1
|
Huang FL, Liao EC, Li CL, Yen CY and Yu
SJ: Pathogenesis of pediatric B-cell acute lymphoblastic leukemia:
Molecular pathways and disease treatments. Oncol Lett. 20:448–454.
2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Inaba H and Mullighan CG: Pediatric acute
lymphoblastic leukemia. Haematologica. 105:2524–2539. 2020.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Yasuda T, Sanada M, Tsuzuki S and Hayakawa
F: Oncogenic lesions and molecular subtypes in adults with B-cell
acute lymphoblastic leukemia. Cancer Sci. 114:8–15. 2023.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Zeng XL, Heneghan MB and Badawy SM:
Adherence to oral chemotherapy in acute lymphoblastic leukemia
during maintenance therapy in children, adolescents, and young
adults: A systematic review. Curr Oncol. 30:720–748. 2023.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Simioni C, Martelli AM, Zauli G, Vitale M,
McCubrey JA, Capitani S and Neri LM: Targeting the
phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin
signaling pathway in B-lineage acute lymphoblastic leukemia: An
update. J Cell Physiol. 233:6440–6454. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Han L, Xing H, Cao W, Song Y, Jiang Z and
Yu J: Bispecific antibodies in immunotherapy for adult acute
leukemia: Latest updates from the 65th American Society of
Hematology 2023 annual meeting. Expert Opin Biol Ther. 24:221–223.
2024. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wei G, Wang J, Huang H and Zhao Y: Novel
immunotherapies for adult patients with B-lineage acute
lymphoblastic leukemia. J Hematol Oncol. 10:1502017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Krali O, Marincevic-Zuniga Y, Arvidsson G,
Enblad AP, Lundmark A, Sayyab S, Zachariadis V, Heinäniemi M,
Suhonen J, Oksa L, et al: Multimodal classification of molecular
subtypes in pediatric acute lymphoblastic leukemia. NPJ Precis
Oncol. 7:1312023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu J, Qiu H, Zhao J and Pavlos NJ: The
molecular structure and function of sorting nexin 10 in skeletal
disorders, cancers, and other pathological conditions. J Cell
Physiol. 236:4207–4215. 2021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhu CH, Morse LR and Battaglino RA: SNX10
is required for osteoclast formation and resorption activity. J
Cell Biochem. 113:1608–1615. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ye L, Morse LR, Zhang L, Sasaki H, Mills
JC, Odgren PR, Sibbel G, Stanley JR, Wong G, Zamarioli A and
Battaglino RA: Osteopetrorickets due to Snx10 deficiency in mice
results from both failed osteoclast activity and loss of gastric
acid-dependent calcium absorption. PLoS Genet. 11:e10050572015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Feng H, Tan J, Wang Q, Zhou T, Li L, Sun
D, Fan M, Cheng H and Shen W: α-Hederin regulates glucose
metabolism in intestinal epithelial cells by increasing SNX10
expression. Phytomedicine. 111:1546772023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang S, Hu B, You Y, Yang Z, Liu L, Tang
H, Bao W, Guan Y and Shen X: Sorting nexin 10 acts as a tumor
suppressor in tumorigenesis and progression of colorectal cancer
through regulating chaperone mediated autophagy degradation of
p21Cip1/WAF1. Cancer Lett. 419:116–127. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liao D, He Y, He B, Zeng S, Cui Y, Li C
and Huang H: Inhibiting SNX10 induces autophagy to suppress
invasion and EMT and inhibits the PI3K/AKT pathway in cervical
cancer. Clin Transl Oncol. Oct 5–2024.(Epub ahead of print).
View Article : Google Scholar
|
15
|
Gimple RC, Zhang G, Wang S, Huang T, Lee
J, Taori S, Lv D, Dixit D, Halbert ME, Morton AR, et al: Sorting
nexin 10 sustains PDGF receptor signaling in glioblastoma stem
cells via endosomal protein sorting. JCI Insight. 8:e1580772023.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang J, Deng J, Wang K, Wang A, Chen G,
Chen Q, Ye M, Wu X, Wang X and Lin D: Tetrahydropalmatine promotes
random skin flap survival in rats via the PI3K/AKT signaling
pathway. J Ethnopharmacol. 324:1178082024. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xiao F, Zhang Z, Li L, He X and Chen Y:
LINC01370 suppresses hepatocellular carcinoma proliferation and
metastasis by regulating the PI3K/AKT pathway. Discov Oncol.
15:3262024. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xu S, Xie X, Li C, Liu Z and Zuo D:
Micromolar sodium fluoride promotes osteo/odontogenic
differentiation in dental pulp stem cells by inhibiting PI3K/AKT
pathway. Arch Oral Biol. 131:1052652021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang HP, Yu ZL, Wu BB and Sun FR: PENK
inhibits osteosarcoma cell migration by activating the PI3K/Akt
signaling pathway. J Orthop Surg Res. 15:1622020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhu Y, Jing L, Li X, Zheng D, Zhou G,
Zhang Y, Sang Y, Shi Z, Sun Z and Zhou X: Decabromodiphenyl ether
disturbs hepatic glycolipid metabolism by regulating the
PI3K/AKT/GLUT4 and mTOR/PPARγ/RXRα pathway in mice and L02 cells.
Sci Total Environ. 763:1429362021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fransecky L, Mochmann LH and Baldus CD:
Outlook on PI3K/AKT/mTOR inhibition in acute leukemia. Mol Cell
Ther. 3:22015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liem M, Ang CS and Mathivanan S: Insulin
mediated activation of PI3K/Akt signalling pathway modifies the
proteomic cargo of extracellular vesicle. Proteomics.
17:16003712017. View Article : Google Scholar
|
23
|
Glaviano A, Foo A, Lam HY, Yap KCH, Jacot
W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, et al:
PI3K/AKT/mTOR signaling transduction pathway and targeted therapies
in cancer. Mol Cancer. 22:1382023. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhong C, Ju G, Yang S, Zhao X, Chen J and
Li N: Total flavonoids of polygala fallax hemsl induce apoptosis of
human ectopic endometrial stromal cells through PI3K/AKT/Bcl-2
signaling pathway. Gynecol Obstet Invest. 88:197–213. 2023.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Sun F, Mu C, Kwok HF, Xu J, Wu Y, Liu W,
Sabatier JM, Annweiler C, Li X, Cao Z and Xie Y: Capivasertib
restricts SARS-CoV-2 cellular entry: A potential clinical
application for COVID-19. Int J Biol Sci. 17:2348–2355. 2021.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Sultana F, Morse LR, Picotto G, Liu W, Jha
PK, Odgren PR and Battaglino RA: Snx10 and PIKfyve are required for
lysosome formation in osteoclasts. J Cell Biochem. 121:2927–2937.
2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
He J and Li X: Identification and
validation of aging-related genes in idiopathic pulmonary fibrosis.
Front Genet. 13:7800102022. View Article : Google Scholar : PubMed/NCBI
|
28
|
World Medical Association, . World medical
association declaration of Helsinki: Ethical principles for medical
research involving human subjects. JAMA. 310:2191–2194. 2013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Grüninger PK, Uhl F, Herzog H, Gentile G,
Andrade-Martinez M, Schmidt T, Han K, Morgens DW, Bassik MC, Cleary
ML, et al: Functional characterization of the PI3K/AKT/MTOR
signaling pathway for targeted therapy in B-precursor acute
lymphoblastic leukemia. Cancer Gene Ther. 29:1751–1760. 2022.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang L, Liu X, Kang Q, Pan C, Zhang T,
Feng C, Chen L, Wei S and Wang J: Nrf2 overexpression decreases
vincristine chemotherapy sensitivity through the PI3K-AKT pathway
in adult B-Cell acute lymphoblastic leukemia. Front Oncol.
12:8765562022. View Article : Google Scholar : PubMed/NCBI
|
32
|
Holz C, Lange S, Sekora A, Knuebel G,
Krohn S, Murua Escobar H, Junghanss C and Richter A: Combined BCL-2
and PI3K/AKT pathway inhibition in KMT2A-rearranged acute
B-lymphoblastic leukemia cells. Int J Mol Sci. 24:13592023.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Ma J, Chen T, Wu S, Yang C, Bai M, Shu K,
Li K, Zhang G, Jin Z, He F, et al: iProX: An integrated proteome
resource. Nucleic Acids Res. 47:D1211–D1217. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen T, Ma J, Liu Y, Chen Z, Xiao N, Lu Y,
Fu Y, Yang C, Li M, Wu S, et al: iProX in 2021: Connecting
proteomics data sharing with big data. Nucleic Acids Res.
50:D1522–D1527. 2021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhou B, Min B, Liu W, Li Y, Zhu F, Huang
J, Fang J, Chen Q and Wu D: Construction of a five-gene-based
prognostic model for relapsed/refractory acute lymphoblastic
leukemia. Hematology. 29:24129522024. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang Y, Sun N, Zhang Z, Zhou Y, Liu H,
Zhou X, Zhang Y and Zhao Y: Overexpression pattern of miR-301b in
osteosarcoma and its relevance with osteosarcoma cellular behaviors
via modulating SNX10. Biochem Genet. 61:87–100. 2023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang J, Wu Y, Jin HY, Guo S, Dong Z,
Zheng ZC, Wang Y and Zhao Y: Prognostic value of sorting nexin 10
weak expression in stomach adenocarcinoma revealed by weighted gene
co-expression network analysis. World J Gastroenterol.
24:4906–4919. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Battaglino RA, Jha P, Sultana F, Liu W and
Morse LR: FKBP12: A partner of Snx10 required for vesicular
trafficking in osteoclasts. J Cell Biochem. 120:13321–13329. 2019.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Jiao J, Zhao Y, Li Q, Jin S and Liu Z:
LncRNAs in tumor metabolic reprogramming and tumor microenvironment
remodeling. Front Immunol. 15:14671512024. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang X, Zhang S, Xue D, Neculai D and
Zhang J: Metabolic reprogramming of macrophages in cancer therapy.
Trends Endocrinol Metab. Sep 19–2024.(Epub ahead of print).
View Article : Google Scholar
|
41
|
Shi R, Tang YQ and Miao H: Metabolism in
tumor microenvironment: Implications for cancer immunotherapy.
MedComm (2020). 1:47–68. 2020. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Gupta SK, Bakhshi S, Kumar L, Seth R and
Kumar R: IKZF1 (IKAROS) deletions in B-ALL and its clinical
correlation: A prospective study from a tertiary care centre in
Northern India. Leuk Res. 41:7–11. 2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Altieri F, Buono L, Lanzilli M, Mirabelli
P, Cianflone A, Beneduce G, De Matteo A, Parasole R, Salvatore M
and Smaldone G: LINC00958 as new diagnostic and prognostic
biomarker of childhood acute lymphoblastic leukaemia of B cells.
Front Oncol. 14:13881542024. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhu X and Li S: Nanomaterials in tumor
immunotherapy: New strategies and challenges. Mol Cancer.
22:942023. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bao WL, Wu Q, Hu B, Sun D, Zhao S, Shen X,
Cheng H and Shen W: Oral nanoparticles of SNX10-shRNA plasmids
ameliorate mouse colitis. Int J Nanomedicine. 16:345–357. 2021.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Bao W, Liu X, You Y, Hou H, Wang X, Zhang
S, Li H, Feng G, Cao X, Jiang H, et al: Targeting sorting nexin 10
improves mouse colitis via inhibiting PIKfyve-mediated TBK1/c-Rel
signaling activation. Pharmacol Res. 169:1056792021. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li J, Dai Y, Wu L, Zhang M, Ouyang W,
Huang J and Chen S: Emerging molecular subtypes and therapeutic
targets in B-cell precursor acute lymphoblastic leukemia. Front
Med. 15:347–371. 2021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Baersch G, Möllers T, Hötte A,
Dockhorn-Dworniczak B, Rübe C, Ritter J, Jürgens H and Vormoor J:
Good engraftment of B-cell precursor ALL in NOD-SCID mice. Klin
Padiatr. 209:178–185. 1997. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lepus CM, Gibson TF, Gerber SA, Kawikova
I, Szczepanik M, Hossain J, Ablamunits V, Kirkiles-Smith N, Herold
KC, Donis RO, et al: Comparison of human fetal liver, umbilical
cord blood, and adult blood hematopoietic stem cell engraftment in
NOD-scid/gammac-/-, Balb/c-Rag1-/-gammac-/-, and C.B-17-scid/bg
immunodeficient mice. Hum Immunol. 70:790–802. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chen A, Neuwirth I and
Herndler-Brandstetter D: Modeling the tumor microenvironment and
cancer immunotherapy in next-generation humanized mice. Cancers
(Basel). 15:29892023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Lampreht TU, Horvat S and Cemazar M:
Transgenic mouse models in cancer research. Front Oncol. 8:2682018.
View Article : Google Scholar : PubMed/NCBI
|