
Crosstalk between cancer‑associated fibroblasts and inflammation in tumor microenvironment: A novel perspective in cancer therapy (Review)
- Authors:
- Xinyan Liu
- Chaofeng Wang
- Huijuan Mao
- Jianzi Wei
-
Affiliations: School of Acupuncture‑Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China - Published online on: June 12, 2025 https://doi.org/10.3892/or.2025.8926
- Article Number: 93
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Duan Q, Zhang H, Zheng J and Zhang L: Turning cold INTO hot: Firing up the tumor microenvironment. Trends Cancer. 6:605–618. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shin N, Son GM, Shin DH, Kwon MS, Park BS, Kim HS, Ryu D and Kang CD: Cancer-associated fibroblasts and desmoplastic reactions related to cancer invasiveness in patients with colorectal cancer. Ann Coloproctol. 35:36–46. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee D, Ham IH, Son SY, Han SU, Kim YB and Hur H: Intratumor stromal proportion predicts aggressive phenotype of gastric signet ring cell carcinomas. Gastric Cancer. 20:591–601. 2017. View Article : Google Scholar : PubMed/NCBI | |
Greten FR and Grivennikov SI: Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 51:27–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y and Li Y: Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct Target Ther. 6:2632021. View Article : Google Scholar : PubMed/NCBI | |
Rubinstein-Achiasaf L, Morein D, Ben-Yaakov H, Liubomirski Y, Meshel T, Elbaz E, Dorot O, Pichinuk E, Gershovits M, Weil M and Ben-Baruch A: Persistent inflammatory stimulation drives the conversion of MSCs to inflammatory CAFs that promote pro-metastatic characteristics in breast cancer cells. Cancers (Basel). 13:14722021. View Article : Google Scholar : PubMed/NCBI | |
de Castro Silva I, Bianchi A, Deshpande NU, Sharma P, Mehra S, Garrido VT, Saigh SJ, England J, Hosein PJ, Kwon D, et al: Neutrophil-mediated fibroblast-tumor cell il-6/stat-3 signaling underlies the association between neutrophil-to-lymphocyte ratio dynamics and chemotherapy response in localized pancreatic cancer: A hybrid clinical-preclinical study. Elife. 11:e789212022. View Article : Google Scholar : PubMed/NCBI | |
Saito A, Horie M and Nagase T: TGF-beta signaling in lung health and disease. Int J Mol Sci. 19:24602018. View Article : Google Scholar : PubMed/NCBI | |
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G and Fabregat I: TGF-β and the tissue microenvironment: Relevance in fibrosis and cancer. Int J Mol Sci. 19:12942018. View Article : Google Scholar : PubMed/NCBI | |
Hawinkels LJ, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JM, van der Ploeg K, Koelink PJ, Lindeman JH, Mesker W, ten Dijke P and Sier CF: Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene. 33:97–107. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW and Mehta Z: Effect of daily aspirin on risk of cancer metastasis: A study of incident cancers during randomised controlled trials. Lancet. 379:1591–1601. 2012. View Article : Google Scholar : PubMed/NCBI | |
Goradel NH, Najafi M, Salehi E, Farhood B and Mortezaee K: Cyclooxygenase-2 in cancer: A review. J Cell Physiol. 234:5683–5699. 2019. View Article : Google Scholar : PubMed/NCBI | |
Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, Cleverly AL, Desaiah D, Guba SC, Benhadji KA, et al: Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 9:4479–4499. 2015.PubMed/NCBI | |
Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Huang J, Zhong H, Shen N, Faggioni R, Fung M and Yao Y: Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther. 141:125–139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI | |
Fosslien E: Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci. 30:3–21. 2000.PubMed/NCBI | |
Scheller J, Garbers C and Rose-John S: Interleukin-6: From basic biology to selective blockade of pro-inflammatory activities. Semin Immunol. 26:2–12. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Faivre S, Santoro A, Kelley RK, Gane E, Costentin CE, Gueorguieva I, Smith C, Cleverly A, Lahn MM, Raymond E, et al: Novel transforming growth factor beta receptor I kinase inhibitor galunisertib (LY2157299) in advanced hepatocellular carcinoma. Liver Int. 39:1468–1477. 2019. View Article : Google Scholar : PubMed/NCBI | |
Melisi D, Garcia-Carbonero R, Macarulla T, Pezet D, Deplanque G, Fuchs M, Trojan J, Oettle H, Kozloff M, Cleverly A, et al: Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer. 119:1208–1214. 2018. View Article : Google Scholar : PubMed/NCBI | |
Holmgaard RB, Schaer DA, Li Y, Castaneda SP, Murphy MY, Xu X, Inigo I, Dobkin J, Manro JR, Iversen PW, et al: Targeting the TGFbeta pathway with galunisertib, a TGFbetaRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J Immunother Cancer. 6:472018. View Article : Google Scholar : PubMed/NCBI | |
Dijkgraaf EM, Santegoets SJ, Reyners AK, Goedemans R, Wouters MC, Kenter GG, van Erkel AR, van Poelgeest MI, Nijman HW, van der Hoeven JJ, et al: A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-α2b in patients with recurrent epithelial ovarian cancer. Ann Oncol. 26:2141–2149. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Ponzetta A, Inforzato A and Jaillon S: Innate immunity, inflammation and tumour progression: double-edged swords. J Intern Med. 285:524–532. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu CT, Chen MF, Chen WC and Hsieh CC: The role of IL-6 in the radiation response of prostate cancer. Radiat Oncol. 8:1592013. View Article : Google Scholar : PubMed/NCBI | |
Lazennec G and Richmond A: Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol Med. 16:133–144. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balachander GM, Talukdar PM, Debnath M, Rangarajan A and Chatterjee K: Inflammatory role of cancer-associated fibroblasts in invasive breast tumors revealed using a fibrous polymer scaffold. ACS Appl Mater Interfaces. 10:33814–33826. 2018. View Article : Google Scholar : PubMed/NCBI | |
Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jain S, Rick JW, Joshi RS, Beniwal A, Spatz J, Gill S, Chang AC, Choudhary N, Nguyen AT, Sudhir S, et al: Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects. J Clin Invest. 133:e1470872023. View Article : Google Scholar : PubMed/NCBI | |
Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, et al: Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 73:1717–1735. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI | |
Donelan W, Dominguez-Gutierrez PR and Kusmartsev S: Deregulated hyaluronan metabolism in the tumor microenvironment drives cancer inflammation and tumor-associated immune suppression. Front Immunol. 13:9712782022. View Article : Google Scholar : PubMed/NCBI | |
Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, et al: NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 10:43752019. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X and Shi S: Signaling pathways in cancer-associated fibroblasts: Recent advances and future perspectives. Cancer Commun (Lond). 43:3–41. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, Dang Y, Chu Y, Fan J and He R: FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76:4124–4135. 2016. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J and Tuveson DA: IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fukui H, Zhang X, Sun C, Hara K, Kikuchi S, Yamasaki T, Kondo T, Tomita T, Oshima T, Watari J, et al: IL-22 produced by cancer-associated fibroblasts promotes gastric cancer cell invasion via STAT3 and ERK signaling. Br J Cancer. 111:763–771. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ebbing EA, van der Zalm AP, Steins A, Creemers A, Hermsen S, Rentenaar R, Klein M, Waasdorp C, Hooijer GKJ, Meijer SL, et al: Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc Natl Acad Sci USA. 116:2237–2242. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brunetto E, De Monte L, Balzano G, Camisa B, Laino V, Riba M, Heltai S, Bianchi M, Bordignon C, Falconi M, et al: The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. J Immunother Cancer. 7:452019. View Article : Google Scholar : PubMed/NCBI | |
Servais C and Erez N: From sentinel cells to inflammatory culprits: Cancer-associated fibroblasts in tumour-related inflammation. J Pathol. 229:198–207. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, Walter J, Karnatz N, Lamszus K, Rogiers X and Broering DC: Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol. 171:1608–1618. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mueller L, von Seggern L, Schumacher J, Goumas F, Wilms C, Braun F and Broering DC: TNF-alpha similarly induces IL-6 and MCP-1 in fibroblasts from colorectal liver metastases and normal liver fibroblasts. Biochem Biophys Res Commun. 397:586–591. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA and Orimo A: Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA. 107:20009–20014. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ziani L, Chouaib S and Thiery J: Alteration of the antitumor immune response by cancer-associated fibroblasts. Front Immunol. 9:4142018. View Article : Google Scholar : PubMed/NCBI | |
Kim R, Emi M and Tanabe K: Cancer immunosuppression and autoimmune disease: Beyond immunosuppressive networks for tumour immunity. Immunology. 119:254–264. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bauer J, Emon MAB, Staudacher JJ, Thomas AL, Zessner-Spitzenberg J, Mancinelli G, Krett N, Saif MT and Jung B: Author Correction: Increased stiffness of the tumor microenvironment in colon cancer stimulates cancer associated fibroblast-mediated prometastatic activin A signaling. Sci Rep. 10:76062020. View Article : Google Scholar : PubMed/NCBI | |
Fullar A, Dudas J, Olah L, Hollósi P, Papp Z, Sobel G, Karászi K, Paku S, Baghy K and Kovalszky I: Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer. 15:2562015. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi N, Miyoshi S, Mikami T, Koyama H, Kitazawa M, Takeoka M, Sano K, Amano J, Isogai Z, Niida S, et al: Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Res. 70:7073–7083. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhao S, Bian X, Zhang L, Lu L, Pei S, Dong L, Shi W, Huang L, Zhang X, et al: Signatures of EMT, immunosuppression, and inflammation in primary and recurrent human cutaneous squamous cell carcinoma at single-cell resolution. Theranostics. 12:7532–7549. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Weaver VM and Werb Z: The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol. 196:395–406. 2012. View Article : Google Scholar : PubMed/NCBI | |
Minton K: Extracellular matrix: Preconditioning the ECM for fibrosis. Nat Rev Mol Cell Biol. 15:766–767. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI | |
Van den Steen PE, Proost P, Wuyts A, Van Damme J and Opdenakker G: Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood. 96:2673–2681. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liubomirski Y, Lerrer S, Meshel T, Morein D, Rubinstein-Achiasaf L, Sprinzak D, Wiemann S, Körner C, Ehrlich M and Ben-Baruch A: Notch-mediated tumor-stroma-inflammation networks promote invasive properties and CXCL8 expression in triple-negative breast cancer. Front Immunol. 10:8042019. View Article : Google Scholar : PubMed/NCBI | |
Drev D, Bileck A, Erdem ZN, Mohr T, Timelthaler G, Beer A, Gerner C and Marian B: Proteomic profiling identifies markers for inflammation-related tumor-fibroblast interaction. Clin Proteomics. 14:332017. View Article : Google Scholar : PubMed/NCBI | |
Schworer S, Cimino FV, Ros M, Tsanov KM, Ng C, Lowe SW, Carmona-Fontaine C and Thompson CB: Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell-derived cytokines. Cancer Res. 83:1596–1610. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lappano R, Talia M, Cirillo F, Rigiracciolo DC, Scordamaglia D, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Sims AH and Maggiolini M: The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs). J Exp Clin Cancer Res. 39:1532020. View Article : Google Scholar : PubMed/NCBI | |
Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, et al: Transcriptional evidence for the ‘Reverse Warburg Effect’ in human breast cancer tumor stroma and metastasis: Similarities with oxidative stress, inflammation, Alzheimer's disease, and ‘Neuron-Glia Metabolic Coupling’. Aging (Albany NY). 2:185–199. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, et al: Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the ‘reverse Warburg effect’: A transcriptional informatics analysis with validation. Cell Cycle. 9:2201–2219. 2010. View Article : Google Scholar : PubMed/NCBI | |
Linares JF, Cid-Diaz T, Duran A, Osrodek M, Martinez-Ordoñez A, Reina-Campos M, Kuo HH, Elemento O, Martin ML, Cordes T, et al: The lactate-NAD(+) axis activates cancer-associated fibroblasts by downregulating p62. Cell Rep. 39:1107922022. View Article : Google Scholar : PubMed/NCBI | |
Rossow L, Veitl S, Vorlova S, Wax JK, Kuhn AE, Maltzahn V, Upcin B, Karl F, Hoffmann H, Gätzner S, et al: LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy. Oncogene. 37:4921–4940. 2018. View Article : Google Scholar : PubMed/NCBI | |
Korbecki J, Siminska D, Gassowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D and Baranowska-Bosiacka I: Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms. Int J Mol Sci. 22:107012021. View Article : Google Scholar : PubMed/NCBI | |
Ravenna L, Principessa L, Verdina A, Salvatori L, Russo MA and Petrangeli E: Distinct phenotypes of human prostate cancer cells associate with different adaptation to hypoxia and pro-inflammatory gene expression. PLoS One. 9:e962502014. View Article : Google Scholar : PubMed/NCBI | |
Leszczynska KB, Foskolou IP, Abraham AG, Anbalagan S, Tellier C, Haider S, Span PN, O'Neill EE, Buffa FM and Hammond EM: Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT. J Clin Invest. 125:2385–2398. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y, Lechel A, Rudolph KL, Langer R, Slotta-Huspenina J, et al: Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell. 23:93–106. 2013. View Article : Google Scholar : PubMed/NCBI | |
McGettrick AF and O'Neill LAJ: The role of HIF in immunity and inflammation. Cell Metab. 32:524–536. 2020. View Article : Google Scholar : PubMed/NCBI | |
Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG and Rathmell JC: Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 186:3299–3303. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR and Chi H: HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 208:1367–1376. 2011. View Article : Google Scholar : PubMed/NCBI | |
Woo DK and Shadel GS: Mitochondrial stress signals revise an old aging theory. Cell. 144:11–12. 2011. View Article : Google Scholar : PubMed/NCBI | |
Higashiguchi M, Murakami H, Akita H, Kobayashi S, Takahama S, Iwagami Y, Yamada D, Tomimaru Y, Noda T, Gotoh K, et al: The impact of cellular senescence and senescence-associated secretory phenotype in cancer-associated fibroblasts on the malignancy of pancreatic cancer. Oncol Rep. 49:982023. View Article : Google Scholar : PubMed/NCBI | |
Lisanti MP, Martinez-Outschoorn UE, Lin Z, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A and Sotgia F: Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: The seed and soil also needs ‘fertilizer’. Cell Cycle. 10:2440–2449. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yasuda T, Koiwa M, Yonemura A, Miyake K, Kariya R, Kubota S, Yokomizo-Nakano T, Yasuda-Yoshihara N, Uchihara T, Itoyama R, et al: Inflammation-driven senescence-associated secretory phenotype in cancer-associated fibroblasts enhances peritoneal dissemination. Cell Rep. 34:1087792021. View Article : Google Scholar : PubMed/NCBI | |
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, et al: SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol. 25:1001–1023. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li C, Zhang W, Wang Y, Qian P and Huang H: Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct Target Ther. 8:2392023. View Article : Google Scholar : PubMed/NCBI | |
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jena BC, Sarkar S, Rout L and Mandal M: The transformation of cancer-associated fibroblasts: Current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance. Cancer Lett. 520:222–232. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Qian H, Shen L, Zhang X, Zhu W, Huang L, Yan Y, Mao F, Zhao C, Shi Y and Xu W: Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One. 7:e524652012. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ and Feng YM: Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 110:724–732. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhang D, Wang Y, Sun P, Hou X, Larner J, Xiong W and Mi J: MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Sci Rep. 3:20382013. View Article : Google Scholar : PubMed/NCBI | |
Barcellos-de-Souza P, Comito G, Pons-Segura C, Taddei ML, Gori V, Becherucci V, Bambi F, Margheri F, Laurenzana A, Del Rosso M and Chiarugi P: Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-β1. Stem Cells. 34:2536–2547. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei M, Yang T, Chen X, Wu Y, Deng X, He W, Yang J and Wang Z: Malignant ascites-derived exosomes promote proliferation and induce carcinoma-associated fibroblasts transition in peritoneal mesothelial cells. Oncotarget. 8:42262–42271. 2017. View Article : Google Scholar : PubMed/NCBI | |
Heneberg P: Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol Hematol. 97:303–311. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman R, et al: Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 58:1461–1473. 2013. View Article : Google Scholar : PubMed/NCBI | |
Somerville TD, Biffi G, Daßler-Plenker J, Hur SK, He XY, Vance KE, Miyabayashi K, Xu Y, Maia-Silva D, Klingbeil O, et al: Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. Elife. 9:e533812020. View Article : Google Scholar : PubMed/NCBI | |
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, et al: Cell-autonomous Cxcl1 sustains tolerogenic circuitries and stromal inflammation via neutrophil-derived TNF in pancreatic cancer. Cancer Discov. 13:1428–1453. 2023. View Article : Google Scholar : PubMed/NCBI | |
Schauer IG, Zhang J, Xing Z, Guo X, Mercado-Uribe I, Sood AK, Huang P and Liu J: Interleukin-1beta promotes ovarian tumorigenesis through a p53/NF-κB-mediated inflammatory response in stromal fibroblasts. Neoplasia. 15:409–420. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, Zhao J and Zhang HT: JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol. 44:1643–1651. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abulaiti A, Shintani Y, Funaki S, Nakagiri T, Inoue M, Sawabata N, Minami M and Okumura M: Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of TGF-β signaling by IL-6. Lung Cancer. 82:204–213. 2013. View Article : Google Scholar : PubMed/NCBI | |
Srivastava A, Sharma H, Khanna S, Balasundaram TS, Chowdhury S, Chowdhury R and Mukherjee S: Interleukin-6 induced proliferation is attenuated by transforming growth factor-β-induced signaling in human hepatocellular carcinoma cells. Front Oncol. 11:8119412021. View Article : Google Scholar : PubMed/NCBI | |
Wiegertjes R, van Caam A, van Beuningen H, Koenders M, van Lent P, van der Kraan P, van de Loo F and Davidson EB: TGF-β dampens IL-6 signaling in articular chondrocytes by decreasing IL-6 receptor expression. Osteoarthritis Cartilage. 27:1197–1207. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kato T, Noma K, Ohara T, Kashima H, Katsura Y, Sato H, Komoto S, Katsube R, Ninomiya T, Tazawa H, et al: Cancer-associated fibroblasts affect intratumoral CD8(+) and FoxP3(+) T cells via IL6 in the tumor microenvironment. Clin Cancer Res. 24:4820–4833. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thomas DA and Massague J: TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 8:369–380. 2005. View Article : Google Scholar : PubMed/NCBI | |
Timperi E, Gueguen P, Molgora M, Magagna I, Kieffer Y, Lopez-Lastra S, Sirven P, Baudrin LG, Baulande S, Nicolas A, et al: Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82:3291–3306. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nagarsheth N, Wicha MS and Zou W: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, Liu W, Zhang Q and Yang Y: Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 9:4222018. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan X, Mao F, Wang M, Zhu W, Qian H and Xu W: The IL-6-STAT3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression. Cell Death Dis. 5:e12952014. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhou J, Zhang J, Li S, Wang H and Du J: Cancer-associated fibroblasts promote PD-L1 expression in mice cancer cells via secreting CXCL5. Int J Cancer. 145:1946–1957. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liubomirski Y, Lerrer S, Meshel T, Rubinstein-Achiasaf L, Morein D, Wiemann S, Körner C and Ben-Baruch A: Tumor-Stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer. Front Immunol. 10:7572019. View Article : Google Scholar : PubMed/NCBI | |
Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S and Chiarugi P: Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 33:2423–2431. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto O, Yoshida M, Koma Y, Yanai T, Hasegawa D, Kosaka Y, Nishimura N and Yokozaki H: Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol. 240:211–223. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ocana A, Nieto-Jimenez C, Pandiella A and Templeton AJ: Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer. 16:1372017. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Han X, Zhang Y, Wang K, Liu D, Hu Z and Wang J: Bruceine D suppresses CAF-promoted TNBC metastasis under TNF-α stimulation by inhibiting Notch1-Jagged1/NF-κB(p65) signaling. Phytomedicine. 123:1549282023. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Zong J, Peng Y, Shi J, Du X, Liu H, Shen Y, Cao J, Jia B, Liu F and Zhang J: GPR30 knockdown weakens the capacity of CAF in promoting prostate cancer cell invasion via reducing macrophage infiltration and M2 polarization. J Cell Biochem. 3:299382021. | |
Louault K, Li RR and DeClerck YA: Cancer-Associated fibroblasts: Understanding their heterogeneity. Cancers (Basel). 12:31082020. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Zhu W, Huang Y, Zhuo L, Wang S, Chen S, Zhang B and Ke B: Cancer-associated fibroblast-derived exosomal microRNA-20a suppresses the PTEN/PI3K-AKT pathway to promote the progression and chemoresistance of non-small cell lung cancer. Clin Transl Med. 12:e9892022. View Article : Google Scholar : PubMed/NCBI | |
McAndrews KM, Chen Y, Darpolor JK, Zheng X, Yang S, Carstens JL, Li B, Wang H, Miyake T, Correa de Sampaio P, et al: Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discov. 12:1580–1597. 2022. View Article : Google Scholar : PubMed/NCBI | |
Galbiati A, Zana A, Bocci M, Millul J, Elsayed A, Mock J, Neri D and Cazzamalli S: A Dimeric FAP-targeting small-molecule radioconjugate with high and prolonged tumor uptake. J Nucl Med. 63:1852–1858. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lee IK, Noguera-Ortega E, Xiao Z, Todd L, Scholler J, Song D, Liousia M, Lohith K, Xu K, Edwards KJ, et al: Monitoring therapeutic response to anti-FAP CAR T cells using [18F]AlF-FAPI-74. Clin Cancer Res. 28:5330–5342. 2022. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Tempero MA, Sigal D, Oh DY, Fazio N, Macarulla T, Hitre E, Hammel P, Hendifar AE, Bates SE, et al: Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J Clin Oncol. 38:3185–3194. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei TT, Lin YT, Tang SP, Luo CK, Tsai CT, Shun CT and Chen CC: Metabolic targeting of HIF-1alpha potentiates the therapeutic efficacy of oxaliplatin in colorectal cancer. Oncogene. 39:414–427. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cowman SJ and Koh MY: Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer. 8:28–42. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Zeng H and Chen Y: Emerging nano drug delivery systems targeting cancer-associated fibroblasts for improved antitumor effect and tumor drug penetration. Mol Pharm. 17:1028–1048. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Fang Z, Pan D, Li Y, Zhou J, Chen H, Li Z, Zhu M, Li C, Qin L, et al: dendritic polymer-based nanomedicines remodel the tumor stroma: Improve drug penetration and enhance antitumor immune response. Adv Mater. 36:e24013042024. View Article : Google Scholar : PubMed/NCBI | |
Huang TX, Tan XY, Huang HS, Li YT, Liu BL, Liu KS, Chen X, Chen Z, Guan XY, Zou C and Fu L: Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut. 71:333–344. 2022. View Article : Google Scholar : PubMed/NCBI | |
Edelman MJ, Wang X, Hodgson L, Cheney RT, Baggstrom MQ, Thomas SP, Gajra A, Bertino E, Reckamp KL, Molina J, et al: Phase III randomized, placebo-controlled, double-blind trial of celecoxib in addition to standard chemotherapy for advanced non-small-cell lung cancer with cyclooxygenase-2 overexpression: CALGB 30801 (Alliance). J Clin Oncol. 35:2184–2192. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pelly VS, Moeini A, Roelofsen LM, Bonavita E, Bell CR, Hutton C, Blanco-Gomez A, Banyard A, Bromley CP, Flanagan E, et al: Anti-inflammatory drugs remodel the tumor immune environment to enhance immune checkpoint blockade efficacy. Cancer Discov. 11:2602–2619. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Li S, Wang Y, An Y, Shen K, Wang X, Luan W, Ma F, Ni L, Zhou H, et al: Targeting IRS-1/mPGES-1/NOX2 to inhibit the inflammatory response caused by insulin-like growth factor-I-induced activation of NF-κB and NLRP3 in cancer cells. Vet Comp Oncol. 18:689–698. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo B, Fu S, Zhang J, Liu B and Li Z: Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep. 6:361072016. View Article : Google Scholar : PubMed/NCBI | |
Dorst DN, Smeets EMM, Klein C, Frielink C, Geijs D, Trajkovic-Arsic M, Cheung PFY, Stommel MWJ, Gotthardt M, Siveke JT, et al: Fibroblast activation protein-targeted photodynamic therapy of cancer-associated fibroblasts in murine models for pancreatic ductal adenocarcinoma. Mol Pharm. 20:4319–4330. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kato T, Furusawa A, Okada R, Inagaki F, Wakiyama H, Furumoto H, Fukushima H, Okuyama S, Choyke PL and Kobayashi H: Near-infrared photoimmunotherapy targeting podoplanin-expressing cancer cells and cancer-associated fibroblasts. Mol Cancer Ther. 22:75–88. 2023. View Article : Google Scholar : PubMed/NCBI |