|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Duan Q, Zhang H, Zheng J and Zhang L:
Turning cold INTO hot: Firing up the tumor microenvironment. Trends
Cancer. 6:605–618. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kalluri R: The biology and function of
fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shin N, Son GM, Shin DH, Kwon MS, Park BS,
Kim HS, Ryu D and Kang CD: Cancer-associated fibroblasts and
desmoplastic reactions related to cancer invasiveness in patients
with colorectal cancer. Ann Coloproctol. 35:36–46. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lee D, Ham IH, Son SY, Han SU, Kim YB and
Hur H: Intratumor stromal proportion predicts aggressive phenotype
of gastric signet ring cell carcinomas. Gastric Cancer. 20:591–601.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Greten FR and Grivennikov SI: Inflammation
and cancer: Triggers, mechanisms, and consequences. Immunity.
51:27–41. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y
and Li Y: Inflammation and tumor progression: Signaling pathways
and targeted intervention. Signal Transduct Target Ther. 6:2632021.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rubinstein-Achiasaf L, Morein D,
Ben-Yaakov H, Liubomirski Y, Meshel T, Elbaz E, Dorot O, Pichinuk
E, Gershovits M, Weil M and Ben-Baruch A: Persistent inflammatory
stimulation drives the conversion of MSCs to inflammatory CAFs that
promote pro-metastatic characteristics in breast cancer cells.
Cancers (Basel). 13:14722021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
de Castro Silva I, Bianchi A, Deshpande
NU, Sharma P, Mehra S, Garrido VT, Saigh SJ, England J, Hosein PJ,
Kwon D, et al: Neutrophil-mediated fibroblast-tumor cell
il-6/stat-3 signaling underlies the association between
neutrophil-to-lymphocyte ratio dynamics and chemotherapy response
in localized pancreatic cancer: A hybrid clinical-preclinical
study. Elife. 11:e789212022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Saito A, Horie M and Nagase T: TGF-beta
signaling in lung health and disease. Int J Mol Sci. 19:24602018.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Caja L, Dituri F, Mancarella S,
Caballero-Diaz D, Moustakas A, Giannelli G and Fabregat I: TGF-β
and the tissue microenvironment: Relevance in fibrosis and cancer.
Int J Mol Sci. 19:12942018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hawinkels LJ, Paauwe M, Verspaget HW,
Wiercinska E, van der Zon JM, van der Ploeg K, Koelink PJ, Lindeman
JH, Mesker W, ten Dijke P and Sier CF: Interaction with colon
cancer cells hyperactivates TGF-β signaling in cancer-associated
fibroblasts. Oncogene. 33:97–107. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rothwell PM, Wilson M, Price JF, Belch JF,
Meade TW and Mehta Z: Effect of daily aspirin on risk of cancer
metastasis: A study of incident cancers during randomised
controlled trials. Lancet. 379:1591–1601. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Goradel NH, Najafi M, Salehi E, Farhood B
and Mortezaee K: Cyclooxygenase-2 in cancer: A review. J Cell
Physiol. 234:5683–5699. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Herbertz S, Sawyer JS, Stauber AJ,
Gueorguieva I, Driscoll KE, Estrem ST, Cleverly AL, Desaiah D, Guba
SC, Benhadji KA, et al: Clinical development of galunisertib
(LY2157299 monohydrate), a small molecule inhibitor of transforming
growth factor-beta signaling pathway. Drug Des Devel Ther.
9:4479–4499. 2015.PubMed/NCBI
|
|
16
|
Peng D, Fu M, Wang M, Wei Y and Wei X:
Targeting TGF-β signal transduction for fibrosis and cancer
therapy. Mol Cancer. 21:1042022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yao X, Huang J, Zhong H, Shen N, Faggioni
R, Fung M and Yao Y: Targeting interleukin-6 in inflammatory
autoimmune diseases and cancers. Pharmacol Ther. 141:125–139. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yu H, Lin L, Zhang Z, Zhang H and Hu H:
Targeting NF-κB pathway for the therapy of diseases: Mechanism and
clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fosslien E: Molecular pathology of
cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci. 30:3–21.
2000.PubMed/NCBI
|
|
20
|
Scheller J, Garbers C and Rose-John S:
Interleukin-6: From basic biology to selective blockade of
pro-inflammatory activities. Semin Immunol. 26:2–12. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu
J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between
cancer-associated fibroblasts and immune cells in the tumor
microenvironment: New findings and future perspectives. Mol Cancer.
20:1312021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Faivre S, Santoro A, Kelley RK, Gane E,
Costentin CE, Gueorguieva I, Smith C, Cleverly A, Lahn MM, Raymond
E, et al: Novel transforming growth factor beta receptor I kinase
inhibitor galunisertib (LY2157299) in advanced hepatocellular
carcinoma. Liver Int. 39:1468–1477. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Melisi D, Garcia-Carbonero R, Macarulla T,
Pezet D, Deplanque G, Fuchs M, Trojan J, Oettle H, Kozloff M,
Cleverly A, et al: Galunisertib plus gemcitabine vs. gemcitabine
for first-line treatment of patients with unresectable pancreatic
cancer. Br J Cancer. 119:1208–1214. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Holmgaard RB, Schaer DA, Li Y, Castaneda
SP, Murphy MY, Xu X, Inigo I, Dobkin J, Manro JR, Iversen PW, et
al: Targeting the TGFbeta pathway with galunisertib, a TGFbetaRI
small molecule inhibitor, promotes anti-tumor immunity leading to
durable, complete responses, as monotherapy and in combination with
checkpoint blockade. J Immunother Cancer. 6:472018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Dijkgraaf EM, Santegoets SJ, Reyners AK,
Goedemans R, Wouters MC, Kenter GG, van Erkel AR, van Poelgeest MI,
Nijman HW, van der Hoeven JJ, et al: A phase I trial combining
carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal
antibody, and interferon-α2b in patients with recurrent epithelial
ovarian cancer. Ann Oncol. 26:2141–2149. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mantovani A, Ponzetta A, Inforzato A and
Jaillon S: Innate immunity, inflammation and tumour progression:
double-edged swords. J Intern Med. 285:524–532. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wu CT, Chen MF, Chen WC and Hsieh CC: The
role of IL-6 in the radiation response of prostate cancer. Radiat
Oncol. 8:1592013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lazennec G and Richmond A: Chemokines and
chemokine receptors: New insights into cancer-related inflammation.
Trends Mol Med. 16:133–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Balachander GM, Talukdar PM, Debnath M,
Rangarajan A and Chatterjee K: Inflammatory role of
cancer-associated fibroblasts in invasive breast tumors revealed
using a fibrous polymer scaffold. ACS Appl Mater Interfaces.
10:33814–33826. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Erez N, Truitt M, Olson P, Arron ST and
Hanahan D: Cancer-associated fibroblasts are activated in incipient
neoplasia to orchestrate tumor-promoting inflammation in an
NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jain S, Rick JW, Joshi RS, Beniwal A,
Spatz J, Gill S, Chang AC, Choudhary N, Nguyen AT, Sudhir S, et al:
Single-cell RNA sequencing and spatial transcriptomics reveal
cancer-associated fibroblasts in glioblastoma with protumoral
effects. J Clin Invest. 133:e1470872023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Song M, He J, Pan QZ, Yang J, Zhao J,
Zhang YJ, Huang Y, Tang Y, Wang Q, He J, et al: Cancer-associated
fibroblast-mediated cellular crosstalk supports hepatocellular
carcinoma progression. Hepatology. 73:1717–1735. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xiang H, Ramil CP, Hai J, Zhang C, Wang H,
Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al:
Cancer-associated fibroblasts promote immunosuppression by inducing
ROS-generating monocytic MDSCs in lung squamous cell carcinoma.
Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Donelan W, Dominguez-Gutierrez PR and
Kusmartsev S: Deregulated hyaluronan metabolism in the tumor
microenvironment drives cancer inflammation and tumor-associated
immune suppression. Front Immunol. 13:9712782022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ershaid N, Sharon Y, Doron H, Raz Y, Shani
O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, et
al: NLRP3 inflammasome in fibroblasts links tissue damage with
inflammation in breast cancer progression and metastasis. Nat
Commun. 10:43752019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu
J, Liang C, Hua J, Zhao Y, Yu X and Shi S: Signaling pathways in
cancer-associated fibroblasts: Recent advances and future
perspectives. Cancer Commun (Lond). 43:3–41. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W,
Dang Y, Chu Y, Fan J and He R: FAP promotes immunosuppression by
cancer-associated fibroblasts in the tumor microenvironment via
STAT3-CCL2 signaling. Cancer Res. 76:4124–4135. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Johnson DE, O'Keefe RA and Grandis JR:
Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev
Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Biffi G, Oni TE, Spielman B, Hao Y, Elyada
E, Park Y, Preall J and Tuveson DA: IL1-induced JAK/STAT signaling
is antagonized by TGFβ to shape CAF heterogeneity in pancreatic
ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fukui H, Zhang X, Sun C, Hara K, Kikuchi
S, Yamasaki T, Kondo T, Tomita T, Oshima T, Watari J, et al: IL-22
produced by cancer-associated fibroblasts promotes gastric cancer
cell invasion via STAT3 and ERK signaling. Br J Cancer.
111:763–771. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ebbing EA, van der Zalm AP, Steins A,
Creemers A, Hermsen S, Rentenaar R, Klein M, Waasdorp C, Hooijer
GKJ, Meijer SL, et al: Stromal-derived interleukin 6 drives
epithelial-to-mesenchymal transition and therapy resistance in
esophageal adenocarcinoma. Proc Natl Acad Sci USA. 116:2237–2242.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Brunetto E, De Monte L, Balzano G, Camisa
B, Laino V, Riba M, Heltai S, Bianchi M, Bordignon C, Falconi M, et
al: The IL-1/IL-1 receptor axis and tumor cell released
inflammasome adaptor ASC are key regulators of TSLP secretion by
cancer associated fibroblasts in pancreatic cancer. J Immunother
Cancer. 7:452019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Servais C and Erez N: From sentinel cells
to inflammatory culprits: Cancer-associated fibroblasts in
tumour-related inflammation. J Pathol. 229:198–207. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mueller L, Goumas FA, Affeldt M, Sandtner
S, Gehling UM, Brilloff S, Walter J, Karnatz N, Lamszus K, Rogiers
X and Broering DC: Stromal fibroblasts in colorectal liver
metastases originate from resident fibroblasts and generate an
inflammatory microenvironment. Am J Pathol. 171:1608–1618. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mueller L, von Seggern L, Schumacher J,
Goumas F, Wilms C, Braun F and Broering DC: TNF-alpha similarly
induces IL-6 and MCP-1 in fibroblasts from colorectal liver
metastases and normal liver fibroblasts. Biochem Biophys Res
Commun. 397:586–591. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kojima Y, Acar A, Eaton EN, Mellody KT,
Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg
RA and Orimo A: Autocrine TGF-beta and stromal cell-derived
factor-1 (SDF-1) signaling drives the evolution of tumor-promoting
mammary stromal myofibroblasts. Proc Natl Acad Sci USA.
107:20009–20014. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ziani L, Chouaib S and Thiery J:
Alteration of the antitumor immune response by cancer-associated
fibroblasts. Front Immunol. 9:4142018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kim R, Emi M and Tanabe K: Cancer
immunosuppression and autoimmune disease: Beyond immunosuppressive
networks for tumour immunity. Immunology. 119:254–264. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bauer J, Emon MAB, Staudacher JJ, Thomas
AL, Zessner-Spitzenberg J, Mancinelli G, Krett N, Saif MT and Jung
B: Author Correction: Increased stiffness of the tumor
microenvironment in colon cancer stimulates cancer associated
fibroblast-mediated prometastatic activin A signaling. Sci Rep.
10:76062020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Fullar A, Dudas J, Olah L, Hollósi P, Papp
Z, Sobel G, Karászi K, Paku S, Baghy K and Kovalszky I: Remodeling
of extracellular matrix by normal and tumor-associated fibroblasts
promotes cervical cancer progression. BMC Cancer. 15:2562015.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kobayashi N, Miyoshi S, Mikami T, Koyama
H, Kitazawa M, Takeoka M, Sano K, Amano J, Isogai Z, Niida S, et
al: Hyaluronan deficiency in tumor stroma impairs macrophage
trafficking and tumor neovascularization. Cancer Res. 70:7073–7083.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li X, Zhao S, Bian X, Zhang L, Lu L, Pei
S, Dong L, Shi W, Huang L, Zhang X, et al: Signatures of EMT,
immunosuppression, and inflammation in primary and recurrent human
cutaneous squamous cell carcinoma at single-cell resolution.
Theranostics. 12:7532–7549. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lu P, Weaver VM and Werb Z: The
extracellular matrix: A dynamic niche in cancer progression. J Cell
Biol. 196:395–406. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Minton K: Extracellular matrix:
Preconditioning the ECM for fibrosis. Nat Rev Mol Cell Biol.
15:766–767. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Van den Steen PE, Proost P, Wuyts A, Van
Damme J and Opdenakker G: Neutrophil gelatinase B potentiates
interleukin-8 tenfold by aminoterminal processing, whereas it
degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2
intact. Blood. 96:2673–2681. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liubomirski Y, Lerrer S, Meshel T, Morein
D, Rubinstein-Achiasaf L, Sprinzak D, Wiemann S, Körner C, Ehrlich
M and Ben-Baruch A: Notch-mediated tumor-stroma-inflammation
networks promote invasive properties and CXCL8 expression in
triple-negative breast cancer. Front Immunol. 10:8042019.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Drev D, Bileck A, Erdem ZN, Mohr T,
Timelthaler G, Beer A, Gerner C and Marian B: Proteomic profiling
identifies markers for inflammation-related tumor-fibroblast
interaction. Clin Proteomics. 14:332017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Schworer S, Cimino FV, Ros M, Tsanov KM,
Ng C, Lowe SW, Carmona-Fontaine C and Thompson CB: Hypoxia
potentiates the inflammatory fibroblast phenotype promoted by
pancreatic cancer cell-derived cytokines. Cancer Res. 83:1596–1610.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lappano R, Talia M, Cirillo F,
Rigiracciolo DC, Scordamaglia D, Guzzi R, Miglietta AM, De
Francesco EM, Belfiore A, Sims AH and Maggiolini M: The IL1β-IL1R
signaling is involved in the stimulatory effects triggered by
hypoxia in breast cancer cells and cancer-associated fibroblasts
(CAFs). J Exp Clin Cancer Res. 39:1532020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pavlides S, Tsirigos A, Vera I, Flomenberg
N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn
UE, Howell A, et al: Transcriptional evidence for the ‘Reverse
Warburg Effect’ in human breast cancer tumor stroma and metastasis:
Similarities with oxidative stress, inflammation, Alzheimer's
disease, and ‘Neuron-Glia Metabolic Coupling’. Aging (Albany NY).
2:185–199. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Pavlides S, Tsirigos A, Vera I, Flomenberg
N, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG,
et al: Loss of stromal caveolin-1 leads to oxidative stress, mimics
hypoxia and drives inflammation in the tumor microenvironment,
conferring the ‘reverse Warburg effect’: A transcriptional
informatics analysis with validation. Cell Cycle. 9:2201–2219.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Linares JF, Cid-Diaz T, Duran A, Osrodek
M, Martinez-Ordoñez A, Reina-Campos M, Kuo HH, Elemento O, Martin
ML, Cordes T, et al: The lactate-NAD(+) axis activates
cancer-associated fibroblasts by downregulating p62. Cell Rep.
39:1107922022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Rossow L, Veitl S, Vorlova S, Wax JK, Kuhn
AE, Maltzahn V, Upcin B, Karl F, Hoffmann H, Gätzner S, et al:
LOX-catalyzed collagen stabilization is a proximal cause for
intrinsic resistance to chemotherapy. Oncogene. 37:4921–4940. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Korbecki J, Siminska D,
Gassowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D and
Baranowska-Bosiacka I: Chronic and cycling hypoxia: Drivers of
cancer chronic inflammation through HIF-1 and NF-κB activation: A
review of the molecular mechanisms. Int J Mol Sci. 22:107012021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ravenna L, Principessa L, Verdina A,
Salvatori L, Russo MA and Petrangeli E: Distinct phenotypes of
human prostate cancer cells associate with different adaptation to
hypoxia and pro-inflammatory gene expression. PLoS One.
9:e962502014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Leszczynska KB, Foskolou IP, Abraham AG,
Anbalagan S, Tellier C, Haider S, Span PN, O'Neill EE, Buffa FM and
Hammond EM: Hypoxia-induced p53 modulates both apoptosis and
radiosensitivity via AKT. J Clin Invest. 125:2385–2398. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Schwitalla S, Ziegler PK, Horst D, Becker
V, Kerle I, Begus-Nahrmann Y, Lechel A, Rudolph KL, Langer R,
Slotta-Huspenina J, et al: Loss of p53 in enterocytes generates an
inflammatory microenvironment enabling invasion and lymph node
metastasis of carcinogen-induced colorectal tumors. Cancer Cell.
23:93–106. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
McGettrick AF and O'Neill LAJ: The role of
HIF in immunity and inflammation. Cell Metab. 32:524–536. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Michalek RD, Gerriets VA, Jacobs SR,
Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG and
Rathmell JC: Cutting edge: Distinct glycolytic and lipid oxidative
metabolic programs are essential for effector and regulatory CD4+ T
cell subsets. J Immunol. 186:3299–3303. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shi LZ, Wang R, Huang G, Vogel P, Neale G,
Green DR and Chi H: HIF1alpha-dependent glycolytic pathway
orchestrates a metabolic checkpoint for the differentiation of TH17
and Treg cells. J Exp Med. 208:1367–1376. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Woo DK and Shadel GS: Mitochondrial stress
signals revise an old aging theory. Cell. 144:11–12. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Higashiguchi M, Murakami H, Akita H,
Kobayashi S, Takahama S, Iwagami Y, Yamada D, Tomimaru Y, Noda T,
Gotoh K, et al: The impact of cellular senescence and
senescence-associated secretory phenotype in cancer-associated
fibroblasts on the malignancy of pancreatic cancer. Oncol Rep.
49:982023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lisanti MP, Martinez-Outschoorn UE, Lin Z,
Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A and Sotgia F:
Hydrogen peroxide fuels aging, inflammation, cancer metabolism and
metastasis: The seed and soil also needs ‘fertilizer’. Cell Cycle.
10:2440–2449. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yasuda T, Koiwa M, Yonemura A, Miyake K,
Kariya R, Kubota S, Yokomizo-Nakano T, Yasuda-Yoshihara N, Uchihara
T, Itoyama R, et al: Inflammation-driven senescence-associated
secretory phenotype in cancer-associated fibroblasts enhances
peritoneal dissemination. Cell Rep. 34:1087792021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Suryadevara V, Hudgins AD, Rajesh A,
Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A,
Soygur B, et al: SenNet recommendations for detecting senescent
cells in different tissues. Nat Rev Mol Cell Biol. 25:1001–1023.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li X, Li C, Zhang W, Wang Y, Qian P and
Huang H: Inflammation and aging: Signaling pathways and
intervention therapies. Signal Transduct Target Ther. 8:2392023.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Elyada E, Bolisetty M, Laise P, Flynn WF,
Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS,
et al: Cross-species single-cell analysis of pancreatic ductal
adenocarcinoma reveals antigen-presenting cancer-associated
fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jena BC, Sarkar S, Rout L and Mandal M:
The transformation of cancer-associated fibroblasts: Current
perspectives on the role of TGF-β in CAF mediated tumor progression
and therapeutic resistance. Cancer Lett. 520:222–232. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gu J, Qian H, Shen L, Zhang X, Zhu W,
Huang L, Yan Y, Mao F, Zhao C, Shi Y and Xu W: Gastric cancer
exosomes trigger differentiation of umbilical cord derived
mesenchymal stem cells to carcinoma-associated fibroblasts through
TGF-β/Smad pathway. PLoS One. 7:e524652012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ and
Feng YM: Cancer-associated fibroblasts induce
epithelial-mesenchymal transition of breast cancer cells through
paracrine TGF-β signalling. Br J Cancer. 110:724–732. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li Q, Zhang D, Wang Y, Sun P, Hou X,
Larner J, Xiong W and Mi J: MiR-21/Smad 7 signaling determines
TGF-β1-induced CAF formation. Sci Rep. 3:20382013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Barcellos-de-Souza P, Comito G,
Pons-Segura C, Taddei ML, Gori V, Becherucci V, Bambi F, Margheri
F, Laurenzana A, Del Rosso M and Chiarugi P: Mesenchymal stem cells
are recruited and activated into carcinoma-associated fibroblasts
by prostate cancer microenvironment-derived TGF-β1. Stem Cells.
34:2536–2547. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wei M, Yang T, Chen X, Wu Y, Deng X, He W,
Yang J and Wang Z: Malignant ascites-derived exosomes promote
proliferation and induce carcinoma-associated fibroblasts
transition in peritoneal mesothelial cells. Oncotarget.
8:42262–42271. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Heneberg P: Paracrine tumor signaling
induces transdifferentiation of surrounding fibroblasts. Crit Rev
Oncol Hematol. 97:303–311. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Pradere JP, Kluwe J, De Minicis S, Jiao
JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman
R, et al: Hepatic macrophages but not dendritic cells contribute to
liver fibrosis by promoting the survival of activated hepatic
stellate cells in mice. Hepatology. 58:1461–1473. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Somerville TD, Biffi G, Daßler-Plenker J,
Hur SK, He XY, Vance KE, Miyabayashi K, Xu Y, Maia-Silva D,
Klingbeil O, et al: Squamous trans-differentiation of pancreatic
cancer cells promotes stromal inflammation. Elife. 9:e533812020.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Bianchi A, De Castro Silva I, Deshpande
NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS,
Saigh SJ, et al: Cell-autonomous Cxcl1 sustains tolerogenic
circuitries and stromal inflammation via neutrophil-derived TNF in
pancreatic cancer. Cancer Discov. 13:1428–1453. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Schauer IG, Zhang J, Xing Z, Guo X,
Mercado-Uribe I, Sood AK, Huang P and Liu J: Interleukin-1beta
promotes ovarian tumorigenesis through a p53/NF-κB-mediated
inflammatory response in stromal fibroblasts. Neoplasia.
15:409–420. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu
Z, Zhao J and Zhang HT: JAK/STAT3 signaling is required for
TGF-β-induced epithelial-mesenchymal transition in lung cancer
cells. Int J Oncol. 44:1643–1651. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Abulaiti A, Shintani Y, Funaki S, Nakagiri
T, Inoue M, Sawabata N, Minami M and Okumura M: Interaction between
non-small-cell lung cancer cells and fibroblasts via enhancement of
TGF-β signaling by IL-6. Lung Cancer. 82:204–213. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Srivastava A, Sharma H, Khanna S,
Balasundaram TS, Chowdhury S, Chowdhury R and Mukherjee S:
Interleukin-6 induced proliferation is attenuated by transforming
growth factor-β-induced signaling in human hepatocellular carcinoma
cells. Front Oncol. 11:8119412021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wiegertjes R, van Caam A, van Beuningen H,
Koenders M, van Lent P, van der Kraan P, van de Loo F and Davidson
EB: TGF-β dampens IL-6 signaling in articular chondrocytes by
decreasing IL-6 receptor expression. Osteoarthritis Cartilage.
27:1197–1207. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kato T, Noma K, Ohara T, Kashima H,
Katsura Y, Sato H, Komoto S, Katsube R, Ninomiya T, Tazawa H, et
al: Cancer-associated fibroblasts affect intratumoral CD8(+) and
FoxP3(+) T cells via IL6 in the tumor microenvironment. Clin Cancer
Res. 24:4820–4833. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Thomas DA and Massague J: TGF-beta
directly targets cytotoxic T cell functions during tumor evasion of
immune surveillance. Cancer Cell. 8:369–380. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Timperi E, Gueguen P, Molgora M, Magagna
I, Kieffer Y, Lopez-Lastra S, Sirven P, Baudrin LG, Baulande S,
Nicolas A, et al: Lipid-associated macrophages are induced by
cancer-associated fibroblasts and mediate immune suppression in
breast cancer. Cancer Res. 82:3291–3306. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nagarsheth N, Wicha MS and Zou W:
Chemokines in the cancer microenvironment and their relevance in
cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cheng Y, Li H, Deng Y, Tai Y, Zeng K,
Zhang Y, Liu W, Zhang Q and Yang Y: Cancer-associated fibroblasts
induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster
immune suppression in hepatocellular carcinoma. Cell Death Dis.
9:4222018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan
X, Mao F, Wang M, Zhu W, Qian H and Xu W: The IL-6-STAT3 axis
mediates a reciprocal crosstalk between cancer-derived mesenchymal
stem cells and neutrophils to synergistically prompt gastric cancer
progression. Cell Death Dis. 5:e12952014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li Z, Zhou J, Zhang J, Li S, Wang H and Du
J: Cancer-associated fibroblasts promote PD-L1 expression in mice
cancer cells via secreting CXCL5. Int J Cancer. 145:1946–1957.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liubomirski Y, Lerrer S, Meshel T,
Rubinstein-Achiasaf L, Morein D, Wiemann S, Körner C and Ben-Baruch
A: Tumor-Stroma-inflammation networks promote pro-metastatic
chemokines and aggressiveness characteristics in triple-negative
breast cancer. Front Immunol. 10:7572019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Comito G, Giannoni E, Segura CP,
Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S
and Chiarugi P: Cancer-associated fibroblasts and M2-polarized
macrophages synergize during prostate carcinoma progression.
Oncogene. 33:2423–2431. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hashimoto O, Yoshida M, Koma Y, Yanai T,
Hasegawa D, Kosaka Y, Nishimura N and Yokozaki H: Collaboration of
cancer-associated fibroblasts and tumour-associated macrophages for
neuroblastoma development. J Pathol. 240:211–223. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ocana A, Nieto-Jimenez C, Pandiella A and
Templeton AJ: Neutrophils in cancer: prognostic role and
therapeutic strategies. Mol Cancer. 16:1372017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chen H, Han X, Zhang Y, Wang K, Liu D, Hu
Z and Wang J: Bruceine D suppresses CAF-promoted TNBC metastasis
under TNF-α stimulation by inhibiting Notch1-Jagged1/NF-κB(p65)
signaling. Phytomedicine. 123:1549282023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhang R, Zong J, Peng Y, Shi J, Du X, Liu
H, Shen Y, Cao J, Jia B, Liu F and Zhang J: GPR30 knockdown weakens
the capacity of CAF in promoting prostate cancer cell invasion via
reducing macrophage infiltration and M2 polarization. J Cell
Biochem. 3:299382021.
|
|
107
|
Louault K, Li RR and DeClerck YA:
Cancer-Associated fibroblasts: Understanding their heterogeneity.
Cancers (Basel). 12:31082020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shi L, Zhu W, Huang Y, Zhuo L, Wang S,
Chen S, Zhang B and Ke B: Cancer-associated fibroblast-derived
exosomal microRNA-20a suppresses the PTEN/PI3K-AKT pathway to
promote the progression and chemoresistance of non-small cell lung
cancer. Clin Transl Med. 12:e9892022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
McAndrews KM, Chen Y, Darpolor JK, Zheng
X, Yang S, Carstens JL, Li B, Wang H, Miyake T, Correa de Sampaio
P, et al: Identification of functional heterogeneity of
carcinoma-associated fibroblasts with distinct IL6-mediated therapy
resistance in pancreatic cancer. Cancer Discov. 12:1580–1597. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Galbiati A, Zana A, Bocci M, Millul J,
Elsayed A, Mock J, Neri D and Cazzamalli S: A Dimeric FAP-targeting
small-molecule radioconjugate with high and prolonged tumor uptake.
J Nucl Med. 63:1852–1858. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lee IK, Noguera-Ortega E, Xiao Z, Todd L,
Scholler J, Song D, Liousia M, Lohith K, Xu K, Edwards KJ, et al:
Monitoring therapeutic response to anti-FAP CAR T cells using
[18F]AlF-FAPI-74. Clin Cancer Res. 28:5330–5342. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Van Cutsem E, Tempero MA, Sigal D, Oh DY,
Fazio N, Macarulla T, Hitre E, Hammel P, Hendifar AE, Bates SE, et
al: Randomized phase III trial of pegvorhyaluronidase alfa with
nab-paclitaxel plus gemcitabine for patients with hyaluronan-high
metastatic pancreatic adenocarcinoma. J Clin Oncol. 38:3185–3194.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wei TT, Lin YT, Tang SP, Luo CK, Tsai CT,
Shun CT and Chen CC: Metabolic targeting of HIF-1alpha potentiates
the therapeutic efficacy of oxaliplatin in colorectal cancer.
Oncogene. 39:414–427. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Cowman SJ and Koh MY: Revisiting the HIF
switch in the tumor and its immune microenvironment. Trends Cancer.
8:28–42. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Guo J, Zeng H and Chen Y: Emerging nano
drug delivery systems targeting cancer-associated fibroblasts for
improved antitumor effect and tumor drug penetration. Mol Pharm.
17:1028–1048. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhang Y, Fang Z, Pan D, Li Y, Zhou J, Chen
H, Li Z, Zhu M, Li C, Qin L, et al: dendritic polymer-based
nanomedicines remodel the tumor stroma: Improve drug penetration
and enhance antitumor immune response. Adv Mater. 36:e24013042024.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Huang TX, Tan XY, Huang HS, Li YT, Liu BL,
Liu KS, Chen X, Chen Z, Guan XY, Zou C and Fu L: Targeting
cancer-associated fibroblast-secreted WNT2 restores dendritic
cell-mediated antitumour immunity. Gut. 71:333–344. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Edelman MJ, Wang X, Hodgson L, Cheney RT,
Baggstrom MQ, Thomas SP, Gajra A, Bertino E, Reckamp KL, Molina J,
et al: Phase III randomized, placebo-controlled, double-blind trial
of celecoxib in addition to standard chemotherapy for advanced
non-small-cell lung cancer with cyclooxygenase-2 overexpression:
CALGB 30801 (Alliance). J Clin Oncol. 35:2184–2192. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Pelly VS, Moeini A, Roelofsen LM, Bonavita
E, Bell CR, Hutton C, Blanco-Gomez A, Banyard A, Bromley CP,
Flanagan E, et al: Anti-inflammatory drugs remodel the tumor immune
environment to enhance immune checkpoint blockade efficacy. Cancer
Discov. 11:2602–2619. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wang C, Li S, Wang Y, An Y, Shen K, Wang
X, Luan W, Ma F, Ni L, Zhou H, et al: Targeting IRS-1/mPGES-1/NOX2
to inhibit the inflammatory response caused by insulin-like growth
factor-I-induced activation of NF-κB and NLRP3 in cancer cells. Vet
Comp Oncol. 18:689–698. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Guo B, Fu S, Zhang J, Liu B and Li Z:
Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci
Rep. 6:361072016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Dorst DN, Smeets EMM, Klein C, Frielink C,
Geijs D, Trajkovic-Arsic M, Cheung PFY, Stommel MWJ, Gotthardt M,
Siveke JT, et al: Fibroblast activation protein-targeted
photodynamic therapy of cancer-associated fibroblasts in murine
models for pancreatic ductal adenocarcinoma. Mol Pharm.
20:4319–4330. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kato T, Furusawa A, Okada R, Inagaki F,
Wakiyama H, Furumoto H, Fukushima H, Okuyama S, Choyke PL and
Kobayashi H: Near-infrared photoimmunotherapy targeting
podoplanin-expressing cancer cells and cancer-associated
fibroblasts. Mol Cancer Ther. 22:75–88. 2023. View Article : Google Scholar : PubMed/NCBI
|