|
1
|
Fares J, Davis ZB, Rechberger JS, Toll SA,
Schwartz JD, Daniels DJ, Miller JS and Khatua S: Advances in NK
cell therapy for brain tumors. NPJ Precis Oncol. 7:172023.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Schaff LR and Mellinghoff IK: Glioblastoma
and other primary brain malignancies in adults: A review. JAMA.
329:574–587. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Xu S, Tang L, Li X, Fan F and Liu Z:
Immunotherapy for glioma: Current management and future
application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ohgaki H and Kleihues P: Population-based
studies on incidence, survival rates, and genetic alterations in
astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol.
64:479–489. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yang Z, Zhao C, Zong S, Piao J, Zhao Y and
Chen X: A review on surgical treatment options in gliomas. Front
Oncol. 13:10884842023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Minniti G, Niyazi M, Alongi F, Navarria P
and Belka C: Current status and recent advances in reirradiation of
glioblastoma. Radiat Oncol. 16:362021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jatyan R, Sahel DK, Singh P, Sakhuja R,
Mittal A and Chitkara D: Temozolomide-fatty acid conjugates for
glioblastoma multiforme: In vitro and in vivo evaluation. J Control
Release. 359:161–174. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Conti A, Geffroy F, Kamimura HAS, Novell
A, Tournier N, Mériaux S and Larrat B: Regulation of P-glycoprotein
and breast cancer resistance protein expression induced by focused
ultrasound-mediated blood-brain barrier disruption: A pilot study.
Int J Mol Sci. 23:154882022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Luo H and Shusta EV: Blood-brain barrier
modulation to improve glioma drug delivery. Pharmaceutics.
12:10852020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Oberoi RK, Parrish KE, Sio TT, Mittapalli
RK, Elmquist WF and Sarkaria JN: Strategies to improve delivery of
anticancer drugs across the blood-brain barrier to treat
glioblastoma. Neuro Oncol. 18:27–36. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yamanaka R: Novel immunotherapeutic
approaches to glioma. Curr Opin Mol Ther. 8:46–51. 2006.PubMed/NCBI
|
|
12
|
Guha P, Heatherton KR, O'Connell KP,
Alexander IS and Katz SC: Assessing the future of solid tumor
immunotherapy. Biomedicines. 10:6552022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang W, Liu Y, He Z, Li L, Liu S, Jiang M,
Zhao B, Deng M, Wang W, Mi X, et al: Breakthrough of solid tumor
treatment: CAR-NK immunotherapy. Cell Death Discov. 10:402024.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM,
Yu JH and Deng YC: Natural killer cell homing and trafficking in
tissues and tumors: from biology to application. Signal Transduct
Target Ther. 7:2052022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wang H, Li J, Dong X, Zhou X, Zhao L, Wang
X, Rashu R, Zhao W and Yang X: NK cells contribute to protective
memory T cell mediated immunity to Chlamydia muridarum infection.
Front Cell Infect Microbiol. 10:2962020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang Q, Zhang H, Ding J, Liu H, Li H, Li
H, Lu M, Miao Y, Li L and Zheng J: Combination therapy with
EpCAM-CAR-NK-92 cells and regorafenib against human colorectal
cancer models. J Immunol Res. 2018:42635202018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Page A, Chuvin N, Valladeau-Guilemond J
and Depil S: Development of NK cell-based cancer immunotherapies
through receptor engineering. Cell Mol Immunol. 21:315–331. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Alshahrani MY, Uthirapathy S, Kumar A,
Oghenemaro EF, R R, Lal M, Arora I, Chauhan AS, Saud MJ and Hulail
HM: NK cell-based cancer immunotherapies: Current progress,
challenges and emerging opportunities. J Biochem Mol Toxicol.
38:e700442024. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Shaim H, Shanley M, Basar R, Daher M,
Gumin J, Zamler DB, Uprety N, Wang F, Huang Y, Gabrusiewicz K, et
al: Targeting the αv integrin/TGF-β axis improves natural killer
cell function against glioblastoma stem cells. J Clin Invest.
131:e1421162021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Poli A, Kmiecik J, Domingues O, Hentges F,
Bléry M, Chekenya M, Boucraut J and Zimmer J: NK cells in central
nervous system disorders. J Immunol. 190:5355–5362. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Brown NF, Carter TJ, Ottaviani D and
Mulholland P: Harnessing the immune system in glioblastoma. Br J
Cancer. 119:1171–1181. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sedgwick AJ, Ghazanfari N, Constantinescu
P, Mantamadiotis T and Barrow AD: The role of NK cells and innate
lymphoid cells in brain cancer. Front Immunol. 11:15492020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Miller CR and Perry A: Glioblastoma. Arch
Pathol Lab Med. 131:397–406. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wainwright DA, Balyasnikova IV, Chang AL,
Ahmed AU, Moon KS, Auffinger B, Tobias AL, Han Y and Lesniak MS:
IDO expression in brain tumors increases the recruitment of
regulatory T cells and negatively impacts survival. Clin Cancer
Res. 18:6110–6121. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bloch O, Crane CA, Kaur R, Safaee M,
Rutkowski MJ and Parsa AT: Gliomas promote immunosuppression
through induction of B7-H1 expression in tumor-associated
macrophages. Clin Cancer Res. 19:3165–3175. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Khan F, Lin Y, Ali H, Pang L, Dunterman M,
Hsu WH, Frenis K, Grant Rowe R, Wainwright DA, McCortney K, et al:
Lactate dehydrogenase A regulates tumor-macrophage symbiosis to
promote glioblastoma progression. Nat Commun. 15:19872024.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang Y, Liu T, Yang N, Xu S, Li X and Wang
D: Hypoxia and macrophages promote glioblastoma invasion by the
CCL4-CCR5 axis. Oncol Rep. 36:3522–3528. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chauhan P, Hu S, Sheng WS and Lokensgard
JR: Regulatory T-cells suppress cytotoxic T lymphocyte responses
against microglia. Cells. 11:28262022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
van Hooren L, Handgraaf SM, Kloosterman
DJ, Karimi E, van Mil LWHG, Gassama AA, Solsona BG, de Groot MHP,
Brandsma D, Quail DF, et al: CD103+ regulatory T cells
underlie resistance to radio-immunotherapy and impair
CD8+ T cell activation in glioblastoma. Nat Cancer.
4:665–681. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lawler SE, Speranza MC, Cho CF and Chiocca
EA: Oncolytic viruses in cancer treatment: A review. JAMA Oncol.
3:841–849. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Reardon DA and Mitchell DA: The
development of dendritic cell vaccine-based immunotherapies for
glioblastoma. Semin Immunopathol. 39:225–239. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jiacheng D, Jiayue C, Ying G, Shaohua W,
Wenhui L and Xinyu H: Research progress and challenges of the
PD-1/PD-L1 axis in gliomas. Cell Biosci. 14:1232024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhu H, You Y, Shen Z and Shi L:
EGFRvIII-CAR-T cells with PD-1 knockout have improved anti-glioma
activity. Pathol Oncol Res. 26:2135–2141. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu F, Huang J, Liu X, Cheng Q, Luo C and
Liu Z: CTLA-4 correlates with immune and clinical characteristics
of glioma. Cancer Cell Int. 20:72020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kim KS, Habashy K, Gould A, Zhao J, Najem
H, Amidei C, Saganty R, Arrieta VA, Dmello C, Chen L, et al:
Fc-enhanced anti-CTLA-4, anti-PD-1, doxorubicin, and
ultrasound-mediated blood-brain barrier opening: A novel
combinatorial immunotherapy regimen for gliomas. Neuro Oncol.
26:2044–2060. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Du L, Xing Z, Tao B, Li T, Yang D, Li W,
Zheng Y, Kuang C and Yang Q: Both IDO1 and TDO contribute to the
malignancy of gliomas via the Kyn-AhR-AQP4 signaling pathway.
Signal Transduct Target Ther. 5:102020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xing Z, Li X, He ZNT, Fang X, Liang H,
Kuang C, Li A and Yang Q: IDO1 inhibitor RY103 suppresses
Trp-GCN2-mediated angiogenesis and counters immunosuppression in
glioblastoma. Pharmaceutics. 16:8702024. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Arora J, Ayyappan S, Yin C, Smith BJ,
Lemke-Miltner CD, Wang Z, Farooq U and Weiner GJ: T-cell help in
the tumor microenvironment enhances rituximab-mediated NK-cell
ADCC. Blood. 143:1816–1824. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hofman T, Ng SW, Garcés-Lázaro I, Heigwer
F, Boutros M and Cerwenka A: IFNγ mediates the resistance of tumor
cells to distinct NK cell subsets. J Immunother Cancer.
12:e0094102024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kurebayashi Y, Olkowski CP, Lane KC,
Vasalatiy OV, Xu BC, Okada R, Furusawa A, Choyke PL, Kobayashi H
and Sato N: Rapid depletion of intratumoral regulatory T cells
induces synchronized CD8 T- and NK-cell activation and
IFNγ-dependent tumor vessel regression. Cancer Res. 81:3092–3104.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang P, Li C, Wang Y, Chi X, Sun T, Zhang
Q, Zhang Y and Ji N: Expression features of targets for anti-glioma
CAR-T cell immunotherapy. J Neurooncol. 171:179–189. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Antonucci L, Canciani G, Mastronuzzi A,
Carai A, Del Baldo G and Del Bufalo F: CAR-T therapy for pediatric
high-grade gliomas: Peculiarities, current investigations and
future strategies. Front Immunol. 13:8671542022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Santiago-Vicente Y, de Jesús
Castillejos-López M, Carmona-Aparicio L, Coballase-Urrutia E,
Velasco-Hidalgo L, Niembro-Zúñiga AM, Zapata-Tarrés M and
Torres-Espíndola LM: Immunotherapy for pediatric gliomas: CAR-T
cells against B7H3: A review of the literature. CNS Neurol Disord
Drug Targets. 23:420–430. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhu G, Zhang Q, Zhang J and Liu F:
Targeting tumor-associated antigen: A promising CAR-T therapeutic
strategy for glioblastoma treatment. Front Pharmacol.
12:6616062021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hatae R, Kyewalabye K, Yamamichi A, Chen
T, Phyu S, Chuntova P, Nejo T, Levine LS, Spitzer MH and Okada H:
Enhancing CAR-T cell metabolism to overcome hypoxic conditions in
the brain tumor microenvironment. JCI Insight. 9:e1771412024.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Jin L, Ge H, Yang C, Long Y and Huang J:
CD70 as a novel target of CAR-T-cell therapy for gliomas. J Clin
Oncol. 35 (Suppl 7):S1482017. View Article : Google Scholar
|
|
47
|
Brown CE, Hibbard JC, Alizadeh D,
Blanchard MS, Natri HM, Wang D, Ostberg JR, Aguilar B, Wagner JR,
Paul JA, et al: Locoregional delivery of IL-13Rα2-targeting CAR-T
cells in recurrent high-grade glioma: A phase 1 trial. Nat Med.
30:1001–1012. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hou AJ, Shih RM, Uy BR, Shafer A, Chang
ZL, Comin-Anduix B, Guemes M, Galic Z, Phyu S, Okada H, et al:
IL-13Rα2/TGF-β bispecific CAR-T cells counter TGF-β-mediated immune
suppression and potentiate anti-tumor responses in glioblastoma.
Neuro Oncol. 26:1850–1866. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Luo L, Zhang XY, Zhen YW, Guo GC, Peng DZ,
Wei C, Pei DL, Yu B, Ji YC, Liu XZ, et al: Polo-like kinase 1 is
related with malignant characteristics and inhibits macrophages
infiltration in glioma. Front Immunol. 13:10580362022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tang F, Wang Y, Zeng Y, Xiao A, Tong A and
Xu J: Tumor-associated macrophage-related strategies for glioma
immunotherapy. NPJ Precis Oncol. 7:782023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang J, Xu L, Ding Q, Li X, Wang K, Xu S
and Liu B: Siglec15 is a prognostic indicator and a potential
tumor-related macrophage regulator that is involved in the
suppressive immunomicroenvironment in gliomas. Front Immunol.
14:10650622023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gerew A, Sexton S, Wasko KM, Shearman MS,
Zhang K, Chang KH and Khan SQ: Deletion of CISH and TGFβR2 in
iPSC-derived NK cells promotes high cytotoxicity and enhances in
vivo tumor killing. Blood. 138 (Suppl 1):S27802021. View Article : Google Scholar
|
|
53
|
Castriconi R, Daga A, Dondero A, Zona G,
Poliani PL, Melotti A, Griffero F, Marubbi D, Spaziante R, Bellora
F, et al: NK cells recognize and kill human glioblastoma cells with
stem cell-like properties. J Immunol. 182:3530–3539. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Daga A, Orengo AM, Gangemi RMR, Marubbi D,
Perera M, Comes A, Ferrini S and Corte G: Glioma immunotherapy by
IL-21 gene-modified cells or by recombinant IL-21 involves antibody
responses. Int J Cancer. 121:1756–63. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Murad S, Michen S, Becker A, Füssel M,
Schackert G, Tonn T, Momburg F and Temme A: NKG2C+ NK cells for
immunotherapy of glioblastoma multiforme. Int J Mol Sci.
23:58572022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lin Q, Wei Y, Xu G, Wang L, Ling F, Chen
X, Cheng Y and Zhou Y: Integrative multi-omic profiling of the
neoantigen landscape of glioblastoma for the development of
therapeutic vaccines reveals vast heterogeneity in immunogenic
signatures. Front Oncol. 15:15076322025. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Schulenburg A, Ulrich-Pur H, Thurnher D,
Erovic B, Florian S, Sperr WR, Kalhs P, Marian B, Wrba F, Zielinski
CC and Valent P: Neoplastic stem cells: A novel therapeutic target
in clinical oncology. Cancer. 107:2512–2520. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Guo F, Zhang Y, Bai L and Cui J: Natural
killer cell therapy targeting cancer stem cells: Old wine in a new
bottle. Cancer Lett. 570:2163282023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Avril T, Vauleon E, Hamlat A, Saikali S,
Etcheverry A, Delmas C, Diabira S, Mosser J and Quillien V: Human
glioblastoma stem-like cells are more sensitive to allogeneic NK
and T cell-mediated killing compared with serum-cultured
glioblastoma cells. Brain Pathol. 22:159–174. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lu Y, Wang W and Tan S: EHD1 promotes the
cancer stem cell (CSC)-like traits of glioma cells via interacting
with CD44 and suppressing CD44 degradation. Environ Toxicol.
37:2259–2268. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang X, Dai X, Zhang X, Li X, Xu T and Lan
Q: Enrichment of glioma stem cell-like cells on 3D porous scaffolds
composed of different extracellular matrix. Biochem Biophys Res
Commun. 498:1052–1057. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yuan X, Curtin J, Xiong Y, Liu G,
Waschsmann-Hogiu S, Farkas DL, Black KL and Yu JS: Isolation of
cancer stem cells from adult glioblastoma multiforme. Oncogene.
23:9392–9400. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Poli A, Wang J, Domingues O, Planagumà J,
Yan T, Rygh CB, Skaftnesmo KO, Thorsen F, McCormack E, Hentges F,
et al: Targeting glioblastoma with NK cells and mAb against
NG2/CSPG4 prolongs animal survival. Oncotarget. 4:1527–1546. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Stallcup WB: NG2 proteoglycan enhances
brain tumor progression by promoting beta-1 integrin activation in
both Cis and trans orientations. Cancers (Basel). 9:312017.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang X, Osada T, Wang Y, Yu L, Sakakura K,
Katayama A, McCarthy JB, Brufsky A, Chivukula M, Khoury T, et al:
CSPG4 protein as a new target for the antibody-based immunotherapy
of triple-negative breast cancer. J Natl Cancer Inst.
102:1496–1512. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Aloisi F, Ria F and Adorini L: Regulation
of T-cell responses by CNS antigen-presenting cells: Different
roles for microglia and astrocytes. Immunol Today. 21:141–147.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Charles NA and Holland EC: The
perivascular niche microenvironment in brain tumor progression.
Cell Cycle. 9:3084–3093. 2010. View Article : Google Scholar
|
|
68
|
Shono K, Yamaguchi I, Mizobuchi Y, Kagusa
H, Sumi A, Fujihara T, Nakajima K, Kitazato KT, Matsuzaki K, Saya H
and Takagi Y: Downregulation of the CCL2/CCR2 and CXCL10/CXCR3 axes
contributes to antitumor effects in a mouse model of malignant
glioma. Sci Rep. 10:152862020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Deborah EA, Nabekura T, Shibuya K and
Shibuya A: THEMIS2 impairs antitumor activity of NK cells by
suppressing activating NK receptor signaling. J Immunol.
212:1819–1828. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Panda AK, Gangaplara A, Buszko M,
Natarajan K, Boyd LF, Sharma S, Margulies DH and Shevach EM:
Cutting edge: Inhibition of the interaction of NK inhibitory
receptors with MHC class I augments antiviral and antitumor
immunity. J Immunol. 205:567–572. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Luczo JM, Ronzulli SL and Tompkins SM:
Influenza A virus hemagglutinin and other pathogen glycoprotein
interactions with NK cell natural cytotoxicity receptors NKp46,
NKp44, and NKp30. Viruses. 13:1562021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bailly E, Macedo C, Gu X, Hollingshead D,
Bentlejewski C, Fong E, Morel PA, Randhawa P, Zeevi A, Lefaucheur C
and Metes D: FCGR2C Q13 and FCGR3A V176
alleles jointly associate with worse natural killer cell-mediated
antibody-dependent cellular cytotoxicity and microvascular
inflammation in kidney allograft antibody-mediated rejection. Am J
Transplant. 25:302–315. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Billadeau DD, Upshaw JL, Schoon RA, Dick
CJ and Leibson PJ: NKG2D-DAP10 triggers human NK cell-mediated
killing via a Syk-independent regulatory pathway. Nat Immunol.
4:557–564. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lanier LL: NKG2D receptor and its ligands
in host defense. Cancer Immunol Res. 3:575–582. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sivori S, Vacca P, Del Zotto G, Munari E,
Mingari MC and Moretta L: Human NK cells: Surface receptors,
inhibitory checkpoints, and translational applications. Cell Mol
Immunol. 16:430–441. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ,
Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1
induces natural killer cell exhaustion and may cause resistance to
anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer.
19:1102020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Khan M, Arooj S and Wang H: NK cell-based
immune checkpoint inhibition. Front Immunol. 11:1672020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Harjunpää H and Guillerey C: TIGIT as an
emerging immune checkpoint. Clin Exp Immunol. 200:108–119. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Briukhovetska D, Suarez-Gosalvez J, Voigt
C, Markota A, Giannou AD, Schübel M, Jobst J, Zhang T, Dörr J,
Märkl F, et al: T cell-derived interleukin-22 drives the expression
of CD155 by cancer cells to suppress NK cell function and promote
metastasis. Immunity. 56:143–161.e11. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Saraiva M and O'Garra A: The regulation of
IL-10 production by immune cells. Nat Rev Immunol. 10:170–181.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Devis-Jauregui L, Eritja N, Davis ML,
Matias-Guiu X and Llobet-Navàs D: Autophagy in the physiological
endometrium and cancer. Autophagy. 17:1077–1095. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Fitzgerald AA, Wang S, Agarwal V, Marcisak
EF, Zuo A, Jablonski SA, Loth M, Fertig EJ, MacDougall J, Zhukovsky
E, et al: DPP inhibition alters the CXCR3 axis and enhances NK and
CD8+ T cell infiltration to improve anti-PD1 efficacy in murine
models of pancreatic ductal adenocarcinoma. J Immunother Cancer.
9:e0028372021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bejarano L, C. Jordāo MJ and Joyce JA:
Therapeutic targeting of the tumor microenvironment. Cancer Discov.
11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Klemm F, Maas RR, Bowman RL, Kornete M,
Soukup K, Nassiri S, Brouland JP, Iacobuzio-Donahue CA, Brennan C,
Tabar V, et al: Interrogation of the microenvironmental landscape
in brain tumors reveals disease-specific alterations of immune
cells. Cell. 181:1643–1660.e17. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Friebel E, Kapolou K, Unger S, Núñez NG,
Utz S, Rushing EJ, Regli L, Weller M, Greter M, Tugues S, et al:
Single-cell mapping of human brain cancer reveals tumor-specific
instruction of tissue-invading leukocytes. Cell. 181:1626–1642.e20.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fares J, Ulasov I, Timashev P and Lesniak
MS: Emerging principles of brain immunology and immune checkpoint
blockade in brain metastases. Brain. 144:1046–1066. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen Z and Hambardzumyan D: Immune
microenvironment in glioblastoma subtypes. Front Immunol.
9:10042018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sampson JH, Gunn MD, Fecci PE and Ashley
DM: Brain immunology and immunotherapy in brain tumours. Nat Rev
Cancer. 20:12–25. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Quail DF and Joyce JA: The
microenvironmental landscape of brain tumors. Cancer Cell.
31:326–341. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Grabowski MM, Sankey EW, Ryan KJ,
Chongsathidkiet P, Lorrey SJ, Wilkinson DS and Fecci PE: Immune
suppression in gliomas. J Neurooncol. 151:3–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Bugide S, Gupta R, Green M and Wajapeyee
N: EZH2 inhibits NK cell-mediated antitumor immunity by suppressing
CXCL10 expression in an HDAC10-dependent manner. Proc Natl Acad Sci
USA. 118:e21027181182021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mangani D, Weller M and Roth P: The
network of immunosuppressive pathways in glioblastoma. Biochem
Pharmacol. 130:1–9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu
T, Yin J, You F, Zhu M, Shen W, et al: First-in-man clinical trial
of CAR NK-92 cells: Safety test of CD33-CAR NK-92 cells in patients
with relapsed and refractory acute myeloid leukemia. Am J Cancer
Res. 8:1083–1089. 2018.PubMed/NCBI
|
|
94
|
Oelsner S, Friede ME, Zhang C, Wagner J,
Badura S, Bader P, Ullrich E, Ottmann OG, Klingemann H, Tonn T and
Wels WS: Continuously expanding CAR NK-92 cells display selective
cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy.
19:235–249. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Salman H, Pinz KG, Wada M, Shuai X, Yan
LE, Petrov JC and Ma Y: Preclinical targeting of human acute
myeloid leukemia using CD4-specific chimeric antigen receptor (CAR)
T cells and NK cells. J Cancer. 10:4408–4419. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu Y, Zhou Y, Huang KH, Fang X, Li Y,
Wang F, An L, Chen Q, Zhang Y, Shi A, et al: Targeting epidermal
growth factor-overexpressing triple-negative breast cancer by
natural killer cells expressing a specific chimeric antigen
receptor. Cell Prolif. 53:e128582020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ng YY, Tay JCK and Wang S: CXCR1
expression to improve anti-cancer efficacy of intravenously
injected CAR-NK cells in mice with peritoneal xenografts. Mol Ther
Oncolytics. 16:75–85. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ueda T, Kumagai A, Iriguchi S, Yasui Y,
Miyasaka T, Nakagoshi K, Nakane K, Saito K, Takahashi M, Sasaki A,
et al: Non-clinical efficacy, safety and stable clinical cell
processing of induced pluripotent stem cell-derived anti-glypican-3
chimeric antigen receptor-expressing natural killer/innate lymphoid
cells. Cancer Sci. 111:1478–1490. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zuo P, Li Y, He C, Wang T, Zheng X, Liu H,
Wu Z, Zhang J, Liao X and Zhang L: Anti-tumor efficacy of anti-GD2
CAR NK-92 cells in diffuse intrinsic pontine gliomas. Front
Immunol. 14:11457062023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang C, Burger MC, Jennewein L, Genßler
S, Schönfeld K, Zeiner P, Hattingen E, Harter PN, Mittelbronn M,
Tonn T, et al: ErbB2/HER2-specific NK cells for targeted therapy of
glioblastoma. J Natl Cancer Inst. 108:djv3752016. View Article : Google Scholar
|
|
101
|
Ishikawa E, Tsuboi K, Saijo K, Harada H,
Takano S, Nose T and Ohno T: Autologous natural killer cell therapy
for human recurrent malignant glioma. Anticancer Res. 24:1861–1871.
2004.PubMed/NCBI
|
|
102
|
Soumen K, Cooper LJN, Sandberg DI, Leena
K, Johnson JM, Rytting ME, Liu DD, Meador H, Trikha P, Nakkula RJ,
et al: Phase I study of intraventricular infusions of autologous ex
vivo expanded NK cells in children with recurrent medulloblastoma
and ependymoma. Neuro Oncol. 22:1214–1225. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Thakar MS, Browning M, Hari P, Charlson
JA, Margolis DA, Logan B, Schloemer N, Kelly ME, Newman A, Johnson
B, et al: Phase II trial using haploidentical hematopoietic cell
transplantation (HCT) followed by donor natural killer (NK) cell
infusion and sirolimus maintenance for patients with high-risk
solid tumors. J Clin Oncol. 38 (1Suppl 15):e235512020. View Article : Google Scholar
|
|
104
|
Lim J, Park YJ, Ahn JW, Sim JM, Kang SJ,
Hwang S, Chun J, Choi H, Kim SH, Chun DH, et al: Autologous
adoptive immune-cell therapy elicited a durable response with
enhanced immune reaction signatures in patients with recurrent
glioblastoma: An open label, phase I/IIa trial. PLoS One.
16:e02472932021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Asl NS, Behfar M, Amiri RS, Mohseni R,
Azimi M, Firouzi J, Faranoush M, Izadpanah A, Mohmmad M, Hamidieh
AA, et al: Intra-lesion injection of activated Natural Killer (NK)
cells in recurrent malignant brain tumors. Int Immunopharmacol.
120:1103452023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yamada D, Iyoda T, Vizcardo R, Shimizu K,
Sato Y, Endo TA, Kitahara G, Okoshi M, Kobayashi M, Sakurai M, et
al: Efficient regeneration of human Vα24+ invariant
natural killer T cells and their anti-tumor activity in vivo. Stem
Cells. 34:2852–2860. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Peng Y, Zhan M, Karpus A, Zou Y, Mignani
S, Majoral JP, Shi X and Shen M: Brain delivery of biomimetic
phosphorus dendrimer/antibody nanocomplexes for enhanced glioma
immunotherapy via immune modulation of T cells and natural killer
cells. ACS Nano. 18:10142–10155. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Bagley SJ, Logun M, Fraietta JA, Wang X,
Desai AS, Bagley LJ, Nabavizadeh A, Jarocha D, Martins R, Maloney
E, et al: Intrathecal bivalent CAR T cells targeting EGFR and
IL13Rα2 in recurrent glioblastoma: Phase 1 trial interim results.
Nat Med. 30:1320–1329. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu S, Galat V, Galat Y, Lee YKA,
Wainwright D and Wu J: NK cell-based cancer immunotherapy: From
basic biology to clinical development. J Hematol Oncol. 14:72021.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Marofi F, Abdul-Rasheed OF, Rahman HS,
Budi HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M,
Motavalli R, Chartrand MS, et al: CAR-NK cell in cancer
immunotherapy; A promising frontier. Cancer Sci. 112:3427–3436.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Shanley M, Daher M, Dou J, Li S, Basar R,
Rafei H, Dede M, Gumin J, Pantaleόn Garcίa J, Nunez Cortes AK, et
al: Interleukin-21 engineering enhances NK cell activity against
glioblastoma via CEBPD. Cancer Cell. 42:1450–1466.e11. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Marin D, Li Y, Basar R, Rafei H, Daher M,
Dou J, Mohanty V, Dede M, Nieto Y, Uprety N, et al: Safety,
efficacy and determinants of response of allogeneic CD19-specific
CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial.
Nat Med. 30:772–784. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Siegler EL, Zhu Y, Wang P and Yang L:
Off-the-shelf CAR-NK cells for cancer immunotherapy. Cell Stem
Cell. 23:160–161. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lin X, Sun Y, Dong X, Liu Z, Sugimura R
and Xie G: IPSC-derived CAR-NK cells for cancer immunotherapy.
Biomed Pharmacother. 165:1151232023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kong D, Kwon D, Moon B, Kim DH, Kim MJ,
Choi J and Kang KS: CD19 CAR-expressing iPSC-derived NK cells
effectively enhance migration and cytotoxicity into glioblastoma by
targeting to the pericytes in tumor microenvironment. Biomed
Pharmacother. 174:1164362024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lupo KB, Yao X, Borde S, Wang J,
Torregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, McIntosh M and
Matosevic S: synNotch-programmed iPSC-derived NK cells usurp TIGIT
and CD73 activities for glioblastoma therapy. Nat Commun.
15:19092024. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Pal M, Schwab L, Yermakova A, Mace EM,
Claus R, Krahl AC, Woiterski J, Hartwig UF, Orange JS,
Handgretinger R and André MC: Tumor-priming converts NK cells to
memory-like NK cells. Oncoimmunology. 6:e13174112017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Terrén I, Orrantia A, Astarloa-Pando G,
Amarilla-Irusta A, Zenarruzabeitia O and Borrego F:
Cytokine-induced memory-like NK cells: From the basics to clinical
applications. Front Immunol. 13:8846482022. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Parihar R, Rivas C, Huynh M, Omer B,
Lapteva N, Metelitsa LS, Gottschalk SM and Rooney CM: NK cells
expressing a chimeric activating receptor eliminate MDSCs and
rescue impaired CAR-T cell activity against solid tumors. Cancer
Immunol Res. 7:363–375. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Böttcher JP, Bonavita E, Chakravarty P,
Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E,
Zelenay S and Reis e Sousa C: NK cells stimulate recruitment of
cDC1 into the tumor microenvironment promoting cancer immune
control. Cell. 172:1022–1037.e14. 2018. View Article : Google Scholar : PubMed/NCBI
|