et al:
Intramuscular therapeutic vaccination targeting HPV16 induces T
cell responses that localize in mucosal lesions. Sci Transl Med.
6:221ra132014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Thommen DS, Koelzer VH, Herzig P, Roller
A, Trefny M, Dimeloe S, Kiialainen A, Hanhart J, Schill C, Hess C,
et al: A transcriptionally and functionally distinct
PD-1+ CD8+ T cell pool with predictive
potential in non-small-cell lung cancer treated with PD-1 blockade.
Nat Med. 24:994–1004. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mei Z, Huang J, Qiao B and Lam AK: Immune
checkpoint pathways in immunotherapy for head and neck squamous
cell carcinoma. Int J Oral Sci. 12:162020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wang X, Venet D, Lifrange F, Larsimont D,
Rediti M, Stenbeck L, Dupont F, Rouas G, Garcia AJ, Craciun L, et
al: Spatial transcriptomics reveals substantial heterogeneity in
triple-negative breast cancer with potential clinical implications.
Nat Commun. 15:102322024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wang Y, Zhang D, Huang X, Wu G, Wang C, Li
J, Wang S, Xian X, Fu B and Li K: From heterogeneity to prognosis:
Understanding the complexity of tertiary lymphoid structures in
tumors. Mol Biol Rep. 52:1972025. View Article : Google Scholar : PubMed/NCBI
|