1
|
Döhner H, Wei AH, Appelbaum FR, Craddock
C, DiNardo CD, Dombret H, Ebert BL, Fenaux P, Godley LA, Hasserjian
RP, et al: Diagnosis and management of AML in adults: 2022
recommendations from an international expert panel on behalf of the
ELN. Blood. 140:1345–1377. 2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Burnett AK, Hills RK, Nielsen OJ, Freeman
S, Ali A, Cahalin P, Hunter A, Thomas IF and Russell NH: A
comparison of FLAG-Ida and daunorubicin combined with clofarabine
in high-risk acute myeloid leukaemia: Data from the UK NCRI AML17
Trial. Leukemia. 32:2693–2697. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Villarreal Hernandez J, Condom M, Pomares
H, Vives S, Coll R, Cervera M, Maluquer C, Fernandez GI, Torrents
A, Galiano M, et al: Venetoclax combination therapy in
Relapsed/refractory acute myeloid leukemia. Blood. 138:44212021.
View Article : Google Scholar
|
4
|
Thol F, Döhner H and Ganser A: How I treat
refractory and relapsed acute myeloid leukemia. Blood. 143:11–20.
2024. View Article : Google Scholar : PubMed/NCBI
|
5
|
Beyar-Katz O and Gill S: Advances in
chimeric antigen receptor T cells. Curr Opin Hematol. 27:368–377.
2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Amberger DC and Schmetzer HM: Dendritic
cells of leukemic origin: Specialized antigen-presenting cells as
potential treatment tools for patients with myeloid leukemia.
Transfus Med Hemother. 47:432–443. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wan H and Dupasquier M: Dendritic cells in
vivo and in vitro. Cell Mol Immunol. 2:28–35. 2005.PubMed/NCBI
|
8
|
Palucka K and Banchereau J: Dendritic
cells: A link between innate and adaptive immunity. J Clin Immunol.
19:12–25. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Unterfrauner M, Rejeski HA, Hartz A,
Bohlscheid S, Baudrexler T, Feng X, Rackl E, Li L, Rank A,
Filippini Velázquez G, et al:
Granulocyte-macrophage-colony-stimulating-factor combined with
prostaglandin E1 create dendritic cells of leukemic origin from AML
patients' whole blood and whole bone marrow that mediate
antileukemic processes after mixed lymphocyte culture. Int J Mol
Sci. 24:174362023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Smits ELJM, Anguille S, Cools N, Berneman
ZN and Van Tendeloo VFI: Dendritic cell-based cancer gene therapy.
Hum Gene Ther. 20:1106–1118. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Acker HHV, Versteven M, Lichtenegger FS,
Roex G, Campillo-Davo D, Lion E, Subklewe M, Van Tendeloo VF,
Berneman ZN and Anguille S: Dendritic cell-based immunotherapy of
acute myeloid leukemia. J Clin Med. 8:5792019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Plett C, Klauer LK, Amberger DC, Ugur S,
Rabe A, Fischer Z, Deen D, Hirn-Lopez A, Gunsilius C, Werner JO, et
al: Immunomodulatory kits generating leukaemia derived dendritic
cells do not induce blast proliferation ex vivo: IPO-38 as a novel
marker to quantify proliferating blasts in acute myeloid leukaemia.
Clin Immunol. 242:1090832022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Schwepcke C, Klauer LK, Deen D, Amberger
DC, Fischer Z, Doraneh-Gard F, Gunsilius C, Hirn-Lopez A, Kroell T,
Tischer J, et al: Generation of Leukaemia-derived dendritic cells
(DCleu) to improve Anti-leukaemic activity in AML: Selection of the
most efficient response modifier combinations. Int J Mol Sci.
23:83332022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pepeldjiyska E, Li L, Gao J, Seidel CL,
Blasi C, Özkaya E, Schmohl J, Kraemer D, Schmid C, Rank A and
Schmetzer HM: Leukemia derived dendritic cell (DCleu) mediated
immune response goes along with reduced (leukemia-specific)
regulatory T-cells. Immunobiology. 227:1522372022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Schutti O, Klauer L, Baudrexler T, Burkert
F, Schmohl J, Hentrich M, Bojko P, Kraemer D, Rank A, Schmid C and
Schmetzer H: Effective and successful quantification of
Leukemia-specific immune cells in AML patients' blood or culture,
focusing on intracellular cytokine and degranulation assays. Int J
Mol Sci. 25:69832024. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boyiadzis M and Whiteside TL: The emerging
roles of tumor-derived exosomes in hematological malignancies.
Leukemia. 31:1259–1268. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Boyiadzis M and Whiteside TL: Information
transfer by exosomes: A new frontier in hematologic malignancies.
Blood Rev. 29:281–290. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Balan S, Arnold-Schrauf C, Abbas A,
Couespel N, Savoret J, Imperatore F, Villani AC, Vu Manh TP,
Bhardwaj N and Dalod M: Large-scale human dendritic cell
differentiation revealing Notch-dependent lineage bifurcation and
heterogeneity. Cell Rep. 24:1902–1915.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tkach M, Kowal J, Zucchetti AE, Enserink
L, Jouve M, Lankar D, Saitakis M, Martin-Jaular L and Théry C:
Qualitative differences in T-cell activation by dendritic
cell-derived extracellular vesicle subtypes. EMBO J. 36:3012–3028.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lindenbergh MFS and Stoorvogel W: Antigen
presentation by extracellular vesicles from professional
Antigen-presenting cells. Annu Rev Immunol. 36:435–459. 2018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zitvogel L, Regnault A, Lozier A, Wolfers
J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G and
Amigorena S: Eradication of established murine tumors using a novel
cell-free vaccine: Dendritic cell-derived exosomes. Nat Med.
4:594–600. 1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Théry C, Duban L, Segura E, Væron P, Lantz
O and Amigorena S: Indirect activation of naïve CD4+ T cells by
dendritic cell-derived exosomes. Nat Immunol. 3:1156–1162. 2002.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Robbins PD and Morelli AE: Regulation of
immune responses by extracellular vesicles. Nat Rev Immunol.
14:195–208. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Raposo G, Nijman HW, Stoorvogel W,
Leijendekker R, Harding CV, Melief CJM and Geuze HJ: B lymphocytes
secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172.
1996. View Article : Google Scholar : PubMed/NCBI
|
25
|
Merad M, Sathe P, Helft J, Miller J and
Mortha A: The dendritic cell lineage: Ontogeny and function of
dendritic cells and their subsets in the steady state and the
inflamed setting. Annu Rev Immunol. 31:563–604. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Besse B, Charrier M, Lapierre V, Dansin E,
Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F,
Laplanche A, et al: Dendritic cell-derived exosomes as maintenance
immunotherapy after first line chemotherapy in NSCLC.
Oncoimmunology. 5:e10710082016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Escudier B, Dorval T, Chaput N, André F,
Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S,
et al: Vaccination of metastatic melanoma patients with autologous
dendritic cell (DC) derived-exosomes: Results of the first phase 1
clinical trial. J Transl Med. 3:102005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Morse MA, Garst J, Osada T, Khan S,
Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A,
et al: A phase I study of dexosome immunotherapy in patients with
advanced non-small cell lung cancer. J Transl Med. 3:92005.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Buschmann D, Kirchner B, Hermann S, Märte
M, Wurmser C, Brandes F, Kotschote S, Bonin M, Steinlein OK, Pfaffl
MW, et al: Evaluation of serum extracellular vesicle isolation
methods for profiling miRNAs by next-generation sequencing. J
Extracell Vesicles. 7:14813212018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hornick NI, Huan J, Doron B, Goloviznina
NA, Lapidus J, Chang BH and Kurre P: Serum Exosome MicroRNA as a
minimally-invasive early biomarker of AML. Sci Rep. 5:112952015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Corso G, Mäger I, Lee Y, Görgens A,
Bultema J, Giebel B, Wood MJA, Nordin JZ and Andaloussi SE:
Reproducible and scalable purification of extracellular vesicles
using combined bind-elute and size exclusion chromatography. Sci
Rep. 7:115612017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Görgens A, Bremer M, Ferrer-Tur R, Murke
F, Tertel T, Horn PA, Thalmann S, Welsh JA, Probst C, Guerin C, et
al: Optimisation of imaging flow cytometry for the analysis of
single extracellular vesicles by using fluorescence-tagged vesicles
as biological reference material. J Extracell Vesicles.
8:15875672019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wiklander OPB, Bostancioglu RB, Welsh JA,
Zickler AM, Murke F, Corso G, Felldin U, Hagey DW, Evertsson B,
Liang XM, et al: Systematic methodological evaluation of a
multiplex bead-based flow cytometry assay for detection of
extracellular vesicle surface signatures. Front Immunol.
9:13262018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Koliha N, Wiencek Y, Heider U, Jüngst C,
Kladt N, Krauthäuser S, Johnston IC, Bosio A, Schauss A and Wild S:
A novel multiplex bead-based platform highlights the diversity of
extracellular vesicles. J Extracell Vesicles. 5:299752016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Welsh JA, Killingsworth B, Kepley J,
Traynor T, Cook S, Savage J, Marte J, Lee MJ, Maeng HM, Pleet ML,
et al: MPAPASS software enables stitched multiplex,
multidimensional EV repertoire analysis and a standard framework
for reporting bead-based assays. Cell Reports Methods.
2:1001362022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Klauer LK, Schutti O, Ugur S, Doraneh-Gard
F, Amberger DC, Rogers N, Krämer D, Rank A, Schmid C, Eiz-Vesper B
and Schmetzer HM: Interferon gamma secretion of adaptive and innate
immune cells as a parameter to describe Leukaemia-derived
dendritic-cell-mediated immune responses in acute myeloid leukaemia
in vitro. Transfus Med Hemother. 49:44–61. 2022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kremser A, Dreyig J, Grabrucker C, Liepert
A, Kroell T, Scholl N, Schmid C, Tischer J, Kufner S, Salih H, et
al: Dendritic cells (DCs) can be successfully generated from
leukemic blasts in individual patients with AML or MDS: An
evaluation of different methods. J Immunother. 33:185–199. 2010.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Boeck CL, Amberger DC, Doraneh-Gard F,
Sutanto W, Guenther T, Schmohl J, Schuster F, Salih H, Babor F,
Borkhardt A and Schmetzer H: Significance of frequencies,
compositions, and/or antileukemic activity of (DC-stimulated)
invariant NKT, NK and CIK cells on the outcome of patients with
AML, ALL and CLL. J Immunother. 40:224–248. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Amberger DC, Doraneh-Gard F, Gunsilius C,
Weinmann M, Möbius S, Kugler C, Rogers N, Böck C, Ködel U, Werner
JO, et al: PGE1-containing protocols generate mature
(leukemia-derived) dendritic cells directly from leukemic whole
blood. Int J Mol Sci. 20:45902019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rackl E, Li L, Klauer LK, Ugur S,
Pepeldjiyska E, Seidel CL, Gunsilius C, Weinmann M, Doraneh-Gard F,
Reiter N, et al: Dendritic cell-triggered immune activation goes
along with provision of (Leukemia-Specific) integrin beta
7-Expressing immune cells and improved antileukemic processes. Int
J Mol Sci. 24:4632023. View Article : Google Scholar
|
41
|
Caivano A, Laurenzana I, de Luca L, La
Rocca F, Simeon V, Trino S, D'Auria F, Traficante A, Maietti M,
Izzo T, et al: High serum levels of extracellular vesicles
expressing malignancy-related markers are released in patients with
various types of hematological neoplastic disorders. Tumor Biology.
36:9739–9752. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hong CS, Muller L, Boyiadzis M and
Whiteside TL: Isolation and characterization of CD34+ blast-derived
exosomes in acute myeloid leukemia. PLoS One. 9:e1033102014.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Théry C, Witwer KW, Aikawa E, Jose Alcaraz
M, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F,
Atkin-Smith GK, et al: Minimal information for studies of
extracellular vesicles 2018 (MISEV2018): A position statement of
the International Society for Extracellular Vesicles and update of
the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Li L, Görgens A, Mussack V, Pepeldjiyska
E, Hartz AS, Rank A, Schmohl J, Krämer D, Andaloussi S El, Pfaffl
MW and Schmetzer H: Description and optimization of a multiplex
bead-based flow cytometry method (MBFCM) to characterize
extracellular vesicles in serum samples from patients with
hematological malignancies. Cancer Gene Ther. 29:1600–1615. 2022.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Mussack V, Wittmann G and Pfaffl MW:
Comparing small urinary extracellular vesicle purification methods
with a view to RNA sequencing-Enabling robust and non-invasive
biomarker research. Biomol Detect Quantif. 17:1000892019.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Eitan E, Green J, Bodogai M, Mode NA, Bæk
R, Jørgensen MM, Freeman DW, Witwer KW, Zonderman AB, Biragyn A, et
al: Age-related changes in plasma extracellular vesicle
characteristics and internalization by leukocytes. Sci Rep.
7:13422017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Nair S and Salomon C: Extracellular
vesicles and their immunomodulatory functions in pregnancy. Semin
Immunopathol. 40:425–437. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kim NH, An JH, Lee JH, Park SM, Kim KB,
Kim TH, Oh YI, Seo KW and Youn HY: Effects of Cyclooxygenase-2 in
Canine Melanoma-derived extracellular vesicles on tumor
microenvironment in vitro. Anticancer Res. 42:5397–5405. 2022.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Boyman O and Sprent J: The role of
interleukin-2 during homeostasis and activation of the immune
system. Nat Rev Immunol. 12:180–190. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhu S, Li S, Yi M, Li N and Wu K: Roles of
microvesicles in tumor progression and clinical applications. Int J
Nanomedicine. 16:7071–7090. 2021. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kong J, Tian H, Zhang F, Zhang Z, Li J,
Liu X, Li X, Liu J, Li X, Jin D, et al: Extracellular vesicles of
carcinoma-associated fibroblasts creates a pre-metastatic niche in
the lung through activating fibroblasts. Mol Cancer. 18:1752019.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Melek M, Edirne Y, Beger B and Cetin M:
Megacystis-microcolon-intestinal hypoperistalsis syndrome: A case
report. Gastroenterol Res Pract. 2009:2827532009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Caroline S, Chantal B, Sophie P, Sebastien
S and Caroline G: Exosomes decrease in vitro infectivity of HIV-1
Preparations: Implication for CD4+T lymphocyte depletion in vivo.
Understanding HIV/AIDS Management and Care-Pandemic Approaches in
the 21st Century. 2011. View
Article : Google Scholar
|
54
|
Whiteside TL: Immune modulation of T-cell
and NK (natural killer) cell activities by TEXs (tumour-derived
exosomes). Biochem Soc Transa. 41:245–251. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Merkenschlager J, Eksmond U, Danelli L,
Attig J, Young GR, Nowosad C, Tolar P and Kassiotis G: MHC class II
cell-autonomously regulates self-renewal and differentiation of
normal and malignant B cells. Blood. 133:1108–1118. 2019.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Yin Y, Chen H, Wang Y, Zhang L and Wang X:
Roles of extracellular vesicles in the aging microenvironment and
age-related diseases. J Extracell Vesicles. 10:121542021.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Seo N, Akiyoshi K and Shiku H:
Exosome-mediated regulation of tumor immunology. Cancer Sci.
109:2998–3004. 2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Dean WL, Lee MJ, Cummins TD, Schultz DJ,
Powell DW and Dean B: Proteomic and functional characterisation of
platelet microparticle size classes. Thromb Haemost. 102:711–718.
2009. View Article : Google Scholar : PubMed/NCBI
|
59
|
Xu R, Greening DW, Zhu HJ, Takahashi N and
Simpson RJ: Extracellular vesicle isolation and characterization:
Toward clinical application. J Clin Invest. 26:1152–1162. 2016.
View Article : Google Scholar
|