Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2025 Volume 54 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 54 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Prospects and applications of NK therapy in the treatment of gliomas (Review)

  • Authors:
    • Yueyang Liu
    • Chen Su
    • Xiyao Wei
    • Ningbo Wei
    • Qijun Qian
    • Zenghui Xu
  • View Affiliations / Copyright

    Affiliations: Shanghai Mengchao Cancer Hospital, Shanghai 201805, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 88
    |
    Published online on: June 3, 2025
       https://doi.org/10.3892/or.2025.8921
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Brain tumours are in the spotlight of oncology research due to their intractability and resistance to conventional treatments. High‑risk craniotomies must be performed on patients during tumour resection surgeries due to the specificity of the brain structure, and the complexity of the brain structure also leads to the fact that brain tumours usually cannot be removed completely. Besides, the inability of foreign small molecules to cross the blood‑brain barrier has led to the inability of conventional drug therapy to reach the tumour location in the brain. Furthermore, the damage to healthy brain tissue caused by conventional radiotherapy cannot be ignored. Therefore, brain tumours represented by gliomas are in urgent need for a novel therapeutic approach. Glioma is the most common brain tumour, accounting for 81% of malignant tumours in the central nervous system, and is characterized by high morbidity, recurrence, mortality and low cure rate. In recent years, natural killer (NK) cell immunotherapy for gliomas has gradually emerged and numerous studies have shown surprising therapeutic effects. NK cells have been demonstrated to traverse the blood‑brain barrier and numerous studies have confirmed their ability to kill glioma cells both in vivo and in vitro. This article begins by introducing conventional therapies for glioma, followed by an overview of the potential of NK cell‑based immunotherapy in glioma treatment and the regulatory mechanisms of NK cells within the glioma immune microenvironment. It then summarizes preclinical studies on CAR‑NK cells and clinical advancements in NK cell therapy for glioma. Finally, the paper discusses recent progress in immunotherapy for gliomas and explores novel therapeutic strategies combining NK cell immunotherapy with other treatment modalities.
View Figures

Figure 1

View References

1 

Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS and Khatua S: Advances in NK cell therapy for brain tumors. NPJ Precis Oncol. 7:172023. View Article : Google Scholar : PubMed/NCBI

2 

Schaff LR and Mellinghoff IK: Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 329:574–587. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Xu S, Tang L, Li X, Fan F and Liu Z: Immunotherapy for glioma: Current management and future application. Cancer Lett. 476:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Ohgaki H and Kleihues P: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 64:479–489. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Yang Z, Zhao C, Zong S, Piao J, Zhao Y and Chen X: A review on surgical treatment options in gliomas. Front Oncol. 13:10884842023. View Article : Google Scholar : PubMed/NCBI

6 

Minniti G, Niyazi M, Alongi F, Navarria P and Belka C: Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol. 16:362021. View Article : Google Scholar : PubMed/NCBI

7 

Jatyan R, Sahel DK, Singh P, Sakhuja R, Mittal A and Chitkara D: Temozolomide-fatty acid conjugates for glioblastoma multiforme: In vitro and in vivo evaluation. J Control Release. 359:161–174. 2023. View Article : Google Scholar : PubMed/NCBI

8 

Conti A, Geffroy F, Kamimura HAS, Novell A, Tournier N, Mériaux S and Larrat B: Regulation of P-glycoprotein and breast cancer resistance protein expression induced by focused ultrasound-mediated blood-brain barrier disruption: A pilot study. Int J Mol Sci. 23:154882022. View Article : Google Scholar : PubMed/NCBI

9 

Luo H and Shusta EV: Blood-brain barrier modulation to improve glioma drug delivery. Pharmaceutics. 12:10852020. View Article : Google Scholar : PubMed/NCBI

10 

Oberoi RK, Parrish KE, Sio TT, Mittapalli RK, Elmquist WF and Sarkaria JN: Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro Oncol. 18:27–36. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Yamanaka R: Novel immunotherapeutic approaches to glioma. Curr Opin Mol Ther. 8:46–51. 2006.PubMed/NCBI

12 

Guha P, Heatherton KR, O'Connell KP, Alexander IS and Katz SC: Assessing the future of solid tumor immunotherapy. Biomedicines. 10:6552022. View Article : Google Scholar : PubMed/NCBI

13 

Wang W, Liu Y, He Z, Li L, Liu S, Jiang M, Zhao B, Deng M, Wang W, Mi X, et al: Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov. 10:402024. View Article : Google Scholar : PubMed/NCBI

14 

Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH and Deng YC: Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther. 7:2052022. View Article : Google Scholar : PubMed/NCBI

15 

Wang H, Li J, Dong X, Zhou X, Zhao L, Wang X, Rashu R, Zhao W and Yang X: NK cells contribute to protective memory T cell mediated immunity to Chlamydia muridarum infection. Front Cell Infect Microbiol. 10:2962020. View Article : Google Scholar : PubMed/NCBI

16 

Zhang Q, Zhang H, Ding J, Liu H, Li H, Li H, Lu M, Miao Y, Li L and Zheng J: Combination therapy with EpCAM-CAR-NK-92 cells and regorafenib against human colorectal cancer models. J Immunol Res. 2018:42635202018. View Article : Google Scholar : PubMed/NCBI

17 

Page A, Chuvin N, Valladeau-Guilemond J and Depil S: Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol. 21:315–331. 2024. View Article : Google Scholar : PubMed/NCBI

18 

Alshahrani MY, Uthirapathy S, Kumar A, Oghenemaro EF, R R, Lal M, Arora I, Chauhan AS, Saud MJ and Hulail HM: NK cell-based cancer immunotherapies: Current progress, challenges and emerging opportunities. J Biochem Mol Toxicol. 38:e700442024. View Article : Google Scholar : PubMed/NCBI

19 

Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, Uprety N, Wang F, Huang Y, Gabrusiewicz K, et al: Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Invest. 131:e1421162021. View Article : Google Scholar : PubMed/NCBI

20 

Poli A, Kmiecik J, Domingues O, Hentges F, Bléry M, Chekenya M, Boucraut J and Zimmer J: NK cells in central nervous system disorders. J Immunol. 190:5355–5362. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Brown NF, Carter TJ, Ottaviani D and Mulholland P: Harnessing the immune system in glioblastoma. Br J Cancer. 119:1171–1181. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Sedgwick AJ, Ghazanfari N, Constantinescu P, Mantamadiotis T and Barrow AD: The role of NK cells and innate lymphoid cells in brain cancer. Front Immunol. 11:15492020. View Article : Google Scholar : PubMed/NCBI

23 

Miller CR and Perry A: Glioblastoma. Arch Pathol Lab Med. 131:397–406. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, Tobias AL, Han Y and Lesniak MS: IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 18:6110–6121. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ and Parsa AT: Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 19:3165–3175. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Khan F, Lin Y, Ali H, Pang L, Dunterman M, Hsu WH, Frenis K, Grant Rowe R, Wainwright DA, McCortney K, et al: Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression. Nat Commun. 15:19872024. View Article : Google Scholar : PubMed/NCBI

27 

Wang Y, Liu T, Yang N, Xu S, Li X and Wang D: Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis. Oncol Rep. 36:3522–3528. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Chauhan P, Hu S, Sheng WS and Lokensgard JR: Regulatory T-cells suppress cytotoxic T lymphocyte responses against microglia. Cells. 11:28262022. View Article : Google Scholar : PubMed/NCBI

29 

van Hooren L, Handgraaf SM, Kloosterman DJ, Karimi E, van Mil LWHG, Gassama AA, Solsona BG, de Groot MHP, Brandsma D, Quail DF, et al: CD103+ regulatory T cells underlie resistance to radio-immunotherapy and impair CD8+ T cell activation in glioblastoma. Nat Cancer. 4:665–681. 2023. View Article : Google Scholar : PubMed/NCBI

30 

Lawler SE, Speranza MC, Cho CF and Chiocca EA: Oncolytic viruses in cancer treatment: A review. JAMA Oncol. 3:841–849. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Reardon DA and Mitchell DA: The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol. 39:225–239. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Jiacheng D, Jiayue C, Ying G, Shaohua W, Wenhui L and Xinyu H: Research progress and challenges of the PD-1/PD-L1 axis in gliomas. Cell Biosci. 14:1232024. View Article : Google Scholar : PubMed/NCBI

33 

Zhu H, You Y, Shen Z and Shi L: EGFRvIII-CAR-T cells with PD-1 knockout have improved anti-glioma activity. Pathol Oncol Res. 26:2135–2141. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Liu F, Huang J, Liu X, Cheng Q, Luo C and Liu Z: CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int. 20:72020. View Article : Google Scholar : PubMed/NCBI

35 

Kim KS, Habashy K, Gould A, Zhao J, Najem H, Amidei C, Saganty R, Arrieta VA, Dmello C, Chen L, et al: Fc-enhanced anti-CTLA-4, anti-PD-1, doxorubicin, and ultrasound-mediated blood-brain barrier opening: A novel combinatorial immunotherapy regimen for gliomas. Neuro Oncol. 26:2044–2060. 2024. View Article : Google Scholar : PubMed/NCBI

36 

Du L, Xing Z, Tao B, Li T, Yang D, Li W, Zheng Y, Kuang C and Yang Q: Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn-AhR-AQP4 signaling pathway. Signal Transduct Target Ther. 5:102020. View Article : Google Scholar : PubMed/NCBI

37 

Xing Z, Li X, He ZNT, Fang X, Liang H, Kuang C, Li A and Yang Q: IDO1 inhibitor RY103 suppresses Trp-GCN2-mediated angiogenesis and counters immunosuppression in glioblastoma. Pharmaceutics. 16:8702024. View Article : Google Scholar : PubMed/NCBI

38 

Arora J, Ayyappan S, Yin C, Smith BJ, Lemke-Miltner CD, Wang Z, Farooq U and Weiner GJ: T-cell help in the tumor microenvironment enhances rituximab-mediated NK-cell ADCC. Blood. 143:1816–1824. 2024. View Article : Google Scholar : PubMed/NCBI

39 

Hofman T, Ng SW, Garcés-Lázaro I, Heigwer F, Boutros M and Cerwenka A: IFNγ mediates the resistance of tumor cells to distinct NK cell subsets. J Immunother Cancer. 12:e0094102024. View Article : Google Scholar : PubMed/NCBI

40 

Kurebayashi Y, Olkowski CP, Lane KC, Vasalatiy OV, Xu BC, Okada R, Furusawa A, Choyke PL, Kobayashi H and Sato N: Rapid depletion of intratumoral regulatory T cells induces synchronized CD8 T- and NK-cell activation and IFNγ-dependent tumor vessel regression. Cancer Res. 81:3092–3104. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Zhang P, Li C, Wang Y, Chi X, Sun T, Zhang Q, Zhang Y and Ji N: Expression features of targets for anti-glioma CAR-T cell immunotherapy. J Neurooncol. 171:179–189. 2025. View Article : Google Scholar : PubMed/NCBI

42 

Antonucci L, Canciani G, Mastronuzzi A, Carai A, Del Baldo G and Del Bufalo F: CAR-T therapy for pediatric high-grade gliomas: Peculiarities, current investigations and future strategies. Front Immunol. 13:8671542022. View Article : Google Scholar : PubMed/NCBI

43 

Santiago-Vicente Y, de Jesús Castillejos-López M, Carmona-Aparicio L, Coballase-Urrutia E, Velasco-Hidalgo L, Niembro-Zúñiga AM, Zapata-Tarrés M and Torres-Espíndola LM: Immunotherapy for pediatric gliomas: CAR-T cells against B7H3: A review of the literature. CNS Neurol Disord Drug Targets. 23:420–430. 2024. View Article : Google Scholar : PubMed/NCBI

44 

Zhu G, Zhang Q, Zhang J and Liu F: Targeting tumor-associated antigen: A promising CAR-T therapeutic strategy for glioblastoma treatment. Front Pharmacol. 12:6616062021. View Article : Google Scholar : PubMed/NCBI

45 

Hatae R, Kyewalabye K, Yamamichi A, Chen T, Phyu S, Chuntova P, Nejo T, Levine LS, Spitzer MH and Okada H: Enhancing CAR-T cell metabolism to overcome hypoxic conditions in the brain tumor microenvironment. JCI Insight. 9:e1771412024. View Article : Google Scholar : PubMed/NCBI

46 

Jin L, Ge H, Yang C, Long Y and Huang J: CD70 as a novel target of CAR-T-cell therapy for gliomas. J Clin Oncol. 35 (Suppl 7):S1482017. View Article : Google Scholar

47 

Brown CE, Hibbard JC, Alizadeh D, Blanchard MS, Natri HM, Wang D, Ostberg JR, Aguilar B, Wagner JR, Paul JA, et al: Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: A phase 1 trial. Nat Med. 30:1001–1012. 2024. View Article : Google Scholar : PubMed/NCBI

48 

Hou AJ, Shih RM, Uy BR, Shafer A, Chang ZL, Comin-Anduix B, Guemes M, Galic Z, Phyu S, Okada H, et al: IL-13Rα2/TGF-β bispecific CAR-T cells counter TGF-β-mediated immune suppression and potentiate anti-tumor responses in glioblastoma. Neuro Oncol. 26:1850–1866. 2024. View Article : Google Scholar : PubMed/NCBI

49 

Luo L, Zhang XY, Zhen YW, Guo GC, Peng DZ, Wei C, Pei DL, Yu B, Ji YC, Liu XZ, et al: Polo-like kinase 1 is related with malignant characteristics and inhibits macrophages infiltration in glioma. Front Immunol. 13:10580362022. View Article : Google Scholar : PubMed/NCBI

50 

Tang F, Wang Y, Zeng Y, Xiao A, Tong A and Xu J: Tumor-associated macrophage-related strategies for glioma immunotherapy. NPJ Precis Oncol. 7:782023. View Article : Google Scholar : PubMed/NCBI

51 

Wang J, Xu L, Ding Q, Li X, Wang K, Xu S and Liu B: Siglec15 is a prognostic indicator and a potential tumor-related macrophage regulator that is involved in the suppressive immunomicroenvironment in gliomas. Front Immunol. 14:10650622023. View Article : Google Scholar : PubMed/NCBI

52 

Gerew A, Sexton S, Wasko KM, Shearman MS, Zhang K, Chang KH and Khan SQ: Deletion of CISH and TGFβR2 in iPSC-derived NK cells promotes high cytotoxicity and enhances in vivo tumor killing. Blood. 138 (Suppl 1):S27802021. View Article : Google Scholar

53 

Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, Griffero F, Marubbi D, Spaziante R, Bellora F, et al: NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol. 182:3530–3539. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Daga A, Orengo AM, Gangemi RMR, Marubbi D, Perera M, Comes A, Ferrini S and Corte G: Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer. 121:1756–63. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Murad S, Michen S, Becker A, Füssel M, Schackert G, Tonn T, Momburg F and Temme A: NKG2C+ NK cells for immunotherapy of glioblastoma multiforme. Int J Mol Sci. 23:58572022. View Article : Google Scholar : PubMed/NCBI

56 

Lin Q, Wei Y, Xu G, Wang L, Ling F, Chen X, Cheng Y and Zhou Y: Integrative multi-omic profiling of the neoantigen landscape of glioblastoma for the development of therapeutic vaccines reveals vast heterogeneity in immunogenic signatures. Front Oncol. 15:15076322025. View Article : Google Scholar : PubMed/NCBI

57 

Schulenburg A, Ulrich-Pur H, Thurnher D, Erovic B, Florian S, Sperr WR, Kalhs P, Marian B, Wrba F, Zielinski CC and Valent P: Neoplastic stem cells: A novel therapeutic target in clinical oncology. Cancer. 107:2512–2520. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Guo F, Zhang Y, Bai L and Cui J: Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett. 570:2163282023. View Article : Google Scholar : PubMed/NCBI

59 

Avril T, Vauleon E, Hamlat A, Saikali S, Etcheverry A, Delmas C, Diabira S, Mosser J and Quillien V: Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain Pathol. 22:159–174. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Lu Y, Wang W and Tan S: EHD1 promotes the cancer stem cell (CSC)-like traits of glioma cells via interacting with CD44 and suppressing CD44 degradation. Environ Toxicol. 37:2259–2268. 2022. View Article : Google Scholar : PubMed/NCBI

61 

Wang X, Dai X, Zhang X, Li X, Xu T and Lan Q: Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix. Biochem Biophys Res Commun. 498:1052–1057. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL and Yu JS: Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 23:9392–9400. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Poli A, Wang J, Domingues O, Planagumà J, Yan T, Rygh CB, Skaftnesmo KO, Thorsen F, McCormack E, Hentges F, et al: Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget. 4:1527–1546. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Stallcup WB: NG2 proteoglycan enhances brain tumor progression by promoting beta-1 integrin activation in both Cis and trans orientations. Cancers (Basel). 9:312017. View Article : Google Scholar : PubMed/NCBI

65 

Wang X, Osada T, Wang Y, Yu L, Sakakura K, Katayama A, McCarthy JB, Brufsky A, Chivukula M, Khoury T, et al: CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J Natl Cancer Inst. 102:1496–1512. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Aloisi F, Ria F and Adorini L: Regulation of T-cell responses by CNS antigen-presenting cells: Different roles for microglia and astrocytes. Immunol Today. 21:141–147. 2000. View Article : Google Scholar : PubMed/NCBI

67 

Charles NA and Holland EC: The perivascular niche microenvironment in brain tumor progression. Cell Cycle. 9:3084–3093. 2010. View Article : Google Scholar

68 

Shono K, Yamaguchi I, Mizobuchi Y, Kagusa H, Sumi A, Fujihara T, Nakajima K, Kitazato KT, Matsuzaki K, Saya H and Takagi Y: Downregulation of the CCL2/CCR2 and CXCL10/CXCR3 axes contributes to antitumor effects in a mouse model of malignant glioma. Sci Rep. 10:152862020. View Article : Google Scholar : PubMed/NCBI

69 

Deborah EA, Nabekura T, Shibuya K and Shibuya A: THEMIS2 impairs antitumor activity of NK cells by suppressing activating NK receptor signaling. J Immunol. 212:1819–1828. 2024. View Article : Google Scholar : PubMed/NCBI

70 

Panda AK, Gangaplara A, Buszko M, Natarajan K, Boyd LF, Sharma S, Margulies DH and Shevach EM: Cutting edge: Inhibition of the interaction of NK inhibitory receptors with MHC class I augments antiviral and antitumor immunity. J Immunol. 205:567–572. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Luczo JM, Ronzulli SL and Tompkins SM: Influenza A virus hemagglutinin and other pathogen glycoprotein interactions with NK cell natural cytotoxicity receptors NKp46, NKp44, and NKp30. Viruses. 13:1562021. View Article : Google Scholar : PubMed/NCBI

72 

Bailly E, Macedo C, Gu X, Hollingshead D, Bentlejewski C, Fong E, Morel PA, Randhawa P, Zeevi A, Lefaucheur C and Metes D: FCGR2C Q13 and FCGR3A V176 alleles jointly associate with worse natural killer cell-mediated antibody-dependent cellular cytotoxicity and microvascular inflammation in kidney allograft antibody-mediated rejection. Am J Transplant. 25:302–315. 2025. View Article : Google Scholar : PubMed/NCBI

73 

Billadeau DD, Upshaw JL, Schoon RA, Dick CJ and Leibson PJ: NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat Immunol. 4:557–564. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Lanier LL: NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 3:575–582. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC and Moretta L: Human NK cells: Surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol. 16:430–441. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 19:1102020. View Article : Google Scholar : PubMed/NCBI

77 

Khan M, Arooj S and Wang H: NK cell-based immune checkpoint inhibition. Front Immunol. 11:1672020. View Article : Google Scholar : PubMed/NCBI

78 

Harjunpää H and Guillerey C: TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 200:108–119. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Briukhovetska D, Suarez-Gosalvez J, Voigt C, Markota A, Giannou AD, Schübel M, Jobst J, Zhang T, Dörr J, Märkl F, et al: T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis. Immunity. 56:143–161.e11. 2023. View Article : Google Scholar : PubMed/NCBI

80 

Saraiva M and O'Garra A: The regulation of IL-10 production by immune cells. Nat Rev Immunol. 10:170–181. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Devis-Jauregui L, Eritja N, Davis ML, Matias-Guiu X and Llobet-Navàs D: Autophagy in the physiological endometrium and cancer. Autophagy. 17:1077–1095. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Fitzgerald AA, Wang S, Agarwal V, Marcisak EF, Zuo A, Jablonski SA, Loth M, Fertig EJ, MacDougall J, Zhukovsky E, et al: DPP inhibition alters the CXCR3 axis and enhances NK and CD8+ T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma. J Immunother Cancer. 9:e0028372021. View Article : Google Scholar : PubMed/NCBI

83 

Bejarano L, C. Jordāo MJ and Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S, Brouland JP, Iacobuzio-Donahue CA, Brennan C, Tabar V, et al: Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell. 181:1643–1660.e17. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Friebel E, Kapolou K, Unger S, Núñez NG, Utz S, Rushing EJ, Regli L, Weller M, Greter M, Tugues S, et al: Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell. 181:1626–1642.e20. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Fares J, Ulasov I, Timashev P and Lesniak MS: Emerging principles of brain immunology and immune checkpoint blockade in brain metastases. Brain. 144:1046–1066. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Chen Z and Hambardzumyan D: Immune microenvironment in glioblastoma subtypes. Front Immunol. 9:10042018. View Article : Google Scholar : PubMed/NCBI

88 

Sampson JH, Gunn MD, Fecci PE and Ashley DM: Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 20:12–25. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Quail DF and Joyce JA: The microenvironmental landscape of brain tumors. Cancer Cell. 31:326–341. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson DS and Fecci PE: Immune suppression in gliomas. J Neurooncol. 151:3–12. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Bugide S, Gupta R, Green M and Wajapeyee N: EZH2 inhibits NK cell-mediated antitumor immunity by suppressing CXCL10 expression in an HDAC10-dependent manner. Proc Natl Acad Sci USA. 118:e21027181182021. View Article : Google Scholar : PubMed/NCBI

92 

Mangani D, Weller M and Roth P: The network of immunosuppressive pathways in glioblastoma. Biochem Pharmacol. 130:1–9. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, Yin J, You F, Zhu M, Shen W, et al: First-in-man clinical trial of CAR NK-92 cells: Safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 8:1083–1089. 2018.PubMed/NCBI

94 

Oelsner S, Friede ME, Zhang C, Wagner J, Badura S, Bader P, Ullrich E, Ottmann OG, Klingemann H, Tonn T and Wels WS: Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy. 19:235–249. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Salman H, Pinz KG, Wada M, Shuai X, Yan LE, Petrov JC and Ma Y: Preclinical targeting of human acute myeloid leukemia using CD4-specific chimeric antigen receptor (CAR) T cells and NK cells. J Cancer. 10:4408–4419. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Liu Y, Zhou Y, Huang KH, Fang X, Li Y, Wang F, An L, Chen Q, Zhang Y, Shi A, et al: Targeting epidermal growth factor-overexpressing triple-negative breast cancer by natural killer cells expressing a specific chimeric antigen receptor. Cell Prolif. 53:e128582020. View Article : Google Scholar : PubMed/NCBI

97 

Ng YY, Tay JCK and Wang S: CXCR1 expression to improve anti-cancer efficacy of intravenously injected CAR-NK cells in mice with peritoneal xenografts. Mol Ther Oncolytics. 16:75–85. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Ueda T, Kumagai A, Iriguchi S, Yasui Y, Miyasaka T, Nakagoshi K, Nakane K, Saito K, Takahashi M, Sasaki A, et al: Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci. 111:1478–1490. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Zuo P, Li Y, He C, Wang T, Zheng X, Liu H, Wu Z, Zhang J, Liao X and Zhang L: Anti-tumor efficacy of anti-GD2 CAR NK-92 cells in diffuse intrinsic pontine gliomas. Front Immunol. 14:11457062023. View Article : Google Scholar : PubMed/NCBI

100 

Zhang C, Burger MC, Jennewein L, Genßler S, Schönfeld K, Zeiner P, Hattingen E, Harter PN, Mittelbronn M, Tonn T, et al: ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. 108:djv3752016. View Article : Google Scholar

101 

Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T and Ohno T: Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res. 24:1861–1871. 2004.PubMed/NCBI

102 

Soumen K, Cooper LJN, Sandberg DI, Leena K, Johnson JM, Rytting ME, Liu DD, Meador H, Trikha P, Nakkula RJ, et al: Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro Oncol. 22:1214–1225. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Thakar MS, Browning M, Hari P, Charlson JA, Margolis DA, Logan B, Schloemer N, Kelly ME, Newman A, Johnson B, et al: Phase II trial using haploidentical hematopoietic cell transplantation (HCT) followed by donor natural killer (NK) cell infusion and sirolimus maintenance for patients with high-risk solid tumors. J Clin Oncol. 38 (1Suppl 15):e235512020. View Article : Google Scholar

104 

Lim J, Park YJ, Ahn JW, Sim JM, Kang SJ, Hwang S, Chun J, Choi H, Kim SH, Chun DH, et al: Autologous adoptive immune-cell therapy elicited a durable response with enhanced immune reaction signatures in patients with recurrent glioblastoma: An open label, phase I/IIa trial. PLoS One. 16:e02472932021. View Article : Google Scholar : PubMed/NCBI

105 

Asl NS, Behfar M, Amiri RS, Mohseni R, Azimi M, Firouzi J, Faranoush M, Izadpanah A, Mohmmad M, Hamidieh AA, et al: Intra-lesion injection of activated Natural Killer (NK) cells in recurrent malignant brain tumors. Int Immunopharmacol. 120:1103452023. View Article : Google Scholar : PubMed/NCBI

106 

Yamada D, Iyoda T, Vizcardo R, Shimizu K, Sato Y, Endo TA, Kitahara G, Okoshi M, Kobayashi M, Sakurai M, et al: Efficient regeneration of human Vα24+ invariant natural killer T cells and their anti-tumor activity in vivo. Stem Cells. 34:2852–2860. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Peng Y, Zhan M, Karpus A, Zou Y, Mignani S, Majoral JP, Shi X and Shen M: Brain delivery of biomimetic phosphorus dendrimer/antibody nanocomplexes for enhanced glioma immunotherapy via immune modulation of T cells and natural killer cells. ACS Nano. 18:10142–10155. 2024. View Article : Google Scholar : PubMed/NCBI

108 

Bagley SJ, Logun M, Fraietta JA, Wang X, Desai AS, Bagley LJ, Nabavizadeh A, Jarocha D, Martins R, Maloney E, et al: Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: Phase 1 trial interim results. Nat Med. 30:1320–1329. 2024. View Article : Google Scholar : PubMed/NCBI

109 

Liu S, Galat V, Galat Y, Lee YKA, Wainwright D and Wu J: NK cell-based cancer immunotherapy: From basic biology to clinical development. J Hematol Oncol. 14:72021. View Article : Google Scholar : PubMed/NCBI

110 

Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Chartrand MS, et al: CAR-NK cell in cancer immunotherapy; A promising frontier. Cancer Sci. 112:3427–3436. 2021. View Article : Google Scholar : PubMed/NCBI

111 

Shanley M, Daher M, Dou J, Li S, Basar R, Rafei H, Dede M, Gumin J, Pantaleόn Garcίa J, Nunez Cortes AK, et al: Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD. Cancer Cell. 42:1450–1466.e11. 2024. View Article : Google Scholar : PubMed/NCBI

112 

Marin D, Li Y, Basar R, Rafei H, Daher M, Dou J, Mohanty V, Dede M, Nieto Y, Uprety N, et al: Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat Med. 30:772–784. 2024. View Article : Google Scholar : PubMed/NCBI

113 

Siegler EL, Zhu Y, Wang P and Yang L: Off-the-shelf CAR-NK cells for cancer immunotherapy. Cell Stem Cell. 23:160–161. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Lin X, Sun Y, Dong X, Liu Z, Sugimura R and Xie G: IPSC-derived CAR-NK cells for cancer immunotherapy. Biomed Pharmacother. 165:1151232023. View Article : Google Scholar : PubMed/NCBI

115 

Kong D, Kwon D, Moon B, Kim DH, Kim MJ, Choi J and Kang KS: CD19 CAR-expressing iPSC-derived NK cells effectively enhance migration and cytotoxicity into glioblastoma by targeting to the pericytes in tumor microenvironment. Biomed Pharmacother. 174:1164362024. View Article : Google Scholar : PubMed/NCBI

116 

Lupo KB, Yao X, Borde S, Wang J, Torregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, McIntosh M and Matosevic S: synNotch-programmed iPSC-derived NK cells usurp TIGIT and CD73 activities for glioblastoma therapy. Nat Commun. 15:19092024. View Article : Google Scholar : PubMed/NCBI

117 

Pal M, Schwab L, Yermakova A, Mace EM, Claus R, Krahl AC, Woiterski J, Hartwig UF, Orange JS, Handgretinger R and André MC: Tumor-priming converts NK cells to memory-like NK cells. Oncoimmunology. 6:e13174112017. View Article : Google Scholar : PubMed/NCBI

118 

Terrén I, Orrantia A, Astarloa-Pando G, Amarilla-Irusta A, Zenarruzabeitia O and Borrego F: Cytokine-induced memory-like NK cells: From the basics to clinical applications. Front Immunol. 13:8846482022. View Article : Google Scholar : PubMed/NCBI

119 

Parihar R, Rivas C, Huynh M, Omer B, Lapteva N, Metelitsa LS, Gottschalk SM and Rooney CM: NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors. Cancer Immunol Res. 7:363–375. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S and Reis e Sousa C: NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 172:1022–1037.e14. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Y, Su C, Wei X, Wei N, Qian Q and Xu Z: Prospects and applications of NK therapy in the treatment of gliomas (Review). Oncol Rep 54: 88, 2025.
APA
Liu, Y., Su, C., Wei, X., Wei, N., Qian, Q., & Xu, Z. (2025). Prospects and applications of NK therapy in the treatment of gliomas (Review). Oncology Reports, 54, 88. https://doi.org/10.3892/or.2025.8921
MLA
Liu, Y., Su, C., Wei, X., Wei, N., Qian, Q., Xu, Z."Prospects and applications of NK therapy in the treatment of gliomas (Review)". Oncology Reports 54.2 (2025): 88.
Chicago
Liu, Y., Su, C., Wei, X., Wei, N., Qian, Q., Xu, Z."Prospects and applications of NK therapy in the treatment of gliomas (Review)". Oncology Reports 54, no. 2 (2025): 88. https://doi.org/10.3892/or.2025.8921
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Y, Su C, Wei X, Wei N, Qian Q and Xu Z: Prospects and applications of NK therapy in the treatment of gliomas (Review). Oncol Rep 54: 88, 2025.
APA
Liu, Y., Su, C., Wei, X., Wei, N., Qian, Q., & Xu, Z. (2025). Prospects and applications of NK therapy in the treatment of gliomas (Review). Oncology Reports, 54, 88. https://doi.org/10.3892/or.2025.8921
MLA
Liu, Y., Su, C., Wei, X., Wei, N., Qian, Q., Xu, Z."Prospects and applications of NK therapy in the treatment of gliomas (Review)". Oncology Reports 54.2 (2025): 88.
Chicago
Liu, Y., Su, C., Wei, X., Wei, N., Qian, Q., Xu, Z."Prospects and applications of NK therapy in the treatment of gliomas (Review)". Oncology Reports 54, no. 2 (2025): 88. https://doi.org/10.3892/or.2025.8921
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team