
Prospects and applications of NK therapy in the treatment of gliomas (Review)
- Authors:
- Yueyang Liu
- Chen Su
- Xiyao Wei
- Ningbo Wei
- Qijun Qian
- Zenghui Xu
-
Affiliations: Shanghai Mengchao Cancer Hospital, Shanghai 201805, P.R. China - Published online on: June 3, 2025 https://doi.org/10.3892/or.2025.8921
- Article Number: 88
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS and Khatua S: Advances in NK cell therapy for brain tumors. NPJ Precis Oncol. 7:172023. View Article : Google Scholar : PubMed/NCBI | |
Schaff LR and Mellinghoff IK: Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 329:574–587. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Tang L, Li X, Fan F and Liu Z: Immunotherapy for glioma: Current management and future application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ohgaki H and Kleihues P: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 64:479–489. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Zhao C, Zong S, Piao J, Zhao Y and Chen X: A review on surgical treatment options in gliomas. Front Oncol. 13:10884842023. View Article : Google Scholar : PubMed/NCBI | |
Minniti G, Niyazi M, Alongi F, Navarria P and Belka C: Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol. 16:362021. View Article : Google Scholar : PubMed/NCBI | |
Jatyan R, Sahel DK, Singh P, Sakhuja R, Mittal A and Chitkara D: Temozolomide-fatty acid conjugates for glioblastoma multiforme: In vitro and in vivo evaluation. J Control Release. 359:161–174. 2023. View Article : Google Scholar : PubMed/NCBI | |
Conti A, Geffroy F, Kamimura HAS, Novell A, Tournier N, Mériaux S and Larrat B: Regulation of P-glycoprotein and breast cancer resistance protein expression induced by focused ultrasound-mediated blood-brain barrier disruption: A pilot study. Int J Mol Sci. 23:154882022. View Article : Google Scholar : PubMed/NCBI | |
Luo H and Shusta EV: Blood-brain barrier modulation to improve glioma drug delivery. Pharmaceutics. 12:10852020. View Article : Google Scholar : PubMed/NCBI | |
Oberoi RK, Parrish KE, Sio TT, Mittapalli RK, Elmquist WF and Sarkaria JN: Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro Oncol. 18:27–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yamanaka R: Novel immunotherapeutic approaches to glioma. Curr Opin Mol Ther. 8:46–51. 2006.PubMed/NCBI | |
Guha P, Heatherton KR, O'Connell KP, Alexander IS and Katz SC: Assessing the future of solid tumor immunotherapy. Biomedicines. 10:6552022. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Liu Y, He Z, Li L, Liu S, Jiang M, Zhao B, Deng M, Wang W, Mi X, et al: Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov. 10:402024. View Article : Google Scholar : PubMed/NCBI | |
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH and Deng YC: Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther. 7:2052022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Li J, Dong X, Zhou X, Zhao L, Wang X, Rashu R, Zhao W and Yang X: NK cells contribute to protective memory T cell mediated immunity to Chlamydia muridarum infection. Front Cell Infect Microbiol. 10:2962020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Zhang H, Ding J, Liu H, Li H, Li H, Lu M, Miao Y, Li L and Zheng J: Combination therapy with EpCAM-CAR-NK-92 cells and regorafenib against human colorectal cancer models. J Immunol Res. 2018:42635202018. View Article : Google Scholar : PubMed/NCBI | |
Page A, Chuvin N, Valladeau-Guilemond J and Depil S: Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol. 21:315–331. 2024. View Article : Google Scholar : PubMed/NCBI | |
Alshahrani MY, Uthirapathy S, Kumar A, Oghenemaro EF, R R, Lal M, Arora I, Chauhan AS, Saud MJ and Hulail HM: NK cell-based cancer immunotherapies: Current progress, challenges and emerging opportunities. J Biochem Mol Toxicol. 38:e700442024. View Article : Google Scholar : PubMed/NCBI | |
Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, Uprety N, Wang F, Huang Y, Gabrusiewicz K, et al: Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Invest. 131:e1421162021. View Article : Google Scholar : PubMed/NCBI | |
Poli A, Kmiecik J, Domingues O, Hentges F, Bléry M, Chekenya M, Boucraut J and Zimmer J: NK cells in central nervous system disorders. J Immunol. 190:5355–5362. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brown NF, Carter TJ, Ottaviani D and Mulholland P: Harnessing the immune system in glioblastoma. Br J Cancer. 119:1171–1181. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sedgwick AJ, Ghazanfari N, Constantinescu P, Mantamadiotis T and Barrow AD: The role of NK cells and innate lymphoid cells in brain cancer. Front Immunol. 11:15492020. View Article : Google Scholar : PubMed/NCBI | |
Miller CR and Perry A: Glioblastoma. Arch Pathol Lab Med. 131:397–406. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, Tobias AL, Han Y and Lesniak MS: IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 18:6110–6121. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ and Parsa AT: Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 19:3165–3175. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khan F, Lin Y, Ali H, Pang L, Dunterman M, Hsu WH, Frenis K, Grant Rowe R, Wainwright DA, McCortney K, et al: Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression. Nat Commun. 15:19872024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu T, Yang N, Xu S, Li X and Wang D: Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis. Oncol Rep. 36:3522–3528. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chauhan P, Hu S, Sheng WS and Lokensgard JR: Regulatory T-cells suppress cytotoxic T lymphocyte responses against microglia. Cells. 11:28262022. View Article : Google Scholar : PubMed/NCBI | |
van Hooren L, Handgraaf SM, Kloosterman DJ, Karimi E, van Mil LWHG, Gassama AA, Solsona BG, de Groot MHP, Brandsma D, Quail DF, et al: CD103+ regulatory T cells underlie resistance to radio-immunotherapy and impair CD8+ T cell activation in glioblastoma. Nat Cancer. 4:665–681. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lawler SE, Speranza MC, Cho CF and Chiocca EA: Oncolytic viruses in cancer treatment: A review. JAMA Oncol. 3:841–849. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA and Mitchell DA: The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol. 39:225–239. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiacheng D, Jiayue C, Ying G, Shaohua W, Wenhui L and Xinyu H: Research progress and challenges of the PD-1/PD-L1 axis in gliomas. Cell Biosci. 14:1232024. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, You Y, Shen Z and Shi L: EGFRvIII-CAR-T cells with PD-1 knockout have improved anti-glioma activity. Pathol Oncol Res. 26:2135–2141. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Huang J, Liu X, Cheng Q, Luo C and Liu Z: CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int. 20:72020. View Article : Google Scholar : PubMed/NCBI | |
Kim KS, Habashy K, Gould A, Zhao J, Najem H, Amidei C, Saganty R, Arrieta VA, Dmello C, Chen L, et al: Fc-enhanced anti-CTLA-4, anti-PD-1, doxorubicin, and ultrasound-mediated blood-brain barrier opening: A novel combinatorial immunotherapy regimen for gliomas. Neuro Oncol. 26:2044–2060. 2024. View Article : Google Scholar : PubMed/NCBI | |
Du L, Xing Z, Tao B, Li T, Yang D, Li W, Zheng Y, Kuang C and Yang Q: Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn-AhR-AQP4 signaling pathway. Signal Transduct Target Ther. 5:102020. View Article : Google Scholar : PubMed/NCBI | |
Xing Z, Li X, He ZNT, Fang X, Liang H, Kuang C, Li A and Yang Q: IDO1 inhibitor RY103 suppresses Trp-GCN2-mediated angiogenesis and counters immunosuppression in glioblastoma. Pharmaceutics. 16:8702024. View Article : Google Scholar : PubMed/NCBI | |
Arora J, Ayyappan S, Yin C, Smith BJ, Lemke-Miltner CD, Wang Z, Farooq U and Weiner GJ: T-cell help in the tumor microenvironment enhances rituximab-mediated NK-cell ADCC. Blood. 143:1816–1824. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hofman T, Ng SW, Garcés-Lázaro I, Heigwer F, Boutros M and Cerwenka A: IFNγ mediates the resistance of tumor cells to distinct NK cell subsets. J Immunother Cancer. 12:e0094102024. View Article : Google Scholar : PubMed/NCBI | |
Kurebayashi Y, Olkowski CP, Lane KC, Vasalatiy OV, Xu BC, Okada R, Furusawa A, Choyke PL, Kobayashi H and Sato N: Rapid depletion of intratumoral regulatory T cells induces synchronized CD8 T- and NK-cell activation and IFNγ-dependent tumor vessel regression. Cancer Res. 81:3092–3104. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Li C, Wang Y, Chi X, Sun T, Zhang Q, Zhang Y and Ji N: Expression features of targets for anti-glioma CAR-T cell immunotherapy. J Neurooncol. 171:179–189. 2025. View Article : Google Scholar : PubMed/NCBI | |
Antonucci L, Canciani G, Mastronuzzi A, Carai A, Del Baldo G and Del Bufalo F: CAR-T therapy for pediatric high-grade gliomas: Peculiarities, current investigations and future strategies. Front Immunol. 13:8671542022. View Article : Google Scholar : PubMed/NCBI | |
Santiago-Vicente Y, de Jesús Castillejos-López M, Carmona-Aparicio L, Coballase-Urrutia E, Velasco-Hidalgo L, Niembro-Zúñiga AM, Zapata-Tarrés M and Torres-Espíndola LM: Immunotherapy for pediatric gliomas: CAR-T cells against B7H3: A review of the literature. CNS Neurol Disord Drug Targets. 23:420–430. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Zhang Q, Zhang J and Liu F: Targeting tumor-associated antigen: A promising CAR-T therapeutic strategy for glioblastoma treatment. Front Pharmacol. 12:6616062021. View Article : Google Scholar : PubMed/NCBI | |
Hatae R, Kyewalabye K, Yamamichi A, Chen T, Phyu S, Chuntova P, Nejo T, Levine LS, Spitzer MH and Okada H: Enhancing CAR-T cell metabolism to overcome hypoxic conditions in the brain tumor microenvironment. JCI Insight. 9:e1771412024. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Ge H, Yang C, Long Y and Huang J: CD70 as a novel target of CAR-T-cell therapy for gliomas. J Clin Oncol. 35 (Suppl 7):S1482017. View Article : Google Scholar | |
Brown CE, Hibbard JC, Alizadeh D, Blanchard MS, Natri HM, Wang D, Ostberg JR, Aguilar B, Wagner JR, Paul JA, et al: Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: A phase 1 trial. Nat Med. 30:1001–1012. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hou AJ, Shih RM, Uy BR, Shafer A, Chang ZL, Comin-Anduix B, Guemes M, Galic Z, Phyu S, Okada H, et al: IL-13Rα2/TGF-β bispecific CAR-T cells counter TGF-β-mediated immune suppression and potentiate anti-tumor responses in glioblastoma. Neuro Oncol. 26:1850–1866. 2024. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Zhang XY, Zhen YW, Guo GC, Peng DZ, Wei C, Pei DL, Yu B, Ji YC, Liu XZ, et al: Polo-like kinase 1 is related with malignant characteristics and inhibits macrophages infiltration in glioma. Front Immunol. 13:10580362022. View Article : Google Scholar : PubMed/NCBI | |
Tang F, Wang Y, Zeng Y, Xiao A, Tong A and Xu J: Tumor-associated macrophage-related strategies for glioma immunotherapy. NPJ Precis Oncol. 7:782023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xu L, Ding Q, Li X, Wang K, Xu S and Liu B: Siglec15 is a prognostic indicator and a potential tumor-related macrophage regulator that is involved in the suppressive immunomicroenvironment in gliomas. Front Immunol. 14:10650622023. View Article : Google Scholar : PubMed/NCBI | |
Gerew A, Sexton S, Wasko KM, Shearman MS, Zhang K, Chang KH and Khan SQ: Deletion of CISH and TGFβR2 in iPSC-derived NK cells promotes high cytotoxicity and enhances in vivo tumor killing. Blood. 138 (Suppl 1):S27802021. View Article : Google Scholar | |
Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, Griffero F, Marubbi D, Spaziante R, Bellora F, et al: NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol. 182:3530–3539. 2009. View Article : Google Scholar : PubMed/NCBI | |
Daga A, Orengo AM, Gangemi RMR, Marubbi D, Perera M, Comes A, Ferrini S and Corte G: Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer. 121:1756–63. 2007. View Article : Google Scholar : PubMed/NCBI | |
Murad S, Michen S, Becker A, Füssel M, Schackert G, Tonn T, Momburg F and Temme A: NKG2C+ NK cells for immunotherapy of glioblastoma multiforme. Int J Mol Sci. 23:58572022. View Article : Google Scholar : PubMed/NCBI | |
Lin Q, Wei Y, Xu G, Wang L, Ling F, Chen X, Cheng Y and Zhou Y: Integrative multi-omic profiling of the neoantigen landscape of glioblastoma for the development of therapeutic vaccines reveals vast heterogeneity in immunogenic signatures. Front Oncol. 15:15076322025. View Article : Google Scholar : PubMed/NCBI | |
Schulenburg A, Ulrich-Pur H, Thurnher D, Erovic B, Florian S, Sperr WR, Kalhs P, Marian B, Wrba F, Zielinski CC and Valent P: Neoplastic stem cells: A novel therapeutic target in clinical oncology. Cancer. 107:2512–2520. 2006. View Article : Google Scholar : PubMed/NCBI | |
Guo F, Zhang Y, Bai L and Cui J: Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett. 570:2163282023. View Article : Google Scholar : PubMed/NCBI | |
Avril T, Vauleon E, Hamlat A, Saikali S, Etcheverry A, Delmas C, Diabira S, Mosser J and Quillien V: Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain Pathol. 22:159–174. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Wang W and Tan S: EHD1 promotes the cancer stem cell (CSC)-like traits of glioma cells via interacting with CD44 and suppressing CD44 degradation. Environ Toxicol. 37:2259–2268. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Dai X, Zhang X, Li X, Xu T and Lan Q: Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix. Biochem Biophys Res Commun. 498:1052–1057. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL and Yu JS: Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 23:9392–9400. 2004. View Article : Google Scholar : PubMed/NCBI | |
Poli A, Wang J, Domingues O, Planagumà J, Yan T, Rygh CB, Skaftnesmo KO, Thorsen F, McCormack E, Hentges F, et al: Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget. 4:1527–1546. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stallcup WB: NG2 proteoglycan enhances brain tumor progression by promoting beta-1 integrin activation in both Cis and trans orientations. Cancers (Basel). 9:312017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Osada T, Wang Y, Yu L, Sakakura K, Katayama A, McCarthy JB, Brufsky A, Chivukula M, Khoury T, et al: CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J Natl Cancer Inst. 102:1496–1512. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aloisi F, Ria F and Adorini L: Regulation of T-cell responses by CNS antigen-presenting cells: Different roles for microglia and astrocytes. Immunol Today. 21:141–147. 2000. View Article : Google Scholar : PubMed/NCBI | |
Charles NA and Holland EC: The perivascular niche microenvironment in brain tumor progression. Cell Cycle. 9:3084–3093. 2010. View Article : Google Scholar | |
Shono K, Yamaguchi I, Mizobuchi Y, Kagusa H, Sumi A, Fujihara T, Nakajima K, Kitazato KT, Matsuzaki K, Saya H and Takagi Y: Downregulation of the CCL2/CCR2 and CXCL10/CXCR3 axes contributes to antitumor effects in a mouse model of malignant glioma. Sci Rep. 10:152862020. View Article : Google Scholar : PubMed/NCBI | |
Deborah EA, Nabekura T, Shibuya K and Shibuya A: THEMIS2 impairs antitumor activity of NK cells by suppressing activating NK receptor signaling. J Immunol. 212:1819–1828. 2024. View Article : Google Scholar : PubMed/NCBI | |
Panda AK, Gangaplara A, Buszko M, Natarajan K, Boyd LF, Sharma S, Margulies DH and Shevach EM: Cutting edge: Inhibition of the interaction of NK inhibitory receptors with MHC class I augments antiviral and antitumor immunity. J Immunol. 205:567–572. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luczo JM, Ronzulli SL and Tompkins SM: Influenza A virus hemagglutinin and other pathogen glycoprotein interactions with NK cell natural cytotoxicity receptors NKp46, NKp44, and NKp30. Viruses. 13:1562021. View Article : Google Scholar : PubMed/NCBI | |
Bailly E, Macedo C, Gu X, Hollingshead D, Bentlejewski C, Fong E, Morel PA, Randhawa P, Zeevi A, Lefaucheur C and Metes D: FCGR2C Q13 and FCGR3A V176 alleles jointly associate with worse natural killer cell-mediated antibody-dependent cellular cytotoxicity and microvascular inflammation in kidney allograft antibody-mediated rejection. Am J Transplant. 25:302–315. 2025. View Article : Google Scholar : PubMed/NCBI | |
Billadeau DD, Upshaw JL, Schoon RA, Dick CJ and Leibson PJ: NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat Immunol. 4:557–564. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lanier LL: NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 3:575–582. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC and Moretta L: Human NK cells: Surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol. 16:430–441. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 19:1102020. View Article : Google Scholar : PubMed/NCBI | |
Khan M, Arooj S and Wang H: NK cell-based immune checkpoint inhibition. Front Immunol. 11:1672020. View Article : Google Scholar : PubMed/NCBI | |
Harjunpää H and Guillerey C: TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 200:108–119. 2020. View Article : Google Scholar : PubMed/NCBI | |
Briukhovetska D, Suarez-Gosalvez J, Voigt C, Markota A, Giannou AD, Schübel M, Jobst J, Zhang T, Dörr J, Märkl F, et al: T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis. Immunity. 56:143–161.e11. 2023. View Article : Google Scholar : PubMed/NCBI | |
Saraiva M and O'Garra A: The regulation of IL-10 production by immune cells. Nat Rev Immunol. 10:170–181. 2010. View Article : Google Scholar : PubMed/NCBI | |
Devis-Jauregui L, Eritja N, Davis ML, Matias-Guiu X and Llobet-Navàs D: Autophagy in the physiological endometrium and cancer. Autophagy. 17:1077–1095. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fitzgerald AA, Wang S, Agarwal V, Marcisak EF, Zuo A, Jablonski SA, Loth M, Fertig EJ, MacDougall J, Zhukovsky E, et al: DPP inhibition alters the CXCR3 axis and enhances NK and CD8+ T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma. J Immunother Cancer. 9:e0028372021. View Article : Google Scholar : PubMed/NCBI | |
Bejarano L, C. Jordāo MJ and Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI | |
Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S, Brouland JP, Iacobuzio-Donahue CA, Brennan C, Tabar V, et al: Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell. 181:1643–1660.e17. 2020. View Article : Google Scholar : PubMed/NCBI | |
Friebel E, Kapolou K, Unger S, Núñez NG, Utz S, Rushing EJ, Regli L, Weller M, Greter M, Tugues S, et al: Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell. 181:1626–1642.e20. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fares J, Ulasov I, Timashev P and Lesniak MS: Emerging principles of brain immunology and immune checkpoint blockade in brain metastases. Brain. 144:1046–1066. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Hambardzumyan D: Immune microenvironment in glioblastoma subtypes. Front Immunol. 9:10042018. View Article : Google Scholar : PubMed/NCBI | |
Sampson JH, Gunn MD, Fecci PE and Ashley DM: Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 20:12–25. 2020. View Article : Google Scholar : PubMed/NCBI | |
Quail DF and Joyce JA: The microenvironmental landscape of brain tumors. Cancer Cell. 31:326–341. 2017. View Article : Google Scholar : PubMed/NCBI | |
Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson DS and Fecci PE: Immune suppression in gliomas. J Neurooncol. 151:3–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bugide S, Gupta R, Green M and Wajapeyee N: EZH2 inhibits NK cell-mediated antitumor immunity by suppressing CXCL10 expression in an HDAC10-dependent manner. Proc Natl Acad Sci USA. 118:e21027181182021. View Article : Google Scholar : PubMed/NCBI | |
Mangani D, Weller M and Roth P: The network of immunosuppressive pathways in glioblastoma. Biochem Pharmacol. 130:1–9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, Yin J, You F, Zhu M, Shen W, et al: First-in-man clinical trial of CAR NK-92 cells: Safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 8:1083–1089. 2018.PubMed/NCBI | |
Oelsner S, Friede ME, Zhang C, Wagner J, Badura S, Bader P, Ullrich E, Ottmann OG, Klingemann H, Tonn T and Wels WS: Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy. 19:235–249. 2017. View Article : Google Scholar : PubMed/NCBI | |
Salman H, Pinz KG, Wada M, Shuai X, Yan LE, Petrov JC and Ma Y: Preclinical targeting of human acute myeloid leukemia using CD4-specific chimeric antigen receptor (CAR) T cells and NK cells. J Cancer. 10:4408–4419. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhou Y, Huang KH, Fang X, Li Y, Wang F, An L, Chen Q, Zhang Y, Shi A, et al: Targeting epidermal growth factor-overexpressing triple-negative breast cancer by natural killer cells expressing a specific chimeric antigen receptor. Cell Prolif. 53:e128582020. View Article : Google Scholar : PubMed/NCBI | |
Ng YY, Tay JCK and Wang S: CXCR1 expression to improve anti-cancer efficacy of intravenously injected CAR-NK cells in mice with peritoneal xenografts. Mol Ther Oncolytics. 16:75–85. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ueda T, Kumagai A, Iriguchi S, Yasui Y, Miyasaka T, Nakagoshi K, Nakane K, Saito K, Takahashi M, Sasaki A, et al: Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci. 111:1478–1490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zuo P, Li Y, He C, Wang T, Zheng X, Liu H, Wu Z, Zhang J, Liao X and Zhang L: Anti-tumor efficacy of anti-GD2 CAR NK-92 cells in diffuse intrinsic pontine gliomas. Front Immunol. 14:11457062023. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Burger MC, Jennewein L, Genßler S, Schönfeld K, Zeiner P, Hattingen E, Harter PN, Mittelbronn M, Tonn T, et al: ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. 108:djv3752016. View Article : Google Scholar | |
Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T and Ohno T: Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res. 24:1861–1871. 2004.PubMed/NCBI | |
Soumen K, Cooper LJN, Sandberg DI, Leena K, Johnson JM, Rytting ME, Liu DD, Meador H, Trikha P, Nakkula RJ, et al: Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro Oncol. 22:1214–1225. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thakar MS, Browning M, Hari P, Charlson JA, Margolis DA, Logan B, Schloemer N, Kelly ME, Newman A, Johnson B, et al: Phase II trial using haploidentical hematopoietic cell transplantation (HCT) followed by donor natural killer (NK) cell infusion and sirolimus maintenance for patients with high-risk solid tumors. J Clin Oncol. 38 (1Suppl 15):e235512020. View Article : Google Scholar | |
Lim J, Park YJ, Ahn JW, Sim JM, Kang SJ, Hwang S, Chun J, Choi H, Kim SH, Chun DH, et al: Autologous adoptive immune-cell therapy elicited a durable response with enhanced immune reaction signatures in patients with recurrent glioblastoma: An open label, phase I/IIa trial. PLoS One. 16:e02472932021. View Article : Google Scholar : PubMed/NCBI | |
Asl NS, Behfar M, Amiri RS, Mohseni R, Azimi M, Firouzi J, Faranoush M, Izadpanah A, Mohmmad M, Hamidieh AA, et al: Intra-lesion injection of activated Natural Killer (NK) cells in recurrent malignant brain tumors. Int Immunopharmacol. 120:1103452023. View Article : Google Scholar : PubMed/NCBI | |
Yamada D, Iyoda T, Vizcardo R, Shimizu K, Sato Y, Endo TA, Kitahara G, Okoshi M, Kobayashi M, Sakurai M, et al: Efficient regeneration of human Vα24+ invariant natural killer T cells and their anti-tumor activity in vivo. Stem Cells. 34:2852–2860. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Zhan M, Karpus A, Zou Y, Mignani S, Majoral JP, Shi X and Shen M: Brain delivery of biomimetic phosphorus dendrimer/antibody nanocomplexes for enhanced glioma immunotherapy via immune modulation of T cells and natural killer cells. ACS Nano. 18:10142–10155. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bagley SJ, Logun M, Fraietta JA, Wang X, Desai AS, Bagley LJ, Nabavizadeh A, Jarocha D, Martins R, Maloney E, et al: Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: Phase 1 trial interim results. Nat Med. 30:1320–1329. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Galat V, Galat Y, Lee YKA, Wainwright D and Wu J: NK cell-based cancer immunotherapy: From basic biology to clinical development. J Hematol Oncol. 14:72021. View Article : Google Scholar : PubMed/NCBI | |
Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Chartrand MS, et al: CAR-NK cell in cancer immunotherapy; A promising frontier. Cancer Sci. 112:3427–3436. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shanley M, Daher M, Dou J, Li S, Basar R, Rafei H, Dede M, Gumin J, Pantaleόn Garcίa J, Nunez Cortes AK, et al: Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD. Cancer Cell. 42:1450–1466.e11. 2024. View Article : Google Scholar : PubMed/NCBI | |
Marin D, Li Y, Basar R, Rafei H, Daher M, Dou J, Mohanty V, Dede M, Nieto Y, Uprety N, et al: Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat Med. 30:772–784. 2024. View Article : Google Scholar : PubMed/NCBI | |
Siegler EL, Zhu Y, Wang P and Yang L: Off-the-shelf CAR-NK cells for cancer immunotherapy. Cell Stem Cell. 23:160–161. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Sun Y, Dong X, Liu Z, Sugimura R and Xie G: IPSC-derived CAR-NK cells for cancer immunotherapy. Biomed Pharmacother. 165:1151232023. View Article : Google Scholar : PubMed/NCBI | |
Kong D, Kwon D, Moon B, Kim DH, Kim MJ, Choi J and Kang KS: CD19 CAR-expressing iPSC-derived NK cells effectively enhance migration and cytotoxicity into glioblastoma by targeting to the pericytes in tumor microenvironment. Biomed Pharmacother. 174:1164362024. View Article : Google Scholar : PubMed/NCBI | |
Lupo KB, Yao X, Borde S, Wang J, Torregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, McIntosh M and Matosevic S: synNotch-programmed iPSC-derived NK cells usurp TIGIT and CD73 activities for glioblastoma therapy. Nat Commun. 15:19092024. View Article : Google Scholar : PubMed/NCBI | |
Pal M, Schwab L, Yermakova A, Mace EM, Claus R, Krahl AC, Woiterski J, Hartwig UF, Orange JS, Handgretinger R and André MC: Tumor-priming converts NK cells to memory-like NK cells. Oncoimmunology. 6:e13174112017. View Article : Google Scholar : PubMed/NCBI | |
Terrén I, Orrantia A, Astarloa-Pando G, Amarilla-Irusta A, Zenarruzabeitia O and Borrego F: Cytokine-induced memory-like NK cells: From the basics to clinical applications. Front Immunol. 13:8846482022. View Article : Google Scholar : PubMed/NCBI | |
Parihar R, Rivas C, Huynh M, Omer B, Lapteva N, Metelitsa LS, Gottschalk SM and Rooney CM: NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors. Cancer Immunol Res. 7:363–375. 2019. View Article : Google Scholar : PubMed/NCBI | |
Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S and Reis e Sousa C: NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 172:1022–1037.e14. 2018. View Article : Google Scholar : PubMed/NCBI |