You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Feldman BJ and Feldman D: The development of androgen-independent prostate cancer. Nat Rev Cancer. 1:34–45. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, Iversen P, Bhattacharya S, Carles J, Chowdhury S, et al: Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 371:424–433. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, et al: Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 364:1995–2005. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Davies AH, Beltran H and Zoubeidi A: Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol. 15:271–286. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada Y and Beltran H: Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep. 23:152021. View Article : Google Scholar : PubMed/NCBI | |
|
Zaffuto E, Pompe R, Zanaty M, Bondarenko HD, Leyh-Bannurah SR, Moschini M, Dell'Oglio P, Gandaglia G, Fossati N, Stabile A, et al: Contemporary incidence and cancer control outcomes of primary neuroend ocrine prostate cancer: A SEER database analysis. Clin Genitourin Cancer. 15:e793–e800. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Varga J and Greten FR: Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol. 19:1133–1141. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y and Wang Y, Ci X, Choi SYC, Crea F, Lin D and Wang Y: Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol. 18:581–596. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Garabedian EM, Humphrey PA and Gordon JI: A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci USA. 95:15382–15387. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Merkens L, Sailer V, Lessel D, Janzen E, Greimeier S, Kirfel J, Perner S, Pantel K, Werner S and von Amsberg G: Aggressive variants of prostate cancer: Underlying mechanisms of neuroendocrine transdifferentiation. J Exp Clin Cancer Res. 41:462022. View Article : Google Scholar : PubMed/NCBI | |
|
Varma M, Lee MW, Tamboli P, Zarbo RJ, Jimenez RE, Salles PGO and Amin MB: Morphologic criteria for the diagnosis of prostatic adenocarcinoma in needle biopsy specimens. A study of 250 consecutive cases in a routine surgical pathology practice. Arch Pathol Lab Med. 126:554–561. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Epstein JI, Amin MB, Beltran H, Lotan TL, Mosquera JM, Reuter VE, Robinson BD, Troncoso P and Rubin MA: Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol. 38:756–767. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Spetsieris N, Boukovala M, Patsakis G, Alafis I and Efstathiou E: Neuroendocrine and aggressive-variant prostate cancer. Cancers. 12:37922014. View Article : Google Scholar | |
|
Weinstein MH, Partin AW, Veltri RW and Epstein JI: Neuroendocrine differentiation in prostate cancer: Enhanced prediction of progression after radical prostatectomy. Hum Pathol. 27:683–687. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Theodorescu D, Broder SR, Boyd JC, Mills SE and Frierson HF Jr: Cathepsin D and chromogranin A as predictors of long term disease specific survival after radical prostatectomy for localized carcinoma of the prostate. Cancer. 80:2109–2119. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Berruti A, Mosca A, Tucci M, Terrone C, Torta M, Tarabuzzi R, Russo L, Cracco C, Bollito E, Scarpa RM, et al: Independent prognostic role of circulating chromogranin A in prostate cancer patients with hormone-refractory disease. Endocr Relat Cancer. 12:109–117. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bostwick DG, Qian J, Pacelli A, Zincke H, Blute M, Bergstralh EJ, Slezak JM and Cheng L: Neuroendocrine expression in node positive prostate cancer: Correlation with systemic progression and patient survival. J Urol. 168:1204–1211. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Conteduca V, Oromendia C, Eng KW, Bareja R, Sigouros M, Molina A, Faltas BM, Sboner A, Mosquera JM, Elemento O, et al: Clinical features of neuroendocrine prostate cancer. Eur J Cancer. 121:7–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang HT, Yao YH, Li BG, Tang Y, Chang JW and Zhang J: Neuroendocrine Prostate Cancer (NEPC) progressing from conventional pr ostatic adenocarcinoma: Factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J Clin Oncol. 32:3383–3390. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Montanari M, Rossetti S, Cavaliere C, D'Aniello C, Malzone MG, Vanacore D, Di Franco R, La Mantia E, Iovane G, Piscitelli R, et al: Epithelial-mesenchymal transition in prostate cancer: An overview. Oncotarget. 8:35376–35389. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kalluri R and Neilson EG: Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 112:1776–1784. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Williams ED, Gao D, Redfern A and Thompson EW: Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 19:716–732. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tiwari R, Manzar N and Ateeq B: Dynamics of cellular plasticity in prostate cancer progression. Front Mol Biosci. 7:1302020. View Article : Google Scholar : PubMed/NCBI | |
|
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bakir B, Chiarella AM, Pitarresi JR and Rustgi AK: EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30:764–776. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu YN, Chen WY, Yeh HL, Chen WH, Jiang KC, Li HR, Dung PVT, Chen ZQ, Lee WJ, Hsiao M, et al: MCTP1 increases the malignancy of androgen-deprived prostate cancer cells by inducing neuroendocrine differentiation and EMT. Sci Signal. 17:eadc91422024. View Article : Google Scholar : PubMed/NCBI | |
|
Conteduca V, Aieta M, Amadori D and De Giorgi U: Neuroendocrine differentiation in prostate cancer: Current and emerging therapy strategies. Crit Rev Oncol Hematol. 92:11–24. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Capp JP: Cancer stem cells: From historical roots to a new perspective. J Oncol. 2019:51892322019. View Article : Google Scholar : PubMed/NCBI | |
|
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK and Kwon HY: Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018:54169232018. View Article : Google Scholar : PubMed/NCBI | |
|
Ayob AZ and Ramasamy TS: Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 25:202018. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen LV, Vanner R, Dirks P and Eaves CJ: Cancer stem cells: An evolving concept. Nat Rev Cancer. 12:133–143. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pekovic V and Hutchison CJ: Adult stem cell maintenance and tissue regeneration in the ageing context: The role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat. 213:5–25. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ojo D, Lin X, Wong N, Gu Y and Tang D: Prostate cancer stem-like cells contribute to the development of castration-resistant prostate cancer. Cancers (Basel). 7:2290–2308. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Brown TJ and James V: The role of extracellular vesicles in the development of a cancer stem cell microenvironment niche and potential therapeutic targets: A systematic review. Cancers (Basel). 13:24352021. View Article : Google Scholar : PubMed/NCBI | |
|
Plaks V, Kong N and Werb Z: The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 16:225–238. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Castellón EA, Indo S and Contreras HR: Cancer Stemness/epithelial-mesenchymal transition axis influences metastasis and castration resistance in prostate cancer: Potential therapeutic target. Int J Mol Sci. 23:149172022. View Article : Google Scholar : PubMed/NCBI | |
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and Kossatz-Boehlert U: Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol. 11:12802020. View Article : Google Scholar : PubMed/NCBI | |
|
Xin L, Lawson DA and Witte ON: The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA. 102:6942–6947. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Germann M, Wetterwald A, Guzmán-Ramirez N, van der Pluijm G, Culig Z, Cecchini MG, Williams ED and Thalmann GN: Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer. Stem Cells. 30:1076–1086. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ma F, Chen D, Chen F, Chi Y and Han Z, Feng X, Li X and Han Z: Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by Interleukin-8- and Interleukin-6-Dependent Induction of CD44(+)/CD24(−) cells. Cell Transplant. 24:2585–2599. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ji Y, Liu B, Chen L, Li A, Shen K, Su R, Zhang W, Zhu Y, Wang Q and Xue W: Repurposing ketotifen as a therapeutic strategy for neuroendocrine prostate cancer by targeting the IL-6/STAT3 pathway. Cell Oncol (Dordr). 46:1445–1456. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kopczyńska E: Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel. Contemp Oncol (Pozn). 19:423–427. 2015.PubMed/NCBI | |
|
Verma P, Shukla N, Kumari S, Ansari MS, Gautam NK and Patel GK: Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer. 1878:1888872023. View Article : Google Scholar : PubMed/NCBI | |
|
Castillo V, Valenzuela R, Huidobro C, Contreras HR and Castellon EA: Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. Int J Oncol. 45:985–994. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Biserova K, Jakovlevs A, Uljanovs R and Strumfa I: Cancer stem cells: Significance in origin, pathogenesis and treatment of glioblastoma. Cells. 10:6212021. View Article : Google Scholar : PubMed/NCBI | |
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci R and ME LL: Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol. 60:166–180. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Satar NA, Fakiruddin KS, Lim MN, Mok PL, Zakaria N, Fakharuzi NA, Abd Rahman AZ, Zakaria Z, Yahaya BH and Baharuddin P: Novel triple-positive markers identified in human non-small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics. Oncol Rep. 40:669–681. 2018.PubMed/NCBI | |
|
Duran GE, Wang YC, Francisco EB, Rose JC, Martinez FJ, Coller J, Brassard D, Vrignaud P and Sikic BI: Mechanisms of resistance to cabazitaxel. Mol Cancer Ther. 14:193–201. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang D, Sun B, Zhao X, Ma Y, Ji R, Gu Q, Dong X, Li J, Liu F, Jia X, et al: Twist1 expression induced by sunitinib accelerates tumor cell vasculogenic mimicry by increasing the population of CD133+ cells in triple-negative breast cancer. Mol Cancer. 13:2072014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Li L, Yang G, Geng C, Luo Y, Wu W, Manyam GC, Korentzelos D, Park S, Tang Z, et al: PARP inhibition suppresses GR-MYCN-CDK5-RB1-E2F1 signaling and neuroendocrine differentiation in castration-resistant prostate cancer. Clin Cancer Res. 25:6839–6851. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Zhao Y, An Z and Li W: Molecular links between angiogenesis and neuroendocrine phenotypes in prostate cancer progression. Front Oncol. 9:14912020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M, Su N, Liu Y, Wang Z, Shao L, Ittmann M, et al: Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat Commun. 9:40802018. View Article : Google Scholar : PubMed/NCBI | |
|
Ci X, Hao J, Dong X, Choi SY, Xue H, Wu R, Qu S, Gout PW, Zhang F, Haegert AM, et al: Heterochromatin protein 1α mediates development and aggressiveness of neuroendocrine prostate cancer. Cancer Res. 78:2691–2704. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chang PC, Wang TY, Chang YT, Chu CY, Lee CL, Hsu HW, Zhou TA, Wu Z, Kim RH, Desai SJ, et al: Autophagy pathway is required for IL-6 induced neuroendocrine differen tiation and chemoresistance of prostate cancer LNCaP cells. PLoS One. 9:e885562014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Liu C, Cui Y, Nadiminty N, Lou W and Gao AC: Interleukin-6 induces neuroendocrine differentiation (NED) through sup pression of RE-1 silencing transcription factor (REST). Prostate. 74:1086–1094. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fang D and Kitamura H: Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Urol. 25:7–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hiraga T, Ito S and Nakamura H: EpCAM expression in breast cancer cells is associated with enhanced bone metastasis formation. Int J Cancer. 138:1698–1708. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rycaj K, Li H, Zhou J, Chen X and Tang DG: Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin Cancer Biol. 44:83–97. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jeon HM and Lee J: MET: Roles in epithelial-mesenchymal transition and cancer stemness. Ann Transl Med. 5:52017. View Article : Google Scholar : PubMed/NCBI | |
|
Ruppender NS, Morrissey C, Lange PH and Vessella RL: Dormancy in solid tumors: Implications for prostate cancer. Cancer Metastasis Rev. 32:501–509. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li H and Tang DG: Prostate cancer stem cells and their potential roles in metastasis. J Surg Oncol. 103:558–562. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Celià-Terrassa T and Kang Y: Metastatic niche functions and therapeutic opportunities. Nat Cell Biol. 20:868–877. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, et al: Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 121:1298–1312. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JK, Jung Y, Wang J, Joseph J, Mishra A, Hill EE, Krebsbach PH, Pienta KJ, Shiozawa Y and Taichman RS: TBK1 regulates prostate cancer dormancy through mTOR inhibition. Neoplasia. 15:1064–1074. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Correnti M and Raggi C: Stem-like plasticity and heterogeneity of circulating tumor cells: Current status and prospect challenges in liver cancer. Oncotarget. 8:7094–7115. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Han H, Wang Y, Curto J, Gurrapu S, Laudato S, Rumandla A, Chakraborty G, Wang X, Chen H, Jiang Y, et al: Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Rep. 39:1105952022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H and Unternaehrer JJ: Epithelial-mesenchymal transition and cancer stem cells: At the crossroads of differentiation and dedifferentiation. Dev Dyn. 248:10–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, Wang J, Chu M, Zhang K, Yang R and Gao WQ: Zeb1 promotes androgen independence of prostate cancer via induction of stem cell-like properties. Exp Biol Med (Maywood). 239:813–822. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai YC, Chen WY, Abou-Kheir W, Zeng T, Yin JJ, Bahmad H, Lee YC and Liu YN: Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim Biophys Acta Mol Basis Dis. 1864:1717–1727. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, et al: Androgen deprivation causes epithelial-mesenchymal transition in the prostate: Implications for androgen-deprivation therapy. Cancer Res. 72:527–536. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Y, Hamburger AW, Wang L, Khan MA and Hussain A: Androgen deprivation and stem cell markers in prostate cancers. Int J Clin Exp Pathol. 3:128–138. 2009.PubMed/NCBI | |
|
Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, Calhoun-Davis T, Li H, Palapattu GS, Pang S, et al: The PSA(−/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell. 10:556–569. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rybak AP, He L, Kapoor A, Cutz JC and Tang D: Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells. Biochim Biophys Acta. 1813:683–694. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Han M, Li F, Zhang Y, Dai P, He J, Li Y, Zhu Y, Zheng J, Huang H, Bai F, et al: FOXA2 drives lineage plasticity and KIT pathway activation in neuroend ocrine prostate cancer. Cancer Cell. 40:1306–1323.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Nouruzi S, Ganguli D, Tabrizian N, Kobelev M, Sivak O, Namekawa T, Thaper D, Baca SC, Freedman ML, Aguda A, et al: ASCL1 activates neuronal stem cell-like lineage programming through re modeling of the chromatin landscape in prostate cancer. Natu Commun. 13:22822022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Wang T, Hong D, Dong B, Wang Y, Huang H, Zhang W, Lian B, Ji B, Shi H, et al: Single-cell transcriptional regulation and genetic evolution of neuroe ndocrine prostate cancer. iScience. 25:1045762022. View Article : Google Scholar : PubMed/NCBI | |
|
Singh N, Ramnarine VR, Song JH, Pandey R, Padi SKR, Nouri M, Olive V, Kobelev M, Okumura K, McCarthy D, et al: The long noncoding RNA H19 regulates tumor plasticity in neuroendocrin e prostate cancer. Nat Commun. 12:73492021. View Article : Google Scholar : PubMed/NCBI | |
|
Long Z, Deng L, Li C, He Q, He Y, Hu X, Cai Y and Gan Y: Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis. 12:462021. View Article : Google Scholar : PubMed/NCBI | |
|
Luo J, Wang K, Yeh S, Sun Y, Liang L, Xiao Y, Xu W, Niu Y, Cheng L, Maity SN, et al: LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat Commun. 10:25712019. View Article : Google Scholar : PubMed/NCBI | |
|
Kaarijärvi R, Kaljunen H, Nappi L, Fazli L, Kung SHY, Hartikainen JM, Paakinaho V, Capra J, Rilla K, Malinen M, et al: DPYSL5 is highly expressed in treatment-induced neuroendocrine prostate cancer and promotes lineage plasticity via EZH2/PRC2. Commun Biol. 7:1082024. View Article : Google Scholar : PubMed/NCBI | |
|
Shui X, Ren X, Xu R, Xie Q, Hu Y, Qin J, Meng H, Zhang C, Zhao J and Shi C: Monoamine oxidase A drives neuroendocrine differentiation in prostate cancer. Biochem Biophys Res Commun. 606:135–141. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen R, Li Y, Buttyan R and Dong X: Implications of PI3K/AKT inhibition on REST protein stability and neur oendocrine phenotype acquisition in prostate cancer cells. Oncotarget. 8:84863–84876. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bishop JL, Thaper D, Vahid S, Davies A, Ketola K, Kuruma H, Jama R, Nip KM, Angeles A, Johnson F, et al: The master neural transcription factor BRN2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 7:54–71. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nie J, Zhang P, Liang C, Yu Y and Wang X: ASCL1-mediated ferroptosis resistance enhances the progress of castrat ion-resistant prostate cancer to neurosecretory prostate cancer. Free Radic Biol Med. 205:318–331. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F, Kim S, Tse C, Wang K, Mo F, Haegert A, et al: The placental gene PEG10 promotes progression of neuroendocrine prosta te cancer. Cell reports. 12:922–936. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Deep G, Jain AK, Ramteke A, Ting H, Vijendra KC, Gangar SC, Agarwal C and Agarwal R: SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol Cancer. 13:372014. View Article : Google Scholar : PubMed/NCBI | |
|
Bae KM, Su Z, Frye C, McClellan S, Allan RW, Andrejewski JT, Kelley V, Jorgensen M, Steindler DA, Vieweg J, et al: Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol. 183:2045–2053. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bae KM, Parker NN, Dai Y, Vieweg J and Siemann DW: E-cadherin plasticity in prostate cancer stem cell invasion. Am J Cancer Res. 1:71–84. 2011.PubMed/NCBI | |
|
Orellana-Serradell O, Herrera D, Castellon EA and Contreras HR: The transcription factor ZEB1 promotes an aggressive phenotype in prostate cancer cell lines. Asian J Androl. 20:294–299. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D'Alessio AC, Young RA and Weinberg RA: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 154:61–74. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S and Sarkar FH: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 5:e124452010. View Article : Google Scholar : PubMed/NCBI | |
|
Onder TT, Gupta PB, Mani SA, Yang J, Lander ES and Weinberg RA: Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68:3645–3654. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Akunuru S, James Zhai Q and Zheng Y: Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis. 3:e3522012. View Article : Google Scholar : PubMed/NCBI | |
|
Soundararajan R, Paranjape AN, Maity S, Aparicio A and Mani SA: EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer. 1870:229–238. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
McKeithen D, Graham T, Chung LW and Odero-Marah V: Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate. 70:982–992. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Dicken H, Hensley PJ and Kyprianou N: Prostate tumor neuroendocrine differentiation via EMT: The road less traveled. Asian J Urol. 6:82–90. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, et al: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 122:947–956. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Sarkar A and Hochedlinger K: The sox family of transcription factors: Versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 12:15–30. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S and Cui W: Sox2, a key factor in the regulation of pluripotency and neural differ entiation. World J Stem Cells. 6:305–311. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Metz EP, Wilder PJ, Dong J, Datta K and Rizzino A: Elevating SOX2 in prostate tumor cells upregulates expression of neuro endocrine genes, but does not reduce the inhibitory effects of enzalut amide. J Cell Physiol. 235:3731–3740. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kwon OJ, Zhang L, Jia D and Xin L: Sox2 is necessary for androgen ablation-induced neuroendocrine differe ntiation from Pten null Sca-1+ prostate luminal cells. Oncogene. 40:203–214. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tiwari R, Manzar N, Bhatia V, Yadav A, Nengroo MA, Datta D, Carskadon S, Gupta N, Sigouros M, Khani F, et al: Androgen deprivation upregulates SPINK1 expression and potentiates cel lular plasticity in prostate cancer. Nature Commun. 11:3842020. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Wang L, Li Z, Geng X, Li M, Tang Q, Wu C and Lu Z: SOX2 has dual functions as a regulator in the progression of neuroendo crine prostate cancer. Lab Invest. 100:570–582. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kregel S, Kiriluk KJ, Rosen AM, Cai Y, Reyes EE, Otto KB, Tom W, Paner GP, Szmulewitz RZ and Vander Griend DJ: Sox2 is an androgen receptor-repressed gene that promotes castration-r esistant prostate cancer. PLoS One. 8:e537012013. View Article : Google Scholar : PubMed/NCBI | |
|
Kareta MS, Gorges LL, Hafeez S, Benayoun BA, Marro S, Zmoos AF, Cecchini MJ, Spacek D, Batista LF, O'Brien M, et al: Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell. 16:39–50. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lovnicki J, Gan Y, Feng T, Li Y, Xie N, Ho CH, Lee AR, Chen X, Nappi L, Han B, et al: LIN28B promotes the development of neuroendocrine prostate cancer. J Clin Invest. 130:5338–5348. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yasumizu Y, Rajabi H, Jin C, Hata T, Pitroda S, Long MD, Hagiwara M, Li W, Hu Q, Liu S, et al: MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat Commun. 11:3382020. View Article : Google Scholar : PubMed/NCBI | |
|
Patel GK, Dutta S, Syed MM, Ramachandran S, Sharma M, Rajamanickam V, Ganapathy V, DeGraff DJ, Pruitt K, Tripathi M, et al: TBX2 Drives Neuroendocrine Prostate Cancer through Exosome-Mediated Re pression of miR-200c-3p. Cancers (Basel). 13:50202021. View Article : Google Scholar : PubMed/NCBI | |
|
Sotomayor P, Godoy A, Smith GJ and Huss WJ: Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate. 69:401–410. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Quintanal-Villalonga A, Kawasaki K, Redin E, Uddin F, Rakhade S, Durani V, Sabet A, Shafer M, Karthaus WR, Zaidi S, et al: CDC7 inhibition impairs neuroendocrine transformation in lung and prostate tumors through MYC degradation. Signal Transduct Target Ther. 9:1892024. View Article : Google Scholar : PubMed/NCBI | |
|
Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, Cyrta J, Sboner A, Noorzad Z, MacDonald T, et al: N-Myc Induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell. 30:563–577. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Berger A, Brady NJ, Bareja R, Robinson B, Conteduca V, Augello MA, Puca L, Ahmed A, Dardenne E, Lu X, et al: N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J Clin Invest. 129:3924–3940. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, Wang Y, Sheikh KL, Terry S, Tagawa ST, et al: Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1:487–495. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Otto T, Horn S, Brockmann M, Eilers U, Schüttrumpf L, Popov N, Kenney AM, Schulte JH, Beijersbergen R, Christiansen H, et al: Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 15:67–78. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L, Jamin Y, Thway K, Robinson SP, Roels F, et al: Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell. 24:75–89. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Quintanal-Villalonga Á, Chan JM, Yu HA, Pe'er D, Sawyers CL, Sen T and Rudin CM: Lineage plasticity in cancer: A shared pathway of therapeutic resistance. Nat Rev Clin Oncol. 17:360–371. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
McQuillen CN and Brady NJ: ASCL1 drives the development of neuroendocrine prostate cancer. Cancer Res. 84:3499–3501. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Davies A, Zoubeidi A and Selth LA: The epigenetic and transcriptional landscape of neuroendocrine prostate cancer. Endocr Relat Cancer. 27:R35–R50. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Clermont PL, Lin D, Crea F, Wu R, Xue H, Wang Y, Thu KL, Lam WL, Collins CC, Wang Y, et al: Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin Epigenetics. 7:402015. View Article : Google Scholar : PubMed/NCBI | |
|
Donaldson-Collier MC, Sungalee S, Zufferey M, Tavernari D, Katanayeva N, Battistello E, Mina M, Douglass KM, Rey T, Raynaud F, et al: EZH2 oncogenic mutations drive epigenetic, transcriptional, and struct ural changes within chromatin domains. Nat Genet. 51:517–528. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sreekumar A and Saini S: Role of transcription factors and chromatin modifiers in driving linea ge reprogramming in treatment-induced neuroendocrine prostate cancer. Front Cell Dev Biol. 11:10757072023. View Article : Google Scholar : PubMed/NCBI | |
|
Paranjape AN, Soundararajan R, Werden SJ, Joseph R, Taube JH, Liu H, Rodriguez-Canales J, Sphyris N, Wistuba I, Miura N, et al: Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties. Oncogene. 35:5963–5976. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q, Yang M, Fu J, Sun X, Wang J, Zhang H, Hu J and Han B: KIF1A promotes neuroendocrine differentiation in prostate cancer by regulating the OGT-mediated O-GlcNAcylation. Cell Death Dis. 15:7962024. View Article : Google Scholar : PubMed/NCBI | |
|
Ward C, Volpe G, Cauchy P, Ptasinska A, Almaghrabi R, Blakemore D, Nafria M, Kestner D, Frampton J, Murphy G, et al: Fine-tuning mybl2 is required for proper mesenchymal-to-epithelial transition during somatic reprogramming. Cell Rep. 24:1496–1511.e8. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
German B, Alaiwi SA, Ho KL, Nanda JS, Fonseca MA, Burkhart DL, Sheahan AV, Bergom HE, Morel KL, Beltran H, et al: MYBL2 drives prostate cancer plasticity: Inhibiting its transcriptional target CDK2 for RB1-deficient neuroendocrine prostate cancer. Cancer Res Commun. 4:2295–2307. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hsieh CL, Do AD, Hsueh CY, Raboshakga MO, Thanh TN, Tai TT, Kung HJ and Sung SY: L1CAM mediates neuroendocrine phenotype acquisition in prostate cancer cells. Prostate. 84:1434–1447. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, Goodrich MM, Labbé DP, Gomez EC, Wang J, et al: Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 355:78–83. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, Wongvipat J, Ku SY, Gao D, Cao Z, et al: SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 355:84–88. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Beltran H, Oromendia C, Danila DC, Montgomery B, Hoimes C, Szmulewitz RZ, Vaishampayan U, Armstrong AJ, Stein M, Pinski J, et al: A Phase II Trial of the aurora kinase a inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate cancer: Efficacy and biomarkers. Clin Cancer Res. 25:43–51. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Blackhall F, Jao K, Greillier L, Cho BC, Penkov K, Reguart N, Majem M, Nackaerts K, Syrigos K, Hansen K, et al: Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-High SCLC: Results from the phase 3 TAHOE study. J Thorac Oncol. 16:1547–1558. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV, Varambally S, et al: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 22:298–305. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E and Xu Y: p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol. 7:165–171. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME and De Maria R: PTEN Tumor-suppressor: The dam of stemness in cancer. Cancers (Basel). 11:10762019. View Article : Google Scholar : PubMed/NCBI | |
|
Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, Le Magnen C, Chester D, Mostaghel EA, Califano A, et al: Transdifferentiation as a mechanism of treatment resistance in a mouse model of Castration-resistant prostate cancer. Cancer Discov. 7:736–749. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, Hicks J, Mosier S, Gocke CD, Epstein JI, Netto GJ, et al: Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin Cancer Res. 20:890–903. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bracken AP, Pasini D, Capra M, Prosperini E, Colli E and Helin K: EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22:5323–5335. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Song Z, Cao Q, Guo B, Zhao Y, Li X, Lou N, Zhu C, Luo G, Peng S, Li G, et al: Overexpression of RACGAP1 by E2F1 promotes neuroendocrine differentiat ion of prostate cancer by stabilizing EZH2 expression. Aging Dis. 14:1757–1774. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P and Nikitin AY: Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66:7889–7898. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Rajabi H and Kufe D: MUC1-C Oncoprotein integrates a program of EMT, epigenetic reprogramming and immune evasion in human carcinomas. Biochim Biophys Acta Rev Cancer. 1868:117–122. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tong D: Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype. Crit Rev Oncol Hematol. 163:1033702021. View Article : Google Scholar : PubMed/NCBI | |
|
Rajabi H, Hiraki M and Kufe D: MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells. Oncogene. 37:2079–2088. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rajabi H, Ahmad R, Jin C, Joshi MD, Guha M, Alam M, Kharbanda S and Kufe D: MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells. Prostate. 72:1659–1668. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hagiwara M, Yasumizu Y, Yamashita N, Rajabi H, Fushimi A, Long MD, Li W, Bhattacharya A, Ahmad R, Oya M, et al: MUC1-C activates the BAF (mSWI/SNF) complex in prostate cancer stem cells. Cancer Res. 81:1111–1122. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chang YT, Lin TP, Campbell M, Pan CC, Lee SH, Lee HC, Yang MH, Kung HJ and Chang PC: REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep. 7:427952017. View Article : Google Scholar : PubMed/NCBI | |
|
Chang YT, Lin TP, Tang JT, Campbell M, Luo YL, Lu SY, Yang CP, Cheng TY, Chang CH, Liu TT, et al: HOTAIR is a REST-regulated lncRNA that promotes neuroendocrine differe ntiation in castration resistant prostate cancer. Cancer Lett. 433:43–52. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin YC, Chang YT, Campbell M, Lin TP, Pan CC, Lee HC, Shih JC and Chang PC: MAOA-a novel decision maker of apoptosis and autophagy in hormone refr actory neuroendocrine prostate cancer cells. Sci Rep. 7:463382017. View Article : Google Scholar : PubMed/NCBI | |
|
Lee CF, Chen YA, Hernandez E, Pong RC, Ma S, Hofstad M, Kapur P, Zhau H, Chung LW, Lai CH, et al: The central role of Sphingosine kinase 1 in the development of neuroen docrine prostate cancer (NEPC): A new targeted therapy of NEPC. Clin Transl Med. 12:e6952022. View Article : Google Scholar : PubMed/NCBI | |
|
O'Reilly D, Johnson P and Buchanan PJ: Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer. Steroids. 152:1084972019. View Article : Google Scholar : PubMed/NCBI | |
|
Alumkal JJ, Sun D, Lu E, Beer TM, Thomas GV, Latour E, Aggarwal R, Cetnar J, Ryan CJ, Tabatabaei S, et al: Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance. Proc Natl Acad SciUSA. 117:12315–12323. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bishop JL, Thaper D and Zoubeidi A: The multifaceted roles of STAT3 signaling in the progression of prostate cancer. Cancers. 6:829–859. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Albino D, Civenni G, Rossi S, Mitra A, Catapano CV and Carbone GM: The ETS factor ESE3/EHF represses IL-6 preventing STAT3 activation and expansion of the prostate cancer stem-like compartment. Oncotarget. 7:76756–76768. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Song N, Cui K, Zeng L, Li M, Fan Y, Shi P, Wang Z, Su W and Wang H: Advance in the role of chemokines/chemokine receptors in carcinogenesis: Focus on pancreatic cancer. Eur J Pharmacol. 967:1763572024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, Zhao J and Zhang HT: JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol. 44:1643–1651. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Deng S, Wang C, Wang Y, Xu Y, Li X, Johnson NA, Mukherji A, Lo UG, Xu L, Gonzalez J, et al: Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. Nat Cancer. 3:1071–1087. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ware KE, Thomas BC, Olawuni PD, Sheth MU, Hawkey N, Yeshwanth M, Miller BC, Vietor KJ, Jolly MK, Kim SY, et al: A synthetic lethal screen for Snail-induced enzalutamide resistance identifies JAK/STAT signaling as a therapeutic vulnerability in prostate cancer. Front Mol Biosci. 10:11045052023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Wang Y and Zhang B: Hypermethylation in the promoter region inhibits AJAP1 expression and activates the JAK/STAT pathway to promote prostate cancer cell migration and stem cell sphere formation. Pathol Res Pract. 241:1542242023. View Article : Google Scholar : PubMed/NCBI | |
|
Spiotto MT and Chung TD: STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate. 42:186–195. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Smith ND, Schulze-Hoepfner FT, Veliceasa D, Filleur S, Shareef S, Huang L, Huang XM and Volpert OV: Pigment Epithelium-derived factor and interleukin-6 control prostate neuroendocrine differentiation via feed-forward mechanism. J Urol. 179:2427–2434. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dai J, Keller J, Zhang J, Lu Y, Yao Z and Keller ET: Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res. 65:8274–8285. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, García-Echeverría C, Schultz PG and Reddy VA: The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA. 106:268–273. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang A, Lau NA, Wong A, Brown LG, Coleman IM, De Sarkar N, Li D, DeLucia DC, Labrecque MP, Nguyen HM, et al: Concurrent targeting of HDAC and PI3K to overcome phenotypic heterogeneity of castration-resistant and neuroendocrine prostate cancers. Cancer Res Commun. 3:2358–2374. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Cang S, Liu C, Ochiai W and Chiao JW: Development of human prostate cancer stem cells involves epigenomic alteration and PI3K/AKT pathway activation. Exp Hematol Oncol. 9:122020. View Article : Google Scholar : PubMed/NCBI | |
|
Morell C, Bort A, Vara D, Ramos-Torres A, Rodríguez-Henche N and Díaz-Laviada I: The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis. 19:248–257. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI | |
|
Yoo YA, Kang MH, Kim JS and Oh SC: Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis. 29:480–490. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Petrova R and Joyner AL: Roles for Hedgehog signaling in adult organ homeostasis and repair. Development. 141:3445–3457. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Merchant AA and Matsui W: Targeting Hedgehog-a cancer stem cell pathway. Clin Cancer Res. 16:3130–3140. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chang HH, Chen BY, Wu CY, Tsao ZJ, Chen YY, Chang CP, Yang CR and Lin DP: Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J Biomed Sci. 18:62011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Li H, Li Z, Li M, Tang Q, Wu C and Lu Z: Smoothened loss is a characteristic of neuroendocrine prostate cancer. Prostate. 81:508–520. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kishore C and Zi X: Wnt Signaling and therapeutic resistance in castration-resistant prostate cancer. Curr Pharmacol Rep. 9:261–274. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sha J, Han Q, Chi C, Zhu Y, Pan J, Dong B, Huang Y, Xia W and Xue W: PRKAR2B promotes prostate cancer metastasis by activating Wnt/β-catenin and inducing epithelial-mesenchymal transition. J Cell Biochem. 119:7319–7327. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Duchartre Y, Kim YM and Kahn M: The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 99:141–149. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bisson I and Prowse DM: WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 19:683–697. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Pan KF, Lee WJ, Chou CC, Yang YC, Chang YC, Chien MH, Hsiao M and Hua KT: Direct interaction of β-catenin with nuclear ESM1 supports stemness of metastatic prostate cancer. EMBO J. 40:e1054502021. View Article : Google Scholar : PubMed/NCBI | |
|
Manzar N, Khan UK, Goel A, Carskadon S, Gupta N, Palanisamy N and Ateeq B: An integrative proteomics approach identifies tyrosine kinase KIT as a therapeutic target for SPINK1-positive prostate cancer. iScience. 27:1087942024. View Article : Google Scholar : PubMed/NCBI | |
|
Bland T, Wang J, Yin L, Pu T, Li J, Gao J, Lin TP, Gao AC and Wu BJ: WLS-Wnt signaling promotes neuroendocrine prostate cancer. iScience. 24:1019702021. View Article : Google Scholar : PubMed/NCBI | |
|
Uysal-Onganer P, Kawano Y, Caro M, Walker MM, Diez S, Darrington RS, Waxman J and Kypta RM: Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Mol Cancer. 9:552010. View Article : Google Scholar : PubMed/NCBI | |
|
Liu RJ, Xu ZP, Huang X, Xu B and Chen M: Yin Yang 1 promotes the neuroendocrine differentiation of prostate cancer cells via the non-canonical WNT pathway (FYN/STAT3). Clin Transl Med. 13:e14222023. View Article : Google Scholar : PubMed/NCBI | |
|
Wen YC, Liu YN, Yeh HL, Chen WH, Jiang KC, Lin SR, Huang J, Hsiao M and Chen WY: TCF7L1 regulates cytokine response and neuroendocrine differentiation of prostate cancer. Oncogenesis. 10:812021. View Article : Google Scholar : PubMed/NCBI | |
|
Terry S, Maillé P, Baaddi H, Kheuang L, Soyeux P, Nicolaiew N, Ceraline J, Firlej V, Beltran H, Allory Y, et al: Cross modulation between the androgen receptor axis and protocadherin-PC in mediating neuroendocrine transdifferentiation and therapeutic resistance of prostate cancer. Neoplasia. 15:761–772. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shan J, Al-Muftah MA, Al-Kowari MK, Abuaqel SWJ, Al-Rumaihi K, Al-Bozom I, Li P and Chouchane L: Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer. Cell Death Discov. 5:1392019. View Article : Google Scholar : PubMed/NCBI | |
|
Unno K, Chalmers ZR, Pamarthy S, Vatapalli R, Rodriguez Y, Lysy B, Mok H, Sagar V, Han H, Yoo YA, et al: Activated ALK cooperates with N-Myc via Wnt/β-Catenin signaling to induce neuroendocrine prostate cancer. Cancer Res. 81:2157–2170. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kar R, Jha NK, Jha SK, Sharma A, Dholpuria S, Asthana N, Chaurasiya K, Singh VK, Burgee S and Nand P: A ‘NOTCH’ Deeper into the Epithelial-To-Mesenchymal Transition (EMT) program in breast cancer. Genes (Basel). 10:9612019. View Article : Google Scholar : PubMed/NCBI | |
|
Timmerman LA, Grego-Bessa J, Raya A, Bertrán E, Pérez-Pomares JM, Díez J, Aranda S, Palomo S, McCormick F, Izpisúa-Belmonte JC, et al: Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18:99–115. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Uribe-Etxebarria V, Pineda JR, García-Gallastegi P, Agliano A, Unda F and Ibarretxe G: Notch and wnt signaling modulation to enhance DPSC stemness and therapeutic potential. Int J Mol Sci. 24:73892023. View Article : Google Scholar : PubMed/NCBI | |
|
Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M, Isse K, Kearney M, Vosoughi A, Fernandez L, et al: Delta-like protein 3 expression and therapeutic targeting in neuroendo crine prostate cancer. Sci Transl Med. 11:eaav08912019. View Article : Google Scholar : PubMed/NCBI | |
|
Danza G, Di Serio C, Rosati F, Lonetto G, Sturli N, Kacer D, Pennella A, Ventimiglia G, Barucci R, Piscazzi A, et al: Notch signaling modulates hypoxia-induced neuroendocrine differentiati on of human prostate cancer cells. Mol Cancer Res. 10:230–238. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Menssouri N, Poiraudeau L, Helissey C, Bigot L, Sabio J, Ibrahim T, Pobel C, Nicotra C, Ngo-Camus M, Lacroix L, et al: Genomic profiling of metastatic castration-resistant prostate cancer s amples resistant to androgen-receptor pathway inhibitors. Clin Cancer Res. 29:4504–4517. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Docherty NG, O'Sullivan OE, Healy DA, Murphy M, O'Neill AJ, Fitzpatrick JM and Watson RW: TGF-beta1-induced EMT can occur independently of its proapoptotic effects and is aided by EGF receptor activation. Am J Physiol Renal Physiol. 290:F1202–F1212. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Yu B, Su J, Shi Q, Liu Q, Ma J, Ru G, Zhang L, Zhang J, Hu X and Tang J: KMT5A-methylated SNIP1 promotes triple-negative breast cancer metastasis by activating YAP signaling. Nat Commun. 13:21922022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao C, Meng T, Zhou C, Wang X, Wang P, Lu M, Tan X, Wei Q, Ge X and Jin J: TGF-β signaling regulates SPOP expression and promotes prostate cancer cell stemness. Aging (Albany NY). 12:7747–7760. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Natani S, Sruthi KK, Asha SM, Khilar P, Lakshmi PSV and Ummanni R: Activation of TGF-β-SMAD2 signaling by IL-6 drives neuroendocrine differentiation of prostate cancer through p38MAPK. Cell Signal. 91:1102402022. View Article : Google Scholar : PubMed/NCBI | |
|
Wen S, Hou Y, Fu L, Xi L, Yang D, Zhao M, Qin Y, Sun K, Teng Y and Liu M: Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling. Cancer Lett. 442:320–332. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tang T, Wang LX, Yang ML and Zhang RM: lncRNA TPTEP1 inhibits stemness and radioresistance of glioma through miR-106a-5p-mediated P38 MAPK signaling. Mol Med Rep. 22:4857–4867. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Du Y, Long Q, Zhang L, Shi Y, Liu X, Li X, Guan B, Tian Y, Wang X, Li L and He D: Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling. Int J Oncol. 47:2064–2072. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Han H, Li H, Ma Y, Zhao Z, An Q, Zhao J and Shi C: Monoamine oxidase A (MAOA): A promising target for prostate cancer therapy. Cancer Lett. 563:2161882023. View Article : Google Scholar : PubMed/NCBI | |
|
Weng CC, Ding PY, Liu YH, Hawse JR, Subramaniam M, Wu CC, Lin YC, Chen CY, Hung WC and Cheng KH: Mutant Kras-induced upregulation of CD24 enhances prostate cancer stemness and bone metastasis. Oncogene. 38:2005–2019. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
De Luca P, Moiola CP, Zalazar F, Gardner K, Vazquez ES and De Siervi A: BRCA1 and p53 regulate critical prostate cancer pathways. Prostate Cancer Prostatic Dis. 16:233–238. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang YX, Kong CZ, Zhang Z and Zhu YY: Loss of P53 facilitates invasion and metastasis of prostate cancer cells. Mol Cell Biochem. 384:121–127. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ren D, Wang M, Guo W, Zhao X, Tu X, Huang S, Zou X and Peng X: Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR-145. Int J Oncol. 42:1473–1481. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, Kamer I, Stambolsky P, Shelly A, Goldfinger N, et al: Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ. 18:271–281. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kumaraswamy A, Duan Z, Flores D, Zhang C, Sehrawat A, Hu YM, Swaim OA, Rodansky E, Storck WK, Kuleape JA, et al: LSD1 promotes prostate cancer reprogramming by repressing TP53 signaling independently of its demethylase function. JCI Insight. 8:e1674402023. View Article : Google Scholar : PubMed/NCBI | |
|
Chaves LP, Melo CM, Saggioro FP, Reis RBD and Squire JA: Epithelial-mesenchymal transition signaling and prostate cancer stem cells: Emerging biomarkers and opportunities for precision therapeutics. Genes (Basel). 12:19002021. View Article : Google Scholar : PubMed/NCBI | |
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, et al: New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract. 251:1549022023. View Article : Google Scholar : PubMed/NCBI | |
|
Mei W, Lin X, Kapoor A, Gu Y, Zhao K and Tang D: The contributions of prostate cancer stem cells in prostate cancer initiation and metastasis. Cancers (Basel). 11:4342019. View Article : Google Scholar : PubMed/NCBI | |
|
Kaushik G, Seshacharyulu P, Rauth S, Nallasamy P, Rachagani S, Nimmakayala RK, Vengoji R, Mallya K, Chirravuri-Venkata R, Singh AB, et al: Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces pancreatic cancer metastasis. Oncogene. 40:848–862. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Pang J, Wang LA, Huang Z, Xu J, Yang X, Xie Q, Huang Y, Tang T, Tong D, et al: Histone demethylase PHF8 drives neuroendocrine prostate cancer progres sion by epigenetically upregulating FOXA2. J Pathol. 253:106–118. 253 View Article : Google Scholar : PubMed/NCBI | |
|
Qi J, Pellecchia M and Ronai ZeA: The Siah2-HIF-FoxA2 axis in prostate cancer-new markers and therapeu tic opportunities. Oncotarget. 1:379–385. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Qi J, Nakayama K, Cardiff RD, Borowsky AD, Kaul K, Williams R, Krajewski S, Mercola D, Carpenter PM, Bowtell D, et al: Siah2-dependent concerted activity of HIF and FoxA2 regulates formatio n of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell. 18:23–38. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Masone MC: FOXA2-KIT-driven lineage plasticity in NEPC. Nat Rev Urol. 20:82023. View Article : Google Scholar | |
|
Singh N, Padi SKR, Bearss JJ, Pandey R, Okumura K, Beltran H, Song JH, Kraft AS and Olive V: PIM protein kinases regulate the level of the long noncoding RNA H19 t o control stem cell gene transcription and modulate tumor growth. Mol Oncol. 14:974–990. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee AR, Gan Y, Tang Y and Dong X: A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. EBioMedicine. 35:167–177. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fan L, Gong Y, He Y, Gao WQ, Dong X, Dong B, Zhu HH and Xue W: TRIM59 is suppressed by androgen receptor and acts to promote lineage plasticity and treatment-induced neuroendocrine differentiation in pro state cancer. Oncogene. 42:559–571. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Monga J, Adrianto I, Rogers C, Gadgeel S, Chitale D, Alumkal JJ, Beltran H, Zoubeidi A and Ghosh J: Tribbles 2 pseudokinase confers enzalutamide resistance in prostate ca ncer by promoting lineage plasticity. J Biol Chem. 298:1015562022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim S, Thaper D, Bidnur S, Toren P, Akamatsu S, Bishop JL, Colins C, Vahid S and Zoubeidi A: PEG10 is associated with treatment-induced neuroendocrine prostate can cer. J Mol Endocrinol. 63:39–49. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshie H, Sedukhina AS, Minagawa K, Oda K, Ohnuma S, Yanagisawa N, Maeda I, Takagi M, Kudo H, Nakazawa R, et al: A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: A new met hod for precision oncology? Oncotarget. 8:99601–99611. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Choi WW, Boland JL and Lin J: ONECUT2 as a key mediator of androgen receptor-independent cell growth and neuroendocrine differentiation in castration-resistant prostate c ancer. Cancer Drug Resist. 5:165–170. 2022.PubMed/NCBI | |
|
Tenjin Y, Kudoh S, Kubota S, Yamada T, Matsuo A, Sato Y, Ichimura T, Kohrogi H, Sashida G, Sakagami T and Ito T: Ascl1-induced Wnt11 regulates neuroendocrine differentiation, cell proliferation, and E-cadherin expression in small-cell lung cancer and Wnt11 regulates small-cell lung cancer biology. Lab Invest. 99:1622–1635. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
DeLucia DC, Cardillo TM, Ang L, Labrecque MP, Zhang A, Hopkins JE, De Sarkar N, Coleman I, da Costa RMG, Corey E, et al: Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5-SN38 Antibody-drug conjugate in neuroendocrine prostate cancer. Clin Cancer Res. 27:759–774. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Meder L, König K, Ozretić L, Schultheis AM, Ueckeroth F, Ade CP, Albus K, Boehm D, Rommerscheidt-Fuss U, Florin A, et al: NOTCH, ASCL1, p53 and RB alterations define an alternative pathway dri ving neuroendocrine and small cell lung carcinomas. Int J Cancer. 138:927–938. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Q, Chen J, Di Z, Yuan W, Zhou Z, Liu Z, Han S, Liu Y, Ying G, Shu X, et al: TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J Exp Clin Cancer Res. 39:2322020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Wang X, Kim M, He D, Wang C, Fong KW and Liu X: Downregulation of EZH2 inhibits epithelial-mesenchymal transition in enzalutamide-resistant prostate cancer. Prostate. 83:1458–1469. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, et al: The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol. 15:182022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Bado IL, Hu J, Wan YW, Wu L, Wang H, Gao Y, Jeong HH, Xu Z, Hao X, et al: The bone microenvironment invigorates metastatic seeds for further dissemination. Cell. 184:2471–2486.e20. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kufe D: Dependence on MUC1-C in progression of neuroendocrine prostate cancer. Int J Mol Sci. 24:37192023. View Article : Google Scholar : PubMed/NCBI |