Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2025 Volume 54 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2025 Volume 54 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advances in lymphoma biomarkers research based on proteomics technology (Review)

  • Authors:
    • Qibei Liu
    • Jianmin Ling
    • Zhao Li
    • Lintao Bi
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 108
    |
    Published online on: July 2, 2025
       https://doi.org/10.3892/or.2025.8941
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Lymphoma is a common malignancy characterized by diverse pathological types and marked heterogeneity. Distinct subtypes of lymphomas are markedly different in their clinical manifestations, treatment approaches and prognostic outcomes. With the rapid development of molecular biology techniques, antitumor research has stepped into an era of precision medicine. Biomarkers, with high sensitivity and specificity, are expected to function in early diagnosis, targeted treatment and prognostic estimation for cancer and enhance the survival rate and life quality of patients. In this regard, proteomics technology, with the capability to systematically identify and quantify the dynamic protein alterations in tissues or cells, thereby facilitating the discovery of novel tumor potential candidates, has attracted significant scientific attention. The present article aimed to review most up‑to‑date research progress of lymphoma‑related biomarkers discovered based on proteomics technology, focusing on the potential application of these markers in the diagnosis, therapy and prognosis of each lymphoma subtype, and discuss the role proteomics may serve in future development of lymphoma research and clinical practice.
View Figures

Figure 1

Schematic representation of the
classification framework for lymphomas.

Figure 2

Workflow and methodological pipeline
for clinical proteomics analysis. CSF, Cerebrospinal Fluid, a key
biofluid used in clinical proteomics studies.

Figure 3

Schematic representation of the
functions and interactions of some candidate proteins related to HL
proteomic experiments. HL, Hodgkin lymphoma; HRS cell,
Hodgkin-Reed-Sternberg cell; TME, tumor microenvironment
View References

1 

Ansell SM: Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management. Am J Hematol. 99:2367–2378. 2024. View Article : Google Scholar : PubMed/NCBI

2 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI

3 

Klein C, Jamois C and Nielsen T: Anti-CD20 treatment for B-cell malignancies: Current status and future directions. Expert Opin Biol Ther. 21:161–181. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Califf RM: Biomarker definitions and their applications. Exp Biol Med (Maywood). 243:213–221. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Hristova VA and Chan DW: Cancer biomarker discovery and translation: Proteomics and beyond. Expert Rev Proteomics. 16:93–103. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Müllner S, Neumann T and Lottspeich F: Proteomics-a new way for drug target discovery. Arzneimittelforschung. 48:93–95. 1998.PubMed/NCBI

7 

Cox J and Mann M: Quantitative, High-resolution proteomics for Data-driven systems biology. Annu Rev Biochem. 80:273–299. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Li J, Cai Z, Bomgarden RD, Pike I, Kuhn K, Rogers JC, Roberts TM, Gygi SP and Paulo JA: TMTpro-18plex: The expanded and complete set of TMTpro reagents for sample multiplexing. J Proteome Res. 20:2964–2972. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK and Hamon C: Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 75:1895–1904. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC and Haynes PA: Less label, more free: Approaches in Label-free quantitative mass spectrometry. Proteomics. 11:535–553. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, et al: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 8:2912017. View Article : Google Scholar : PubMed/NCBI

12 

Yung L and Linch D: Hodgkin's lymphoma. Lancet. 361:943–951. 2003. View Article : Google Scholar : PubMed/NCBI

13 

The guidelines for diagnosis and treatment of Hodgkin lymphoma in China (2022). Zhonghua Xue Ye Xue Za Zhi. 43:705–715. 2022.(In Chinese). PubMed/NCBI

14 

Repetto O, Mussolin L, Elia C, Martina L, Bianchi M, Buffardi S, Sala A, Burnelli R, Mascarin M and De Re V: Proteomic identification of plasma biomarkers in children and adolescents with recurrent hodgkin lymphoma. J Cancer. 9:4650–4658. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Brice P, de Kerviler E and Friedberg JW: Classical hodgkin lymphoma. Lancet. 398:1518–1527. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, Radford J, Ribrag V, Molin D, Vassilakopoulos TP, et al: Phase II study of the efficacy and safety of pembrolizumab for Relapsed/refractory classic hodgkin lymphoma. J Clin Oncol. 35:2125–2132. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL and Forero-Torres A: Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 363:1812–1821. 2010. View Article : Google Scholar : PubMed/NCBI

18 

von Hoff L, Kärgel E, Franke V, McShane E, Schulz-Beiss KW, Patone G, Schleussner N, Kolesnichenko M, Hübner N, Daumke O, et al: Autocrine LTA signaling drives NF-κB and JAK-STAT activity and myeloid gene expression in Hodgkin lymphoma. Blood. 133:1489–1494. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Segges P, Corrêa S, Du Rocher B, Vera-Lozada G, Krsticevic F, Arce D, Sternberg C, Abdelhay E and Hassan R: Targeting hodgkin and Reed-sternberg cells with an inhibitor of Heat-shock protein 90: Molecular pathways of response and potential mechanisms of resistance. Int J Mol Sci. 19:8362018. View Article : Google Scholar : PubMed/NCBI

20 

Repetto O, Caggiari L, De Zorzi M, Elia C, Mussolin L, Buffardi S, Pillon M, Muggeo P, Casini T, Steffan A, et al: Quantitative plasma proteomics to identify candidate biomarkers of relapse in Pediatric/adolescent hodgkin lymphoma. Int J Mol Sci. 23:99112022. View Article : Google Scholar : PubMed/NCBI

21 

Honoré B, Andersen MD, Wilken D, Kamper P, d'Amore F, Hamilton-Dutoit S and Ludvigsen M: Classic hodgkin lymphoma refractory for ABVD treatment is characterized by pathologically activated signal transduction pathways as revealed by proteomic profiling. Cancers (Basel). 14:2472022. View Article : Google Scholar : PubMed/NCBI

22 

Kischel P, Waltregny D, Greffe Y, Mazzucchelli G, De Pauw E, de Leval L and Castronovo V: Identification of stromal proteins overexpressed in nodular sclerosis Hodgkin lymphoma. Proteome Sci. 9:632011. View Article : Google Scholar : PubMed/NCBI

23 

Powlesland AS, Barrio MM, Mordoh J, Hitchen PG, Dell A, Drickamer K and Taylor ME: Glycoproteomic characterization of carriers of the CD15/Lewisx epitope on Hodgkin's Reed-Sternberg cells. BMC Biochem. 12:132011. View Article : Google Scholar : PubMed/NCBI

24 

Gholiha AR, Hollander P, Löf L, Larsson A, Hashemi J, Ulfstedt JM, Molin D, Amini RM, Freyhult E, Kamali-Moghaddam M and Enblad G: Immune-proteome profiling in classical hodgkin lymphoma tumor diagnostic tissue. Cancers (Basel). 14:92021. View Article : Google Scholar : PubMed/NCBI

25 

Epstein MA, Achong BG and Barr YM: Virus particles in cultured lymphoblasts from burkitt's lymphoma. Lancet. 1:702–703. 1964. View Article : Google Scholar : PubMed/NCBI

26 

Thompson MP and Kurzrock R: Epstein-Barr virus and cancer. Clin Cancer Res. 10:803–821. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Myriam BD, Sonia Z, Hanene S, Teheni L and Mounir T: Prognostic significance of Epstein-Barr virus (EBV) infection in Hodgkin lymphoma patients. J Infect Chemother. 23:121–130. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Ludvigsen M, Kamper P, Hamilton-Dutroit SJ, Bendix K, Møller MB, d'Amore FA and Honoré B: Relationship of intratumoural protein expression patterns to age and Epstein-Barr virus status in classical Hodgkin lymphoma. Eur J Haematol. 95:137–149. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Sarathkumara YD, Xian RR, Liu Z, Yu KJ, Chan JKC, Kwong YL, Lam TH, Liang R, Chiu B, Xu J, et al: A proteome-wide analysis unveils a core Epstein-barr virus antibody signature of classic Hodgkin lymphoma across ethnically diverse populations. Int J Cancer. 155:1476–1486. 2024. View Article : Google Scholar : PubMed/NCBI

30 

Liu Z, Jarrett RF, Hjalgrim H, Proietti C, Chang ET, Smedby KE, Yu KJ, Lake A, Troy S, McAulay KA, et al: Evaluation of the antibody response to the EBV proteome in EBV-associated classical Hodgkin lymphoma. Int J Cancer. 147:608–618. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Silkenstedt E, Salles G, Campo E and Dreyling M: B-cell Non-hodgkin lymphomas. Lancet. 403:1791–1807. 2024. View Article : Google Scholar : PubMed/NCBI

32 

Martelli M, Ferreri AJ, Agostinelli C, Di Rocco A, Pfreundschuh M and Pileri SA: Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 87:146–171. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Susanibar-Adaniya S and Barta SK: 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am J Hematol. 96:617–629. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD and Jaffe ES: The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 127:2375–2390. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, Müller-Hermelink HK, Campo E, Braziel RM, Jaffe ES, et al: Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 103:275–282. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Rosenwald A and Staudt LM: Gene expression profiling of diffuse large B-cell lymphoma. Leuk Lymphoma. 44 (Suppl 3):S41–S47. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Roschewski M, Phelan JD and Wilson WH: Molecular classification and treatment of diffuse Large B-cell lymphoma and primary mediastinal B-cell lymphoma. Cancer J. 26:195–205. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Gao HX, Nuerlan A, Abulajiang G, Cui WL, Xue J, Sang W, Li SJ, Niu J, Ma ZP, Zhang W and Li XX: Quantitative proteomics analysis of differentially expressed proteins in activated B-cell-like diffuse large B-cell lymphoma using quantitative proteomics. Pathol Res Pract. 215:1525282019. View Article : Google Scholar : PubMed/NCBI

39 

van der Meeren LE, Kluiver J, Rutgers B, Alsagoor Y, Kluin PM, van den Berg A and Visser L: A super-SILAC based proteomics analysis of diffuse large B-cell lymphoma-NOS patient samples to identify new proteins that discriminate GCB and non-GCB lymphomas. PLoS One. 14:e02232602019. View Article : Google Scholar : PubMed/NCBI

40 

Reinders J, Altenbuchinger M, Limm K, Schwarzfischer P, Scheidt T, Strasser L, Richter J, Szczepanowski M, Huber CG, Klapper W, et al: Platform independent protein-based cell-of-origin subtyping of diffuse large B-cell lymphoma in formalin-fixed paraffin-embedded tissue. Sci Rep. 10:78762020. View Article : Google Scholar : PubMed/NCBI

41 

Fornecker LM, Muller L, Bertrand F, Paul N, Pichot A, Herbrecht R, Chenard MP, Mauvieux L, Vallat L, Bahram S, et al: Multi-omics dataset to decipher the complexity of drug resistance in diffuse large B-cell lymphoma. Sci Rep. 9:8952019. View Article : Google Scholar : PubMed/NCBI

42 

Zhou N, Choi J, Grothusen G, Kim BJ, Ren D, Cao Z, Liu Y, Li Q, Inamdar A, Beer T, et al: DLBCL-associated NOTCH2 mutations escape Ubiquitin-dependent degradation and promote chemoresistance. Blood. 142:973–988. 2023. View Article : Google Scholar : PubMed/NCBI

43 

McCrury M, Swafford K, Shuttleworth SL, Mehdi SH, Acharya B, Saha D, Naceanceno K, Byrum SD, Storey AJ, Xu YZ, et al: Bifunctional inhibitor reveals NEK2 as a therapeutic target and regulator of oncogenic pathways in lymphoma. Mol Cancer Ther. 23:316–329. 2024. View Article : Google Scholar : PubMed/NCBI

44 

Bram Ednersson S, Stern M, Fagman H, Nilsson-Ehle H, Hasselblom S, Thorsell A and Andersson PO: Proteomic analysis in diffuse large B-cell lymphoma identifies dysregulated tumor microenvironment proteins in non-GCB/ABC subtype patients. Leuk Lymphoma. 62:2360–2373. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Elfrink S, Ter Beest M, Janssen L, Baltissen MP, Jansen P, Kenyon AN, Steen RM, de Windt D, Hagemann PM, Hess C, et al: IRF8 is a transcriptional activator of CD37 expression in diffuse large B-cell lymphoma. Blood Adv. 6:2254–2266. 2022. View Article : Google Scholar : PubMed/NCBI

46 

Levy MY, Grudeva-Popova Z, Trneny M, Jurczak W, Pylypenko H, Jagadeesh D, Andre M, Nasta S, Rechavi-Robinson D, Toffanin S, et al: Safety and efficacy of Cd37-Targeting naratuximab emtansine plus rituximab in diffuse large B-cell lymphoma and other Non-hodgkin's B-cell Lymphomas-A phase 2 study. Hematological Oncol. 39:18–22. 2021.

47 

Gao HX, Li SJ, Niu J, Ma ZP, Nuerlan A, Xue J, Wang MB, Cui WL, Abulajiang G, Sang W, et al: TCL1 as a hub protein associated with the PI3K/AKT signaling pathway in diffuse large B-cell lymphoma based on proteomics methods. Pathol Res Pract. 216:1527992020. View Article : Google Scholar : PubMed/NCBI

48 

Lou N, Wang G, Wang Y, Xu M, Zhou Y, Tan Q, Zhong Q, Zhang L, Zhang X, Liu S, et al: Proteomics identifies circulating TIMP-1 as a prognostic biomarker for diffuse Large B-Cell lymphoma. Mol Cell Proteomics. 22:1006252023. View Article : Google Scholar : PubMed/NCBI

49 

Jiang X, Lu X, Gentles AJ, Zhao D, Wander SA, Zhang Y, Natkunam Y, Slingerland J, Reis IM, Rabinovich B, et al: HGAL inhibits lymphoma dissemination by interacting with multiple cytoskeletal proteins. Blood Adv. 5:5072–5085. 2021. View Article : Google Scholar : PubMed/NCBI

50 

Zhu T, Zhu Y, Xuan Y, Gao H, Cai X, Piersma SR, Pham TV, Schelfhorst T, Haas R, Bijnsdorp IV, et al: DPHL: A DIA Pan-human protein mass spectrometry library for robust biomarker discovery. Genomics Proteomics Bioinformatics. 18:104–119. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Ludvigsen M, Campbell AJ, Enemark MB, Hybel TE, Karjalainen-Lindsberg ML, Beiske K, Bjerre M, Pedersen LM, Holte H, Leppä S, et al: Proteomics uncovers molecular features for relapse risk stratification in patients with diffuse large B-cell lymphoma. Blood Cancer J. 13:1612023. View Article : Google Scholar : PubMed/NCBI

52 

Feng Y, Zhong M, Tang Y, Liu X, Liu Y, Wang L and Zhou H: The role and underlying mechanism of exosomal CA1 in chemotherapy resistance in diffuse large B cell lymphoma. Mol Ther Nucleic Acids. 21:452–463. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Kwiecińska A, Porwit A, Souchelnytskyi N, Kaufeldt A, Larsson C, Bajalica-Lagercrantz S and Souchelnytskyi S: Proteomic profiling of diffuse large B-cell lymphomas. Pathobiology. 85:211–219. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Hiratsuka T, Ito S, Sakai R, Yokose T, Endo T, Daigo Y, Miyagi Y and Tsuruyama T: Proteome analysis of CD5-positive diffuse large B cell lymphoma FFPE tissue reveals downregulation of DDX3X, DNAJB1, and B cell receptor signaling pathway proteins including BTK and Immunoglobulins. Clin Proteomics. 20:362023. View Article : Google Scholar : PubMed/NCBI

55 

Zhu Y, Weiss T, Zhang Q, Sun R, Wang B, Yi X, Wu Z, Gao H, Cai X, Ruan G, et al: High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification. Mol Oncol. 13:2305–2328. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Kurtin PJ: Mantle cell lymphoma. Adv Anat Pathol. 5:376–398. 1998. View Article : Google Scholar : PubMed/NCBI

57 

Palomero J, Vegliante MC, Rodríguez ML, Eguileor A, Castellano G, Planas-Rigol E, Jares P, Ribera-Cortada I, Cid MC, Campo E, et al: SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. Blood. 124:2235–2247. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Hanel W, Lata P, Youssef Y, Tran H, Tsyba L, Sehgal L, Blaser BW, Huszar D, Helmig-Mason J, Zhang L, et al: A sumoylation program is essential for maintaining the mitotic fidelity in proliferating mantle cell lymphoma cells. Exp Hematol Oncol. 11:402022. View Article : Google Scholar : PubMed/NCBI

59 

Lokhande L, Nilsson D, de Matos Rodrigues J, Hassan M, Olsson LM, Pyl PT, Vasquez L, Porwit A, Gerdtsson AS, Jerkeman M, et al: Quantification and profiling of early and late differentiation Stage T cells in mantle cell lymphoma reveals immunotherapeutic targets in subsets of patients. Cancers (Basel). 16:22892024. View Article : Google Scholar : PubMed/NCBI

60 

Zhou Y, Heesom K, Osborn K, AlMohammed R, Sweet SM and Sinclair AJ: Identifying the cellular interactome of Epstein-barr virus lytic regulator zta reveals cellular targets contributing to viral replication. J Virol. 94:e00927–19. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Xu H, Perez RD, Frey TR, Burton EM, Mannemuddhu S, Haley JD, McIntosh MT and Bhaduri-McIntosh S: Novel replisome-associated proteins at cellular replication forks in EBV-transformed B lymphocytes. PLoS Pathog. 15:e10082282019. View Article : Google Scholar : PubMed/NCBI

62 

El-Mallawany NK, Day N, Ayello J, Van de Ven C, Conlon K, Fermin D, Basrur V, Elenitoba-Johnson K, Lim M and Cairo MS: Differential proteomic analysis of endemic and sporadic Epstein-Barr virus-positive and negative Burkitt lymphoma. Eur J Cancer. 51:92–100. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Eichhorst B, Robak T, Montserrat E, Ghia P, Niemann CU, Kater AP, Gregor M, Cymbalista F, Buske C, Hillmen P, et al: Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 32:23–33. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Ikhlef L, Ratti N, Durand S, Formento R, Daverat H, Boutaud M, Guillou C, Dmytruk N, Gachard N, Cosette P, et al: Extracellular vesicles from type-2 macrophages increase the survival of chronic lymphocytic leukemia cells ex vivo. Cancer Gene Ther. 31:1164–1176. 2024. View Article : Google Scholar : PubMed/NCBI

66 

Aslan B, Manyam G, Iles LR, Tantawy SI, Desikan SP, Wierda WG and Gandhi V: Transcriptomic and proteomic differences in BTK-WT and BTK-mutated CLL and their changes during therapy with pirtobrutinib. Blood Adv. 8:4487–4501. 2024. View Article : Google Scholar : PubMed/NCBI

67 

Griffen TL, Hoff FW, Qiu Y, Lillard JW Jr, Ferrajoli A, Thompson P, Toro E, Ruiz K, Burger J, Wierda W, et al: Proteomic profiling based classification of CLL provides prognostication for modern therapy and identifies novel therapeutic targets. Blood Cancer J. 12:432022. View Article : Google Scholar : PubMed/NCBI

68 

Liu Z, Liu J, Zhang T, Shi M, Chen X, Chen Y and Yu J: Destabilization of ROR1 enhances activity of Ibrutinib against chronic lymphocytic leukemia in vivo. Pharmacol Res. 151:1045122020. View Article : Google Scholar : PubMed/NCBI

69 

Wang ML, Barrientos JC, Furman RR, Mei M, Barr PM, Choi MY, de Vos S, Kallam A, Patel K, Kipps TJ, et al: Zilovertamab vedotin targeting of ROR1 as therapy for lymphoid cancers. NEJM Evid. 1:EVIDoa21000012022. View Article : Google Scholar : PubMed/NCBI

70 

Choi MY, Widhopf GF II, Ghia EM, Kidwell RL, Hasan MK, Yu J, Rassenti LZ, Chen L, Chen Y, Pittman E, et al: Phase I trial: Cirmtuzumab inhibits ROR1 signaling and stemness signatures in patients with chronic lymphocytic leukemia. Cell Stem Cell. 22:951–959.e3. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Johnston HE, Carter MJ, Larrayoz M, Clarke J, Garbis SD, Oscier D, Strefford JC, Steele AJ, Walewska R and Cragg MS: Proteomics profiling of CLL Versus Healthy B-cells identifies putative therapeutic targets and a Subtype-independent signature of spliceosome dysregulation. Mol Cell Proteomics. 17:776–791. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Bagacean C, Iuga CA, Bordron A, Tempescul A, Pralea IE, Bernard D, Cornen M, Bergot T, Le Dantec C, Brooks W, et al: Identification of altered cell signaling pathways using proteomic profiling in stable and progressive chronic lymphocytic leukemia. J Leukoc Biol. 111:313–325. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Wu Y, Jin M, Fernandez M, Hart KL, Liao A, Ge X, Fernandes SM, McDonald T, Chen Z, Röth D, et al: METTL3-Mediated m6A modification controls splicing factor abundance and contributes to aggressive CLL. Blood Cancer Discov. 4:228–245. 2023. View Article : Google Scholar : PubMed/NCBI

74 

Subramaniam N, Bottek J, Thiebes S, Zec K, Kudla M, Soun C, de Dios Panal E, Lill JK, Pfennig A, Herrmann R, et al: Proteomic and bioinformatic profiling of neutrophils in CLL reveals functional defects that predispose to bacterial infections. Blood Adv. 5:1259–1272. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Ecker V, Brandmeier L, Stumpf M, Giansanti P, Moreira AV, Pfeuffer L, Fens M, Lu J, Kuster B, Engleitner T, et al: Negative feedback regulation of MAPK signaling is an important driver of chronic lymphocytic leukemia progression. Cell Rep. 42:1130172023. View Article : Google Scholar : PubMed/NCBI

76 

Beckmann L, Berg V, Dickhut C, Sun C, Merkel O, Bloehdorn J, Robrecht S, Seifert M, da Palma Guerreiro A, Claasen J, et al: MARCKS affects cell motility and response to BTK inhibitors in CLL. Blood. 138:544–556. 2021. View Article : Google Scholar : PubMed/NCBI

77 

Stachelscheid J, Jiang Q, Aszyk C, Warner K, Bley N, Müller T, Vydzhak O, Symeonidis K, Crispatzu G, Mayer P, et al: The proto-oncogene TCL1A deregulates cell cycle and genomic stability in CLL. Blood. 141:1425–1441. 2023. View Article : Google Scholar : PubMed/NCBI

78 

Griffen TL, Hoff FW, Qiu Y, Burger J, Wierda W and Kornblau SM: Prognostication of DNA damage response protein expression patterns in chronic lymphocytic leukemia. Int J Mol Sci. 24:1425–1441. 2023. View Article : Google Scholar

79 

Saberi Hosnijeh F, van der Straten L, Kater AP, van Oers MHJ, Posthuma WFM, Chamuleau MED, Bellido M, Doorduijn JK, van Gelder M, Hoogendoorn M, et al: Proteomic markers with prognostic impact on outcome of chronic lymphocytic leukemia patients under chemo-immunotherapy: Results from the HOVON 109 study. Exp Hematol. 89:55–60.e6. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch PM, Giles HA, Lütge A, Hüllein J, Wagner L, Giacopelli B, et al: Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia. Nat Cancer. 2:853–864. 2021. View Article : Google Scholar : PubMed/NCBI

81 

van Dijk AD, Griffen TL, Qiu YH, Hoff FW, Toro E, Ruiz K, Ruvolo PP, Lillard JW Jr, de Bont E, Burger JA, et al: RPPA-based proteomics recognizes distinct epigenetic signatures in chronic lymphocytic leukemia with clinical consequences. Leukemia. 36:712–722. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Hengeveld PJ, Kolijn PM, Demmers JAA, Doff W, Dubois JMN, Rijken M, Assmann J, van der Straten L, Boiten HJ, Gussinklo KJ, et al: High-throughput proteomics identifies THEMIS2 as independent biomarker of Treatment-free survival in untreated CLL. Hemasphere. 7:e9512023. View Article : Google Scholar : PubMed/NCBI

83 

Jacobsen E: Follicular lymphoma: 2023 update on diagnosis and management. Am J Hematol. 97:1638–1651. 2022. View Article : Google Scholar : PubMed/NCBI

84 

Sorigue M and Sancho JM: Recent landmark studies in follicular lymphoma. Blood Rev. 35:68–80. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Enemark MBH, Wolter K, Campbell AJ, Andersen MD, Sørensen EF, Hybel TE, Madsen C, Lauridsen KL, Plesner TL, Hamilton-Dutoit SJ, et al: Proteomics identifies apoptotic markers as predictors of histological transformation in patients with follicular lymphoma. Blood Adv. 7:7418–7432. 2023. View Article : Google Scholar : PubMed/NCBI

86 

Monrad I, Madsen C, Lauridsen KL, Honoré B, Plesner TL, Hamilton-Dutoit S, d'Amore F and Ludvigsen M: Glycolytic biomarkers predict transformation in patients with follicular lymphoma. PLoS One. 15:e02334492020. View Article : Google Scholar : PubMed/NCBI

87 

Ludvigsen M, Madsen C, Kamper P, Hamilton-Dutoit SJ, Bendix K, d'Amore F and Honoré B: Histologically transformed follicular lymphoma exhibits protein profiles different from both Non-transformed follicular and de novo diffuse large B-cell lymphoma. Blood Cancer J. 5:e2932015. View Article : Google Scholar : PubMed/NCBI

88 

Deng Y, Ma J, Zhao S, Yang M, Sun Y and Zhang Q: Expression of glucose transporter-1 in follicular lymphoma affected tumor-infiltrating immunocytes and was related to progression of disease within 24 months. Transl Oncol. 28:1016142023. View Article : Google Scholar : PubMed/NCBI

89 

Radtke AJ, Postovalova E, Varlamova A, Bagaev A, Sorokina M, Kudryashova O, Meerson M, Polyakova M, Galkin I, Svekolkin V, et al: Multi-omic profiling of follicular lymphoma reveals changes in tissue architecture and enhanced stromal remodeling in high-risk patients. Cancer Cell. 42:444–463.e10. 2024. View Article : Google Scholar : PubMed/NCBI

90 

Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, Phillips E, Sangha R, Schlag R, Seymour JF, et al: Obinutuzumab for the First-line treatment of follicular lymphoma. N Engl J Med. 377:1331–1344. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Duś-Szachniewicz K, Rymkiewicz G, Agrawal AK, Kołodziej P and Wiśniewski JR: Large-scale proteomic analysis of follicular lymphoma reveals extensive remodeling of cell adhesion pathway and identifies hub proteins related to the lymphomagenesis. Cancers (Basel). 13:6302021. View Article : Google Scholar : PubMed/NCBI

92 

Cheah CY and Seymour JF: Marginal zone lymphoma: 2023 update on diagnosis and management. Am J Hematol. 98:1645–1657. 2023. View Article : Google Scholar : PubMed/NCBI

93 

Di Rocco A, Petrucci L, Assanto GM, Martelli M and Pulsoni A: Extranodal Marginal zone lymphoma: Pathogenesis, diagnosis and treatment. Cancers (Basel). 14:17422022. View Article : Google Scholar : PubMed/NCBI

94 

Zucca E and Bertoni F: The spectrum of MALT lymphoma at different sites: Biological and therapeutic relevance. Blood. 127:2082–2092. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Shi J, Zhou M, Zhou X, Jia S, Liu Z, Zhao Y, Shi J, Song X, Wang Y, Jia R, et al: Multi-omics and case-control analyses identify immunoglobulin M as a Tumour-derived serum biomarker of ocular adnexal extranodal marginal zone lymphoma. Clin Transl Med. 13:e12592023. View Article : Google Scholar : PubMed/NCBI

96 

Shi J, Zhu T, Lin H, Liu Z, Zhou M, Yu Z, Zhou X, Song X, Wang Y, Jia R, et al: Proteotranscriptomics of ocular adnexal B-cell lymphoma reveals an oncogenic role of alternative splicing and identifies a diagnostic marker. J Exp Clin Cancer Res. 41:2342022. View Article : Google Scholar : PubMed/NCBI

97 

Zhu T, Shi J, Zhou X, Qiu C, Jia R, Huang S, Jia R, Wang Y, Song X and Zhou Y: MYC-targeted genes predict distant recurrence in patients with ocular adnexal extranodal marginal zone lymphoma. Ann Hematol. 102:2413–2423. 2023. View Article : Google Scholar : PubMed/NCBI

98 

Zucca E, Bertoni F, Stathis A and Cavalli F: Marginal zone lymphomas. Hematol Oncol Clin North Am. 22:883–901. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A and Rawla P: Epidemiology of Non-Hodgkin's Lymphoma. Med Sci (Basel). 9:52021.PubMed/NCBI

100 

Mariette X and Criswell LA: Primary Sjögren's Syndrome. N Engl J Med. 378:931–939. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Jazzar AA, Shirlaw PJ, Carpenter GH, Challacombe SJ and Proctor GB: Salivary S100A8/A9 in Sjögren's syndrome accompanied by lymphoma. J Oral Pathol Med. 47:900–906. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Cui L, Elzakra N, Xu S, Xiao GG, Yang Y and Hu S: Investigation of three potential autoantibodies in Sjogren's syndrome and associated MALT lymphoma. Oncotarget. 8:30039–30049. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Zou Q, Zhang H, Meng F, He L, Zhang J and Xiao D: Proteomic and transcriptomic studies of BGC823 cells stimulated with Helicobacter pylori isolates from gastric MALT lymphoma. PLoS One. 15:e02383792020. View Article : Google Scholar : PubMed/NCBI

104 

Tang X, Yang ZZ, Kim HJ, Anagnostou T, Yu Y, Wu X, Chen J, Krull JE, Wenzl K, Mondello P, et al: Phenotype, function, and clinical significance of CD26+ and CD161+tregs in splenic marginal zone lymphoma. Clin Cancer Res. 28:4322–4335. 2022. View Article : Google Scholar : PubMed/NCBI

105 

Liu X, Yang M, Wu M, Zheng W, Xie Y, Zhu J, Song Y and Liu W: A retrospective study of the CHOP, CHOPE, and CHOPE/G regimens as the first-line treatment of peripheral T-cell lymphomas. Cancer Chemother Pharmacol. 83:443–449. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Ludvigsen M, Bjerregård Pedersen M, Lystlund Lauridsen K, Svenstrup Poulsen T, Hamilton-Dutoit SJ, Besenbacher S, Bendix K, Møller MB, Nørgaard P, d'Amore F and Honoré B: Proteomic profiling identifies outcome-predictive markers in patients with peripheral T-cell lymphoma, not otherwise specified. Blood Adv. 2:2533–2542. 2018. View Article : Google Scholar : PubMed/NCBI

107 

A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. The Non-Hodgkin's Lymphoma Classification Project. Blood. 89:3909–3918. 1997. View Article : Google Scholar : PubMed/NCBI

108 

Mora J, Filippa DA, Thaler HT, Polyak T, Cranor ML and Wollner N: Large cell non-Hodgkin lymphoma of childhood: Analysis of 78 consecutive patients enrolled in 2 consecutive protocols at the memorial Sloan-kettering cancer center. Cancer. 88:186–197. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Ferreri AJ, Govi S, Pileri SA and Savage KJ: Anaplastic large cell lymphoma, ALK-positive. Crit Rev Oncol Hematol. 83:293–302. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Rajan SS, Amin AD, Li L, Rolland DC, Li H, Kwon D, Kweh MF, Arumov A, Roberts ER, Yan A, et al: The mechanism of cancer drug addiction in ALK-positive T-Cell lymphoma. Oncogene. 39:2103–2117. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Lovisa F, Garbin A, Crotti S, Di Battista P, Gallingani I, Damanti CC, Tosato A, Carraro E, Pillon M, Mafakheri E, et al: Increased Tenascin C, Osteopontin and HSP90 levels in plasmatic small extracellular vesicles of pediatric ALK-positive anaplastic large cell lymphoma: New prognostic biomarkers? Diagnostics (Basel). 11:2532021. View Article : Google Scholar : PubMed/NCBI

112 

Hu M, Bao R, Lin M, Han XR, Ai YJ, Gao Y, Guan KL, Xiong Y and Yuan HX: ALK fusion promotes metabolic reprogramming of cancer cells by transcriptionally upregulating PFKFB3. Oncogene. 41:4547–4559. 2022. View Article : Google Scholar : PubMed/NCBI

113 

Wei C, Li W, Qin L, Liu S, Xue C, Ren K, Zhang Z, Liu C, Bao F, Zhang H, et al: Clinicopathologic characteristics, outcomes, and prognostic factors of angioimmunoblastic T-cell lymphoma in China. Cancer Med. 12:3987–3998. 2023. View Article : Google Scholar : PubMed/NCBI

114 

Holst JM, Enemark MB, Pedersen MB, Lauridsen KL, Hybel TE, Clausen MR, Frederiksen H, Møller MB, Nørgaard P, Plesner TL, et al: Proteomic Profiling differentiates lymphoma patients with and without concurrent myeloproliferative neoplasia. Cancers (Basel). 13:55262021. View Article : Google Scholar : PubMed/NCBI

115 

Au WY, Weisenburger DD, Intragumtornchai T, Nakamura S, Kim WS, Sng I, Vose J, Armitage JO and Liang R: Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: A study of 136 cases from the international peripheral T-Cell lymphoma project. Blood. 113:3931–3937. 2009. View Article : Google Scholar : PubMed/NCBI

116 

Wang H, Fu BB, Gale RP and Liang Y: NK-/T-cell lymphomas. Leukemia. 35:2460–2468. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Xiong J, Cui BW, Wang N, Dai YT, Zhang H, Wang CF, Zhong HJ, Cheng S, Ou-Yang BS, Hu Y, et al: Genomic and transcriptomic characterization of natural Killer T cell lymphoma. Cancer Cell. 37:403–419.e6. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Li Q, Zeng H, Zhao Y, Gong Y and Ma X: Proteomic analysis of cerebrospinal fluid from patients with extranodal NK-/T-Cell lymphoma of Nasal-type with ethmoidal sinus metastasis. Front Oncol. 9:14892019. View Article : Google Scholar : PubMed/NCBI

119 

Lim SH, Hong JY, Lim ST, Hong H, Arnoud J, Zhao W, Yoon DH, Tang T, Cho J, Park S, et al: Beyond first-line non-anthracycline-based chemotherapy for extranodal NK/T-cell lymphoma: Clinical outcome and current perspectives on salvage therapy for patients after first relapse and progression of disease. Ann Oncol. 28:2199–2205. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Zhou Z, Li Z, Sun Z, Zhang X, Lu L, Wang Y and Zhang M: S100A9 and ORM1 serve as predictors of therapeutic response and prognostic factors in advanced extranodal NK/T cell lymphoma patients treated with pegaspargase/gemcitabine. Sci Rep. 6:236952016. View Article : Google Scholar : PubMed/NCBI

121 

Gong Y, Pu W, Jin H, Yang P, Zeng H, Wang Y, Pang F and Ma X: Quantitative proteomics of CSF reveals potential predicted biomarkers for extranodal NK-/T-cell lymphoma of nasal-type with ethmoidal sinus metastasis. Life Sci. 198:94–98. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Qiu Y, Zhou Z, Li Z, Lu L, Li L, Li X, Wang X and Zhang M: Pretreatment 14-3-3 epsilon level is predictive for advanced extranodal NK/T cell lymphoma therapeutic response to asparaginase-based chemotherapy. Proteomics Clin Appl. Oct 24–2016.(Epub ahead of print). doi: 10.1002/prca.201600111. PubMed/NCBI

123 

Bobrowicz M, Fassnacht C, Ignatova D, Chang YT, Dimitriou F and Guenova E: Pathogenesis and therapy of primary cutaneous T-Cell lymphoma: Collegium internationale allergologicum (CIA) update 2020. Int Arch Allergy Immunol. 181:733–745. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Sethi TK, Montanari F, Foss F and Reddy N: How we treat advanced stage cutaneous T-cell lymphoma-mycosis fungoides and Sézary syndrome. Br J Haematol. 195:352–364. 2021. View Article : Google Scholar : PubMed/NCBI

125 

Techner JM, Hooper MJ, Evans S, LeWitt TM, Paller AS, Guitart J, Lu KQ and Zhou XA: Skin tape strip proteomics in mycosis fungoides identifies Tumor-associated biomarkers. J Invest Dermatol. 143:517–520.e12. 2023. View Article : Google Scholar : PubMed/NCBI

126 

Qureshi HA, Azimi A, Wells J and Fernandez-Penas P: Tape stripped stratum corneum samples are suitable for diagnosis and comprehensive proteomic investigation in mycosis fungoides. Proteomics Clin Appl. 17:e22000392023. View Article : Google Scholar : PubMed/NCBI

127 

Leng L, Liu Z, Ma J, Zhang S, Wang Y, Lv L, Zhu Y, Gao D, Wang Y, Wang J, et al: Proteomic identification of new diagnostic biomarkers of early-stage cutaneous mycosis fungoides. Cancer Commun (Lond). 42:558–562. 2022. View Article : Google Scholar : PubMed/NCBI

128 

Lemchak D, Banerjee S, Digambar SS, Hood BL, Conrads TP, Jedrych J, Geskin L and Akilov OE: Therapeutic and prognostic significance of PARP-1 in advanced mycosis fungoides and Sezary syndrome. Exp Dermatol. 27:188–190. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Q, Ling J, Li Z and Bi L: Advances in lymphoma biomarkers research based on proteomics technology (Review). Oncol Rep 54: 108, 2025.
APA
Liu, Q., Ling, J., Li, Z., & Bi, L. (2025). Advances in lymphoma biomarkers research based on proteomics technology (Review). Oncology Reports, 54, 108. https://doi.org/10.3892/or.2025.8941
MLA
Liu, Q., Ling, J., Li, Z., Bi, L."Advances in lymphoma biomarkers research based on proteomics technology (Review)". Oncology Reports 54.3 (2025): 108.
Chicago
Liu, Q., Ling, J., Li, Z., Bi, L."Advances in lymphoma biomarkers research based on proteomics technology (Review)". Oncology Reports 54, no. 3 (2025): 108. https://doi.org/10.3892/or.2025.8941
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Q, Ling J, Li Z and Bi L: Advances in lymphoma biomarkers research based on proteomics technology (Review). Oncol Rep 54: 108, 2025.
APA
Liu, Q., Ling, J., Li, Z., & Bi, L. (2025). Advances in lymphoma biomarkers research based on proteomics technology (Review). Oncology Reports, 54, 108. https://doi.org/10.3892/or.2025.8941
MLA
Liu, Q., Ling, J., Li, Z., Bi, L."Advances in lymphoma biomarkers research based on proteomics technology (Review)". Oncology Reports 54.3 (2025): 108.
Chicago
Liu, Q., Ling, J., Li, Z., Bi, L."Advances in lymphoma biomarkers research based on proteomics technology (Review)". Oncology Reports 54, no. 3 (2025): 108. https://doi.org/10.3892/or.2025.8941
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team