|
1
|
Ansell SM: Hodgkin lymphoma: 2025 update
on diagnosis, risk-stratification, and management. Am J Hematol.
99:2367–2378. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Klein C, Jamois C and Nielsen T: Anti-CD20
treatment for B-cell malignancies: Current status and future
directions. Expert Opin Biol Ther. 21:161–181. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Califf RM: Biomarker definitions and their
applications. Exp Biol Med (Maywood). 243:213–221. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hristova VA and Chan DW: Cancer biomarker
discovery and translation: Proteomics and beyond. Expert Rev
Proteomics. 16:93–103. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Müllner S, Neumann T and Lottspeich F:
Proteomics-a new way for drug target discovery.
Arzneimittelforschung. 48:93–95. 1998.PubMed/NCBI
|
|
7
|
Cox J and Mann M: Quantitative,
High-resolution proteomics for Data-driven systems biology. Annu
Rev Biochem. 80:273–299. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Li J, Cai Z, Bomgarden RD, Pike I, Kuhn K,
Rogers JC, Roberts TM, Gygi SP and Paulo JA: TMTpro-18plex: The
expanded and complete set of TMTpro reagents for sample
multiplexing. J Proteome Res. 20:2964–2972. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Thompson A, Schäfer J, Kuhn K, Kienle S,
Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK and Hamon
C: Tandem mass tags: A novel quantification strategy for
comparative analysis of complex protein mixtures by MS/MS. Anal
Chem. 75:1895–1904. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Neilson KA, Ali NA, Muralidharan S,
Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC and
Haynes PA: Less label, more free: Approaches in Label-free
quantitative mass spectrometry. Proteomics. 11:535–553. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Collins BC, Hunter CL, Liu Y, Schilling B,
Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM,
et al: Multi-laboratory assessment of reproducibility, qualitative
and quantitative performance of SWATH-mass spectrometry. Nat
Commun. 8:2912017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yung L and Linch D: Hodgkin's lymphoma.
Lancet. 361:943–951. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
The guidelines for diagnosis and treatment
of Hodgkin lymphoma in China (2022). Zhonghua Xue Ye Xue Za Zhi.
43:705–715. 2022.(In Chinese). PubMed/NCBI
|
|
14
|
Repetto O, Mussolin L, Elia C, Martina L,
Bianchi M, Buffardi S, Sala A, Burnelli R, Mascarin M and De Re V:
Proteomic identification of plasma biomarkers in children and
adolescents with recurrent hodgkin lymphoma. J Cancer. 9:4650–4658.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Brice P, de Kerviler E and Friedberg JW:
Classical hodgkin lymphoma. Lancet. 398:1518–1527. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen R, Zinzani PL, Fanale MA, Armand P,
Johnson NA, Brice P, Radford J, Ribrag V, Molin D, Vassilakopoulos
TP, et al: Phase II study of the efficacy and safety of
pembrolizumab for Relapsed/refractory classic hodgkin lymphoma. J
Clin Oncol. 35:2125–2132. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Younes A, Bartlett NL, Leonard JP, Kennedy
DA, Lynch CM, Sievers EL and Forero-Torres A: Brentuximab vedotin
(SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med.
363:1812–1821. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
von Hoff L, Kärgel E, Franke V, McShane E,
Schulz-Beiss KW, Patone G, Schleussner N, Kolesnichenko M, Hübner
N, Daumke O, et al: Autocrine LTA signaling drives NF-κB and
JAK-STAT activity and myeloid gene expression in Hodgkin lymphoma.
Blood. 133:1489–1494. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Segges P, Corrêa S, Du Rocher B,
Vera-Lozada G, Krsticevic F, Arce D, Sternberg C, Abdelhay E and
Hassan R: Targeting hodgkin and Reed-sternberg cells with an
inhibitor of Heat-shock protein 90: Molecular pathways of response
and potential mechanisms of resistance. Int J Mol Sci. 19:8362018.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Repetto O, Caggiari L, De Zorzi M, Elia C,
Mussolin L, Buffardi S, Pillon M, Muggeo P, Casini T, Steffan A, et
al: Quantitative plasma proteomics to identify candidate biomarkers
of relapse in Pediatric/adolescent hodgkin lymphoma. Int J Mol Sci.
23:99112022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Honoré B, Andersen MD, Wilken D, Kamper P,
d'Amore F, Hamilton-Dutoit S and Ludvigsen M: Classic hodgkin
lymphoma refractory for ABVD treatment is characterized by
pathologically activated signal transduction pathways as revealed
by proteomic profiling. Cancers (Basel). 14:2472022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kischel P, Waltregny D, Greffe Y,
Mazzucchelli G, De Pauw E, de Leval L and Castronovo V:
Identification of stromal proteins overexpressed in nodular
sclerosis Hodgkin lymphoma. Proteome Sci. 9:632011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Powlesland AS, Barrio MM, Mordoh J,
Hitchen PG, Dell A, Drickamer K and Taylor ME: Glycoproteomic
characterization of carriers of the CD15/Lewisx epitope on
Hodgkin's Reed-Sternberg cells. BMC Biochem. 12:132011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gholiha AR, Hollander P, Löf L, Larsson A,
Hashemi J, Ulfstedt JM, Molin D, Amini RM, Freyhult E,
Kamali-Moghaddam M and Enblad G: Immune-proteome profiling in
classical hodgkin lymphoma tumor diagnostic tissue. Cancers
(Basel). 14:92021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Epstein MA, Achong BG and Barr YM: Virus
particles in cultured lymphoblasts from burkitt's lymphoma. Lancet.
1:702–703. 1964. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Thompson MP and Kurzrock R: Epstein-Barr
virus and cancer. Clin Cancer Res. 10:803–821. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Myriam BD, Sonia Z, Hanene S, Teheni L and
Mounir T: Prognostic significance of Epstein-Barr virus (EBV)
infection in Hodgkin lymphoma patients. J Infect Chemother.
23:121–130. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ludvigsen M, Kamper P, Hamilton-Dutroit
SJ, Bendix K, Møller MB, d'Amore FA and Honoré B: Relationship of
intratumoural protein expression patterns to age and Epstein-Barr
virus status in classical Hodgkin lymphoma. Eur J Haematol.
95:137–149. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sarathkumara YD, Xian RR, Liu Z, Yu KJ,
Chan JKC, Kwong YL, Lam TH, Liang R, Chiu B, Xu J, et al: A
proteome-wide analysis unveils a core Epstein-barr virus antibody
signature of classic Hodgkin lymphoma across ethnically diverse
populations. Int J Cancer. 155:1476–1486. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu Z, Jarrett RF, Hjalgrim H, Proietti C,
Chang ET, Smedby KE, Yu KJ, Lake A, Troy S, McAulay KA, et al:
Evaluation of the antibody response to the EBV proteome in
EBV-associated classical Hodgkin lymphoma. Int J Cancer.
147:608–618. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Silkenstedt E, Salles G, Campo E and
Dreyling M: B-cell Non-hodgkin lymphomas. Lancet. 403:1791–1807.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Martelli M, Ferreri AJ, Agostinelli C, Di
Rocco A, Pfreundschuh M and Pileri SA: Diffuse large B-cell
lymphoma. Crit Rev Oncol Hematol. 87:146–171. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Susanibar-Adaniya S and Barta SK: 2021
Update on Diffuse large B cell lymphoma: A review of current data
and potential applications on risk stratification and management.
Am J Hematol. 96:617–629. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Swerdlow SH, Campo E, Pileri SA, Harris
NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz
AD and Jaffe ES: The 2016 revision of the World Health Organization
classification of lymphoid neoplasms. Blood. 127:2375–2390. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hans CP, Weisenburger DD, Greiner TC,
Gascoyne RD, Delabie J, Ott G, Müller-Hermelink HK, Campo E,
Braziel RM, Jaffe ES, et al: Confirmation of the molecular
classification of diffuse large B-cell lymphoma by
immunohistochemistry using a tissue microarray. Blood. 103:275–282.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Rosenwald A and Staudt LM: Gene expression
profiling of diffuse large B-cell lymphoma. Leuk Lymphoma. 44
(Suppl 3):S41–S47. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Roschewski M, Phelan JD and Wilson WH:
Molecular classification and treatment of diffuse Large B-cell
lymphoma and primary mediastinal B-cell lymphoma. Cancer J.
26:195–205. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gao HX, Nuerlan A, Abulajiang G, Cui WL,
Xue J, Sang W, Li SJ, Niu J, Ma ZP, Zhang W and Li XX: Quantitative
proteomics analysis of differentially expressed proteins in
activated B-cell-like diffuse large B-cell lymphoma using
quantitative proteomics. Pathol Res Pract. 215:1525282019.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
van der Meeren LE, Kluiver J, Rutgers B,
Alsagoor Y, Kluin PM, van den Berg A and Visser L: A super-SILAC
based proteomics analysis of diffuse large B-cell lymphoma-NOS
patient samples to identify new proteins that discriminate GCB and
non-GCB lymphomas. PLoS One. 14:e02232602019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Reinders J, Altenbuchinger M, Limm K,
Schwarzfischer P, Scheidt T, Strasser L, Richter J, Szczepanowski
M, Huber CG, Klapper W, et al: Platform independent protein-based
cell-of-origin subtyping of diffuse large B-cell lymphoma in
formalin-fixed paraffin-embedded tissue. Sci Rep. 10:78762020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fornecker LM, Muller L, Bertrand F, Paul
N, Pichot A, Herbrecht R, Chenard MP, Mauvieux L, Vallat L, Bahram
S, et al: Multi-omics dataset to decipher the complexity of drug
resistance in diffuse large B-cell lymphoma. Sci Rep. 9:8952019.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhou N, Choi J, Grothusen G, Kim BJ, Ren
D, Cao Z, Liu Y, Li Q, Inamdar A, Beer T, et al: DLBCL-associated
NOTCH2 mutations escape Ubiquitin-dependent degradation and promote
chemoresistance. Blood. 142:973–988. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
McCrury M, Swafford K, Shuttleworth SL,
Mehdi SH, Acharya B, Saha D, Naceanceno K, Byrum SD, Storey AJ, Xu
YZ, et al: Bifunctional inhibitor reveals NEK2 as a therapeutic
target and regulator of oncogenic pathways in lymphoma. Mol Cancer
Ther. 23:316–329. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bram Ednersson S, Stern M, Fagman H,
Nilsson-Ehle H, Hasselblom S, Thorsell A and Andersson PO:
Proteomic analysis in diffuse large B-cell lymphoma identifies
dysregulated tumor microenvironment proteins in non-GCB/ABC subtype
patients. Leuk Lymphoma. 62:2360–2373. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Elfrink S, Ter Beest M, Janssen L,
Baltissen MP, Jansen P, Kenyon AN, Steen RM, de Windt D, Hagemann
PM, Hess C, et al: IRF8 is a transcriptional activator of CD37
expression in diffuse large B-cell lymphoma. Blood Adv.
6:2254–2266. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Levy MY, Grudeva-Popova Z, Trneny M,
Jurczak W, Pylypenko H, Jagadeesh D, Andre M, Nasta S,
Rechavi-Robinson D, Toffanin S, et al: Safety and efficacy of
Cd37-Targeting naratuximab emtansine plus rituximab in diffuse
large B-cell lymphoma and other Non-hodgkin's B-cell Lymphomas-A
phase 2 study. Hematological Oncol. 39:18–22. 2021.
|
|
47
|
Gao HX, Li SJ, Niu J, Ma ZP, Nuerlan A,
Xue J, Wang MB, Cui WL, Abulajiang G, Sang W, et al: TCL1 as a hub
protein associated with the PI3K/AKT signaling pathway in diffuse
large B-cell lymphoma based on proteomics methods. Pathol Res
Pract. 216:1527992020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lou N, Wang G, Wang Y, Xu M, Zhou Y, Tan
Q, Zhong Q, Zhang L, Zhang X, Liu S, et al: Proteomics identifies
circulating TIMP-1 as a prognostic biomarker for diffuse Large
B-Cell lymphoma. Mol Cell Proteomics. 22:1006252023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jiang X, Lu X, Gentles AJ, Zhao D, Wander
SA, Zhang Y, Natkunam Y, Slingerland J, Reis IM, Rabinovich B, et
al: HGAL inhibits lymphoma dissemination by interacting with
multiple cytoskeletal proteins. Blood Adv. 5:5072–5085. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhu T, Zhu Y, Xuan Y, Gao H, Cai X,
Piersma SR, Pham TV, Schelfhorst T, Haas R, Bijnsdorp IV, et al:
DPHL: A DIA Pan-human protein mass spectrometry library for robust
biomarker discovery. Genomics Proteomics Bioinformatics.
18:104–119. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ludvigsen M, Campbell AJ, Enemark MB,
Hybel TE, Karjalainen-Lindsberg ML, Beiske K, Bjerre M, Pedersen
LM, Holte H, Leppä S, et al: Proteomics uncovers molecular features
for relapse risk stratification in patients with diffuse large
B-cell lymphoma. Blood Cancer J. 13:1612023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Feng Y, Zhong M, Tang Y, Liu X, Liu Y,
Wang L and Zhou H: The role and underlying mechanism of exosomal
CA1 in chemotherapy resistance in diffuse large B cell lymphoma.
Mol Ther Nucleic Acids. 21:452–463. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kwiecińska A, Porwit A, Souchelnytskyi N,
Kaufeldt A, Larsson C, Bajalica-Lagercrantz S and Souchelnytskyi S:
Proteomic profiling of diffuse large B-cell lymphomas.
Pathobiology. 85:211–219. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hiratsuka T, Ito S, Sakai R, Yokose T,
Endo T, Daigo Y, Miyagi Y and Tsuruyama T: Proteome analysis of
CD5-positive diffuse large B cell lymphoma FFPE tissue reveals
downregulation of DDX3X, DNAJB1, and B cell receptor signaling
pathway proteins including BTK and Immunoglobulins. Clin
Proteomics. 20:362023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhu Y, Weiss T, Zhang Q, Sun R, Wang B, Yi
X, Wu Z, Gao H, Cai X, Ruan G, et al: High-throughput proteomic
analysis of FFPE tissue samples facilitates tumor stratification.
Mol Oncol. 13:2305–2328. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kurtin PJ: Mantle cell lymphoma. Adv Anat
Pathol. 5:376–398. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Palomero J, Vegliante MC, Rodríguez ML,
Eguileor A, Castellano G, Planas-Rigol E, Jares P, Ribera-Cortada
I, Cid MC, Campo E, et al: SOX11 promotes tumor angiogenesis
through transcriptional regulation of PDGFA in mantle cell
lymphoma. Blood. 124:2235–2247. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hanel W, Lata P, Youssef Y, Tran H, Tsyba
L, Sehgal L, Blaser BW, Huszar D, Helmig-Mason J, Zhang L, et al: A
sumoylation program is essential for maintaining the mitotic
fidelity in proliferating mantle cell lymphoma cells. Exp Hematol
Oncol. 11:402022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lokhande L, Nilsson D, de Matos Rodrigues
J, Hassan M, Olsson LM, Pyl PT, Vasquez L, Porwit A, Gerdtsson AS,
Jerkeman M, et al: Quantification and profiling of early and late
differentiation Stage T cells in mantle cell lymphoma reveals
immunotherapeutic targets in subsets of patients. Cancers (Basel).
16:22892024. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhou Y, Heesom K, Osborn K, AlMohammed R,
Sweet SM and Sinclair AJ: Identifying the cellular interactome of
Epstein-barr virus lytic regulator zta reveals cellular targets
contributing to viral replication. J Virol. 94:e00927–19. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xu H, Perez RD, Frey TR, Burton EM,
Mannemuddhu S, Haley JD, McIntosh MT and Bhaduri-McIntosh S: Novel
replisome-associated proteins at cellular replication forks in
EBV-transformed B lymphocytes. PLoS Pathog. 15:e10082282019.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
El-Mallawany NK, Day N, Ayello J, Van de
Ven C, Conlon K, Fermin D, Basrur V, Elenitoba-Johnson K, Lim M and
Cairo MS: Differential proteomic analysis of endemic and sporadic
Epstein-Barr virus-positive and negative Burkitt lymphoma. Eur J
Cancer. 51:92–100. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Eichhorst B, Robak T, Montserrat E, Ghia
P, Niemann CU, Kater AP, Gregor M, Cymbalista F, Buske C, Hillmen
P, et al: Chronic lymphocytic leukaemia: ESMO Clinical Practice
Guidelines for diagnosis, treatment and follow-up. Ann Oncol.
32:23–33. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ikhlef L, Ratti N, Durand S, Formento R,
Daverat H, Boutaud M, Guillou C, Dmytruk N, Gachard N, Cosette P,
et al: Extracellular vesicles from type-2 macrophages increase the
survival of chronic lymphocytic leukemia cells ex vivo. Cancer Gene
Ther. 31:1164–1176. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Aslan B, Manyam G, Iles LR, Tantawy SI,
Desikan SP, Wierda WG and Gandhi V: Transcriptomic and proteomic
differences in BTK-WT and BTK-mutated CLL and their changes during
therapy with pirtobrutinib. Blood Adv. 8:4487–4501. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Griffen TL, Hoff FW, Qiu Y, Lillard JW Jr,
Ferrajoli A, Thompson P, Toro E, Ruiz K, Burger J, Wierda W, et al:
Proteomic profiling based classification of CLL provides
prognostication for modern therapy and identifies novel therapeutic
targets. Blood Cancer J. 12:432022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu Z, Liu J, Zhang T, Shi M, Chen X, Chen
Y and Yu J: Destabilization of ROR1 enhances activity of Ibrutinib
against chronic lymphocytic leukemia in vivo. Pharmacol Res.
151:1045122020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang ML, Barrientos JC, Furman RR, Mei M,
Barr PM, Choi MY, de Vos S, Kallam A, Patel K, Kipps TJ, et al:
Zilovertamab vedotin targeting of ROR1 as therapy for lymphoid
cancers. NEJM Evid. 1:EVIDoa21000012022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Choi MY, Widhopf GF II, Ghia EM, Kidwell
RL, Hasan MK, Yu J, Rassenti LZ, Chen L, Chen Y, Pittman E, et al:
Phase I trial: Cirmtuzumab inhibits ROR1 signaling and stemness
signatures in patients with chronic lymphocytic leukemia. Cell Stem
Cell. 22:951–959.e3. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Johnston HE, Carter MJ, Larrayoz M, Clarke
J, Garbis SD, Oscier D, Strefford JC, Steele AJ, Walewska R and
Cragg MS: Proteomics profiling of CLL Versus Healthy B-cells
identifies putative therapeutic targets and a Subtype-independent
signature of spliceosome dysregulation. Mol Cell Proteomics.
17:776–791. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bagacean C, Iuga CA, Bordron A, Tempescul
A, Pralea IE, Bernard D, Cornen M, Bergot T, Le Dantec C, Brooks W,
et al: Identification of altered cell signaling pathways using
proteomic profiling in stable and progressive chronic lymphocytic
leukemia. J Leukoc Biol. 111:313–325. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wu Y, Jin M, Fernandez M, Hart KL, Liao A,
Ge X, Fernandes SM, McDonald T, Chen Z, Röth D, et al:
METTL3-Mediated m6A modification controls splicing factor abundance
and contributes to aggressive CLL. Blood Cancer Discov. 4:228–245.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Subramaniam N, Bottek J, Thiebes S, Zec K,
Kudla M, Soun C, de Dios Panal E, Lill JK, Pfennig A, Herrmann R,
et al: Proteomic and bioinformatic profiling of neutrophils in CLL
reveals functional defects that predispose to bacterial infections.
Blood Adv. 5:1259–1272. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ecker V, Brandmeier L, Stumpf M, Giansanti
P, Moreira AV, Pfeuffer L, Fens M, Lu J, Kuster B, Engleitner T, et
al: Negative feedback regulation of MAPK signaling is an important
driver of chronic lymphocytic leukemia progression. Cell Rep.
42:1130172023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Beckmann L, Berg V, Dickhut C, Sun C,
Merkel O, Bloehdorn J, Robrecht S, Seifert M, da Palma Guerreiro A,
Claasen J, et al: MARCKS affects cell motility and response to BTK
inhibitors in CLL. Blood. 138:544–556. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Stachelscheid J, Jiang Q, Aszyk C, Warner
K, Bley N, Müller T, Vydzhak O, Symeonidis K, Crispatzu G, Mayer P,
et al: The proto-oncogene TCL1A deregulates cell cycle and genomic
stability in CLL. Blood. 141:1425–1441. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Griffen TL, Hoff FW, Qiu Y, Burger J,
Wierda W and Kornblau SM: Prognostication of DNA damage response
protein expression patterns in chronic lymphocytic leukemia. Int J
Mol Sci. 24:1425–1441. 2023. View Article : Google Scholar
|
|
79
|
Saberi Hosnijeh F, van der Straten L,
Kater AP, van Oers MHJ, Posthuma WFM, Chamuleau MED, Bellido M,
Doorduijn JK, van Gelder M, Hoogendoorn M, et al: Proteomic markers
with prognostic impact on outcome of chronic lymphocytic leukemia
patients under chemo-immunotherapy: Results from the HOVON 109
study. Exp Hematol. 89:55–60.e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lu J, Cannizzaro E, Meier-Abt F, Scheinost
S, Bruch PM, Giles HA, Lütge A, Hüllein J, Wagner L, Giacopelli B,
et al: Multi-omics reveals clinically relevant proliferative drive
associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic
leukemia. Nat Cancer. 2:853–864. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
van Dijk AD, Griffen TL, Qiu YH, Hoff FW,
Toro E, Ruiz K, Ruvolo PP, Lillard JW Jr, de Bont E, Burger JA, et
al: RPPA-based proteomics recognizes distinct epigenetic signatures
in chronic lymphocytic leukemia with clinical consequences.
Leukemia. 36:712–722. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hengeveld PJ, Kolijn PM, Demmers JAA, Doff
W, Dubois JMN, Rijken M, Assmann J, van der Straten L, Boiten HJ,
Gussinklo KJ, et al: High-throughput proteomics identifies THEMIS2
as independent biomarker of Treatment-free survival in untreated
CLL. Hemasphere. 7:e9512023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Jacobsen E: Follicular lymphoma: 2023
update on diagnosis and management. Am J Hematol. 97:1638–1651.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sorigue M and Sancho JM: Recent landmark
studies in follicular lymphoma. Blood Rev. 35:68–80. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Enemark MBH, Wolter K, Campbell AJ,
Andersen MD, Sørensen EF, Hybel TE, Madsen C, Lauridsen KL, Plesner
TL, Hamilton-Dutoit SJ, et al: Proteomics identifies apoptotic
markers as predictors of histological transformation in patients
with follicular lymphoma. Blood Adv. 7:7418–7432. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Monrad I, Madsen C, Lauridsen KL, Honoré
B, Plesner TL, Hamilton-Dutoit S, d'Amore F and Ludvigsen M:
Glycolytic biomarkers predict transformation in patients with
follicular lymphoma. PLoS One. 15:e02334492020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ludvigsen M, Madsen C, Kamper P,
Hamilton-Dutoit SJ, Bendix K, d'Amore F and Honoré B:
Histologically transformed follicular lymphoma exhibits protein
profiles different from both Non-transformed follicular and de novo
diffuse large B-cell lymphoma. Blood Cancer J. 5:e2932015.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Deng Y, Ma J, Zhao S, Yang M, Sun Y and
Zhang Q: Expression of glucose transporter-1 in follicular lymphoma
affected tumor-infiltrating immunocytes and was related to
progression of disease within 24 months. Transl Oncol.
28:1016142023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Radtke AJ, Postovalova E, Varlamova A,
Bagaev A, Sorokina M, Kudryashova O, Meerson M, Polyakova M, Galkin
I, Svekolkin V, et al: Multi-omic profiling of follicular lymphoma
reveals changes in tissue architecture and enhanced stromal
remodeling in high-risk patients. Cancer Cell. 42:444–463.e10.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Marcus R, Davies A, Ando K, Klapper W,
Opat S, Owen C, Phillips E, Sangha R, Schlag R, Seymour JF, et al:
Obinutuzumab for the First-line treatment of follicular lymphoma. N
Engl J Med. 377:1331–1344. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Duś-Szachniewicz K, Rymkiewicz G, Agrawal
AK, Kołodziej P and Wiśniewski JR: Large-scale proteomic analysis
of follicular lymphoma reveals extensive remodeling of cell
adhesion pathway and identifies hub proteins related to the
lymphomagenesis. Cancers (Basel). 13:6302021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cheah CY and Seymour JF: Marginal zone
lymphoma: 2023 update on diagnosis and management. Am J Hematol.
98:1645–1657. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Di Rocco A, Petrucci L, Assanto GM,
Martelli M and Pulsoni A: Extranodal Marginal zone lymphoma:
Pathogenesis, diagnosis and treatment. Cancers (Basel).
14:17422022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zucca E and Bertoni F: The spectrum of
MALT lymphoma at different sites: Biological and therapeutic
relevance. Blood. 127:2082–2092. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Shi J, Zhou M, Zhou X, Jia S, Liu Z, Zhao
Y, Shi J, Song X, Wang Y, Jia R, et al: Multi-omics and
case-control analyses identify immunoglobulin M as a Tumour-derived
serum biomarker of ocular adnexal extranodal marginal zone
lymphoma. Clin Transl Med. 13:e12592023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Shi J, Zhu T, Lin H, Liu Z, Zhou M, Yu Z,
Zhou X, Song X, Wang Y, Jia R, et al: Proteotranscriptomics of
ocular adnexal B-cell lymphoma reveals an oncogenic role of
alternative splicing and identifies a diagnostic marker. J Exp Clin
Cancer Res. 41:2342022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhu T, Shi J, Zhou X, Qiu C, Jia R, Huang
S, Jia R, Wang Y, Song X and Zhou Y: MYC-targeted genes predict
distant recurrence in patients with ocular adnexal extranodal
marginal zone lymphoma. Ann Hematol. 102:2413–2423. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zucca E, Bertoni F, Stathis A and Cavalli
F: Marginal zone lymphomas. Hematol Oncol Clin North Am.
22:883–901. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Thandra KC, Barsouk A, Saginala K, Padala
SA, Barsouk A and Rawla P: Epidemiology of Non-Hodgkin's Lymphoma.
Med Sci (Basel). 9:52021.PubMed/NCBI
|
|
100
|
Mariette X and Criswell LA: Primary
Sjögren's Syndrome. N Engl J Med. 378:931–939. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jazzar AA, Shirlaw PJ, Carpenter GH,
Challacombe SJ and Proctor GB: Salivary S100A8/A9 in Sjögren's
syndrome accompanied by lymphoma. J Oral Pathol Med. 47:900–906.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Cui L, Elzakra N, Xu S, Xiao GG, Yang Y
and Hu S: Investigation of three potential autoantibodies in
Sjogren's syndrome and associated MALT lymphoma. Oncotarget.
8:30039–30049. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zou Q, Zhang H, Meng F, He L, Zhang J and
Xiao D: Proteomic and transcriptomic studies of BGC823 cells
stimulated with Helicobacter pylori isolates from gastric MALT
lymphoma. PLoS One. 15:e02383792020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Tang X, Yang ZZ, Kim HJ, Anagnostou T, Yu
Y, Wu X, Chen J, Krull JE, Wenzl K, Mondello P, et al: Phenotype,
function, and clinical significance of CD26+ and CD161+tregs in
splenic marginal zone lymphoma. Clin Cancer Res. 28:4322–4335.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu X, Yang M, Wu M, Zheng W, Xie Y, Zhu
J, Song Y and Liu W: A retrospective study of the CHOP, CHOPE, and
CHOPE/G regimens as the first-line treatment of peripheral T-cell
lymphomas. Cancer Chemother Pharmacol. 83:443–449. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ludvigsen M, Bjerregård Pedersen M,
Lystlund Lauridsen K, Svenstrup Poulsen T, Hamilton-Dutoit SJ,
Besenbacher S, Bendix K, Møller MB, Nørgaard P, d'Amore F and
Honoré B: Proteomic profiling identifies outcome-predictive markers
in patients with peripheral T-cell lymphoma, not otherwise
specified. Blood Adv. 2:2533–2542. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
A clinical evaluation of the International
Lymphoma Study Group classification of non-Hodgkin's lymphoma. The
Non-Hodgkin's Lymphoma Classification Project. Blood. 89:3909–3918.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Mora J, Filippa DA, Thaler HT, Polyak T,
Cranor ML and Wollner N: Large cell non-Hodgkin lymphoma of
childhood: Analysis of 78 consecutive patients enrolled in 2
consecutive protocols at the memorial Sloan-kettering cancer
center. Cancer. 88:186–197. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Ferreri AJ, Govi S, Pileri SA and Savage
KJ: Anaplastic large cell lymphoma, ALK-positive. Crit Rev Oncol
Hematol. 83:293–302. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Rajan SS, Amin AD, Li L, Rolland DC, Li H,
Kwon D, Kweh MF, Arumov A, Roberts ER, Yan A, et al: The mechanism
of cancer drug addiction in ALK-positive T-Cell lymphoma. Oncogene.
39:2103–2117. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lovisa F, Garbin A, Crotti S, Di Battista
P, Gallingani I, Damanti CC, Tosato A, Carraro E, Pillon M,
Mafakheri E, et al: Increased Tenascin C, Osteopontin and HSP90
levels in plasmatic small extracellular vesicles of pediatric
ALK-positive anaplastic large cell lymphoma: New prognostic
biomarkers? Diagnostics (Basel). 11:2532021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hu M, Bao R, Lin M, Han XR, Ai YJ, Gao Y,
Guan KL, Xiong Y and Yuan HX: ALK fusion promotes metabolic
reprogramming of cancer cells by transcriptionally upregulating
PFKFB3. Oncogene. 41:4547–4559. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wei C, Li W, Qin L, Liu S, Xue C, Ren K,
Zhang Z, Liu C, Bao F, Zhang H, et al: Clinicopathologic
characteristics, outcomes, and prognostic factors of
angioimmunoblastic T-cell lymphoma in China. Cancer Med.
12:3987–3998. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Holst JM, Enemark MB, Pedersen MB,
Lauridsen KL, Hybel TE, Clausen MR, Frederiksen H, Møller MB,
Nørgaard P, Plesner TL, et al: Proteomic Profiling differentiates
lymphoma patients with and without concurrent myeloproliferative
neoplasia. Cancers (Basel). 13:55262021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Au WY, Weisenburger DD, Intragumtornchai
T, Nakamura S, Kim WS, Sng I, Vose J, Armitage JO and Liang R:
Clinical differences between nasal and extranasal natural
killer/T-cell lymphoma: A study of 136 cases from the international
peripheral T-Cell lymphoma project. Blood. 113:3931–3937. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang H, Fu BB, Gale RP and Liang Y:
NK-/T-cell lymphomas. Leukemia. 35:2460–2468. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Xiong J, Cui BW, Wang N, Dai YT, Zhang H,
Wang CF, Zhong HJ, Cheng S, Ou-Yang BS, Hu Y, et al: Genomic and
transcriptomic characterization of natural Killer T cell lymphoma.
Cancer Cell. 37:403–419.e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Li Q, Zeng H, Zhao Y, Gong Y and Ma X:
Proteomic analysis of cerebrospinal fluid from patients with
extranodal NK-/T-Cell lymphoma of Nasal-type with ethmoidal sinus
metastasis. Front Oncol. 9:14892019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lim SH, Hong JY, Lim ST, Hong H, Arnoud J,
Zhao W, Yoon DH, Tang T, Cho J, Park S, et al: Beyond first-line
non-anthracycline-based chemotherapy for extranodal NK/T-cell
lymphoma: Clinical outcome and current perspectives on salvage
therapy for patients after first relapse and progression of
disease. Ann Oncol. 28:2199–2205. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhou Z, Li Z, Sun Z, Zhang X, Lu L, Wang Y
and Zhang M: S100A9 and ORM1 serve as predictors of therapeutic
response and prognostic factors in advanced extranodal NK/T cell
lymphoma patients treated with pegaspargase/gemcitabine. Sci Rep.
6:236952016. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Gong Y, Pu W, Jin H, Yang P, Zeng H, Wang
Y, Pang F and Ma X: Quantitative proteomics of CSF reveals
potential predicted biomarkers for extranodal NK-/T-cell lymphoma
of nasal-type with ethmoidal sinus metastasis. Life Sci. 198:94–98.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Qiu Y, Zhou Z, Li Z, Lu L, Li L, Li X,
Wang X and Zhang M: Pretreatment 14-3-3 epsilon level is predictive
for advanced extranodal NK/T cell lymphoma therapeutic response to
asparaginase-based chemotherapy. Proteomics Clin Appl. Oct
24–2016.(Epub ahead of print). doi: 10.1002/prca.201600111.
PubMed/NCBI
|
|
123
|
Bobrowicz M, Fassnacht C, Ignatova D,
Chang YT, Dimitriou F and Guenova E: Pathogenesis and therapy of
primary cutaneous T-Cell lymphoma: Collegium internationale
allergologicum (CIA) update 2020. Int Arch Allergy Immunol.
181:733–745. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Sethi TK, Montanari F, Foss F and Reddy N:
How we treat advanced stage cutaneous T-cell lymphoma-mycosis
fungoides and Sézary syndrome. Br J Haematol. 195:352–364. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Techner JM, Hooper MJ, Evans S, LeWitt TM,
Paller AS, Guitart J, Lu KQ and Zhou XA: Skin tape strip proteomics
in mycosis fungoides identifies Tumor-associated biomarkers. J
Invest Dermatol. 143:517–520.e12. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Qureshi HA, Azimi A, Wells J and
Fernandez-Penas P: Tape stripped stratum corneum samples are
suitable for diagnosis and comprehensive proteomic investigation in
mycosis fungoides. Proteomics Clin Appl. 17:e22000392023.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Leng L, Liu Z, Ma J, Zhang S, Wang Y, Lv
L, Zhu Y, Gao D, Wang Y, Wang J, et al: Proteomic identification of
new diagnostic biomarkers of early-stage cutaneous mycosis
fungoides. Cancer Commun (Lond). 42:558–562. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Lemchak D, Banerjee S, Digambar SS, Hood
BL, Conrads TP, Jedrych J, Geskin L and Akilov OE: Therapeutic and
prognostic significance of PARP-1 in advanced mycosis fungoides and
Sezary syndrome. Exp Dermatol. 27:188–190. 2018. View Article : Google Scholar : PubMed/NCBI
|