Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2025 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2025 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Potential therapeutic target in oncology: Protein palmitoylation (Review)

  • Authors:
    • Shiping Hao
    • Yongming Mei
    • Shaolin Chen
    • Jing Liu
    • Yao Zhang
    • Zhengfeng Zhu
    • Kangjia Zuo
  • View Affiliations / Copyright

    Affiliations: The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
    Copyright: © Hao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 117
    |
    Published online on: July 16, 2025
       https://doi.org/10.3892/or.2025.8950
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Post‑translational modifications (PTMs) of proteins, by altering the structural conformation of precursor polypeptides, play an indispensable role in augmenting the diversity and stability of the proteome. PTMs exert profound influence on various hallmarks of tumor biology, including cellular proliferation, apoptosis, angiogenesis and metastatic dissemination. Accordingly, advancing our understanding of PTMs holds substantial promise for broadening the therapeutic landscape of oncology. Among these modifications, palmitoylation, a reversible lipid‑based PTM, critically modulates protein stability, membrane localization, protein‑protein interactions and signal transduction cascades. Dysregulation of palmitoylation has been increasingly implicated in tumorigenesis, suggesting its aberrant forms as putative targets for therapeutic intervention. The present review delineates the biochemical mechanisms underlying protein palmitoylation and synthesizes current insights into its multifaceted roles in tumor progression, immune modulation and metabolic regulation, thereby offering novel perspectives for the development of targeted cancer therapies.
View Figures

Figure 1

Regulation of palmitoylation
modification. Under the catalytic action of palmitoyl
acyltransferases (DHHC proteins), palmitoyl-CoA is covalently
transferred to the thiol group of cysteine residues on target
proteins, resulting in the formation of S-palmitoylated proteins.
This reversible post-translational modification can subsequently be
reversed through the action of depalmitoylating enzymes, which
hydrolyze the fatty acyl chains and restore the unmodified state of
the protein. APT, acyl-protein thioesterase; Cys, cysteine.

Figure 2

Modification mechanism of
palmitoylation on target proteins. (A) Palmitoylation regulates
protein stability. (B) Palmitoylation changes the conformation of
proteins. (C) Palmitoylation regulates the interoperability of
proteins. (D) Palmitoylation regulates ion channel proteins to
change ion flux in and out of cells. (E) Palmitoylation regulates
the subcellular localization of proteins. PM, plasma membrane; ER,
endoplasmic reticulum.
View References

1 

Kiri S and Ryba T: Cancer, metastasis, and the epigenome. Mol Cancer. 23:1542024. View Article : Google Scholar : PubMed/NCBI

2 

Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y and Tang QZ: ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev. 94:1021762024. View Article : Google Scholar : PubMed/NCBI

3 

He Y, Song T, Ning J, Wang Z, Yin Z, Jiang P, Yuan Q, Yu W and Cheng F: Lactylation in cancer: Mechanisms in tumour biology and therapeutic potentials. Clin Transl Med. 14:e700702024. View Article : Google Scholar : PubMed/NCBI

4 

Millán-Zambrano G, Burton A, Bannister AJ and Schneider R: Histone post-translational modifications-cause and consequence of genome function. Nat Rev Genet. 23:563–580. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Xia L, Mei J, Huang M, Bao D, Wang Z and Chen Y: O-GlcNAcylation in ovarian tumorigenesis and its therapeutic implications. Transl Oncol. 51:1022202025. View Article : Google Scholar : PubMed/NCBI

6 

Yang J, Song C and Zhan X: The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne). 13:9723122022. View Article : Google Scholar : PubMed/NCBI

7 

Zhang H and Han W: Protein Post-translational modifications in head and neck cancer. Front Oncol. 10:5719442020. View Article : Google Scholar : PubMed/NCBI

8 

Goldtzvik Y, Sen N, Lam SD and Orengo C: Protein diversification through Post-translational modifications, alternative splicing, and gene duplication. Curr Opin Struct Biol. 81:1026402023. View Article : Google Scholar : PubMed/NCBI

9 

Janssen SM and Lorincz MC: Interplay between chromatin marks in development and disease. Nat Rev Genet. 23:137–153. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Hu D, Li Y, Wang X, Zou H, Li Z, Chen W, Meng Y, Wang Y, Li Q, Liao F, et al: Palmitoylation of NLRP3 modulates inflammasome activation and inflammatory bowel disease development. J Immunol. 213:481–493. 2024. View Article : Google Scholar : PubMed/NCBI

11 

Lu D, Aji G, Li G, Li Y, Fang W, Zhang S, Yu R, Jiang S, Gao X, Jiang Y, et al: ZDHHC18 promotes renal fibrosis development by regulating HRAS palmitoylation. J Clin Invest. 135:e1802422025. View Article : Google Scholar : PubMed/NCBI

12 

Pan S and Chen R: Pathological implication of protein Post-translational modifications in cancer. Mol Aspects Med. 86:1010972022. View Article : Google Scholar : PubMed/NCBI

13 

Zhou X, Wang Y, Li X, Zhou J, Yang W, Wang X, Jiao S, Zuo W, You Z, Ying W, et al: O-GlcNAcylation regulates the stability of transferrin receptor (TFRC) to control the ferroptosis in hepatocellular carcinoma cells. Redox Biol. 73:1031822024. View Article : Google Scholar : PubMed/NCBI

14 

Chen L, Liu S and Tao Y: Regulating tumor suppressor genes: Post-translational modifications. Signal Transduct Target Ther. 5:902020. View Article : Google Scholar : PubMed/NCBI

15 

Kumari S, Gupta R, Ambasta RK and Kumar P: Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer. 1878:1889992023. View Article : Google Scholar : PubMed/NCBI

16 

Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C and Mijakovic I: Protein post-translational modifications in bacteria. Nat Rev Microbiol. 17:651–664. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, et al: Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (2020). 4:e2612023. View Article : Google Scholar : PubMed/NCBI

18 

Liu Z, Xiao M, Mo Y, Wang H, Han Y, Zhao X, Yang X, Liu Z and Xu B: Emerging roles of protein palmitoylation and its modifying enzymes in cancer cell signal transduction and cancer therapy. Int J Biol Sci. 18:3447–3457. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Wei F, Wang Y, Yao J, Mei L, Huang X, Kong H, Chen J, Chen X, Liu L, Wang Z, et al: ZDHHC7-mediated S-palmitoylation of ATG16L1 facilitates LC3 lipidation and autophagosome formation. Autophagy. 20:2719–2737. 2024. View Article : Google Scholar : PubMed/NCBI

20 

He Y, Li S, Jiang L, Wu K, Chen S, Su L, Liu C, Liu P, Luo W, Zhong S and Li Z: Palmitic acid accelerates endothelial cell injury and cardiovascular dysfunction via palmitoylation of PKM2. Adv Sci (Weinh). 12:e24128952025. View Article : Google Scholar : PubMed/NCBI

21 

Zhang N, Liu J, Guo R, Yan L, Yang Y, Shi C, Zhang M, Shan B, Li W, Gu J and Xu D: Palmitoylation licenses RIPK1 kinase activity and cytotoxicity in the TNF pathway. Mol Cell. 84:4419–4435.e10. 2024. View Article : Google Scholar : PubMed/NCBI

22 

Li W, Li F, Zhang X, Lin HK and Xu C: Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther. 6:4222021. View Article : Google Scholar : PubMed/NCBI

23 

Linder ME and Deschenes RJ: Palmitoylation: Policing protein stability and traffic. Nat Rev Mol Cell Biol. 8:74–84. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Ko PJ and Dixon SJ: Protein palmitoylation and cancer. EMBO Rep. 19:e466662018. View Article : Google Scholar : PubMed/NCBI

25 

Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y and Yang K: Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem. 271:1164082024. View Article : Google Scholar : PubMed/NCBI

26 

Liao D, Huang Y, Liu D, Zhang H, Shi X, Li X and Luo P: The role of s-palmitoylation in neurological diseases: Implication for zDHHC family. Front Pharmacol. 14:13428302023. View Article : Google Scholar : PubMed/NCBI

27 

Mitchell DA, Vasudevan A, Linder ME and Deschenes RJ: Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res. 47:1118–1127. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Stix R, Lee CJ, Faraldo-Gómez JD and Banerjee A: Structure and mechanism of DHHC protein acyltransferases. J Mol Biol. 432:4983–4998. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Lin Z, Agarwal S, Tan S, Shi H, Lu X, Tao Z, Dong X, Wu X, Zhao JC and Yu J: Palmitoyl acyltransferase ZDHHC7 inhibits androgen receptor and suppresses prostate cancer. Oncogene. 42:2126–2138. 2023. View Article : Google Scholar : PubMed/NCBI

30 

Ohno Y, Kihara A, Sano T and Igarashi Y: Intracellular localization and tissue-specific distribution of human and yeast DHHC Cysteine-rich domain-containing proteins. Biochim Biophys Acta. 1761:474–483. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Tang B, Kang W, Dong Q, Qin Z, Duan L, Zhao X, Yuan G and Pan Y: Research progress on S-palmitoylation modification mediated by the ZDHHC family in glioblastoma. Front Cell Dev Biol. 12:14137082024. View Article : Google Scholar : PubMed/NCBI

32 

Li X, Shen L, Xu Z, Liu W, Li A and Xu J: Protein palmitoylation modification during viral infection and detection methods of palmitoylated proteins. Front Cell Infect Microbiol. 12:8215962022. View Article : Google Scholar : PubMed/NCBI

33 

Chen Y, Li Y and Wu L: Protein S-palmitoylation modification: Implications in tumor and tumor immune microenvironment. Front Immunol. 15:13374782024. View Article : Google Scholar : PubMed/NCBI

34 

Wang Y, Yan D, Liu J, Tang D and Chen X: Protein modification and degradation in ferroptosis. Redox Biol. 75:1032592024. View Article : Google Scholar : PubMed/NCBI

35 

Dennis K and Heather LC: Post-translational palmitoylation of metabolic proteins. Front Physiol. 14:11228952023. View Article : Google Scholar : PubMed/NCBI

36 

Fhu CW and Ali A: Protein lipidation by palmitoylation and myristoylation in cancer. Front Cell Dev Biol. 9:6736472021. View Article : Google Scholar : PubMed/NCBI

37 

Yuan Y, Li P, Li J, Zhao Q, Chang Y and He X: Protein lipidation in health and disease: Molecular basis, physiological function and pathological implication. Signal Transduct Target Ther. 9:602024. View Article : Google Scholar : PubMed/NCBI

38 

Wang Y and Yang W: Proteome-Scale analysis of protein S-acylation comes of age. J Proteome Res. 20:14–26. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Gu M, Jiang H, Tan M, Yu L, Xu N, Li Y, Wu H, Hou Q and Dai C: Palmitoyltransferase DHHC9 and acyl protein thioesterase APT1 modulate renal fibrosis through regulating β-catenin palmitoylation. Nat Commun. 14:66822023. View Article : Google Scholar : PubMed/NCBI

40 

Heakal Y, Woll MP, Fox T, Seaton K, Levenson R and Kester M: Neurotensin receptor-1 inducible palmitoylation is required for efficient receptor-mediated mitogenic-signaling within structured membrane microdomains. Cancer Biol Ther. 12:427–435. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Greenlee JD, Lopez-Cavestany M, Ortiz-Otero N, Liu K, Subramanian T, Cagir B and King MR: Oxaliplatin resistance in colorectal cancer enhances TRAIL sensitivity via death receptor 4 upregulation and lipid raft localization. Elife. 10:e677502021. View Article : Google Scholar : PubMed/NCBI

42 

Zhou B, Hao Q, Liang Y and Kong E: Protein palmitoylation in cancer: Molecular functions and therapeutic potential. Mol Oncol. 17:3–26. 2023. View Article : Google Scholar : PubMed/NCBI

43 

Zhu J, Cao X, Chen Z, Lai B, Xi L, Zhang J, Zhu S, Qi S, Liang Y, Cao F, et al: Inhibiting S-palmitoylation arrests metastasis by relocating Rap2b from plasma membrane in colorectal cancer. Cell Death Dis. 15:6752024. View Article : Google Scholar : PubMed/NCBI

44 

Barylko B, Mao YS, Wlodarski P, Jung G, Binns DD, Sun HQ, Yin HL and Albanesi JP: Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase II{alpha}. J Biol Chem. 284:9994–10003. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, Sun P, Wang Z, You Y, Zeng YX, et al: DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 12:58722021. View Article : Google Scholar : PubMed/NCBI

46 

Chen S, Han C, Miao X, Li X, Yin C, Zou J, Liu M, Li S, Stawski L, Zhu B, et al: Targeting MC1R depalmitoylation to prevent melanomagenesis in redheads. Nat Commun. 10:8772019. View Article : Google Scholar : PubMed/NCBI

47 

Jin Q, Qi D, Zhang M, Qu H, Dong Y, Sun M and Quan C: CLDN6 inhibits breast cancer growth and metastasis through SREBP1-mediated RAS palmitoylation. Cell Mol Biol Lett. 29:1122024. View Article : Google Scholar : PubMed/NCBI

48 

Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, Chen L, Yang H, Krishnan I, Kocher O, et al: Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med. 10:e83132018. View Article : Google Scholar : PubMed/NCBI

49 

Sosa L, Petiti JP, Picech F, Chumpen S, Nicola JP, Perez P, De Paul A, Valdez-Taubas J, Gutierrez S and Torres AI: The ERα membrane pool modulates the proliferation of pituitary tumours. J Endocrinol. 240:229–241. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Cuiffo B and Ren R: Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood. 115:3598–3605. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Sun Y, Zhang H, Meng J, Guo F, Ren D, Wu H and Jin X: S-palmitoylation of PCSK9 induces sorafenib resistance in liver cancer by activating the PI3K/AKT pathway. Cell Rep. 40:1111942022. View Article : Google Scholar : PubMed/NCBI

52 

Sada R, Kimura H, Fukata Y, Fukata M, Yamamoto H and Kikuchi A: Dynamic palmitoylation controls the microdomain localization of the DKK1 receptors CKAP4 and LRP6. Sci Signal. 12:eaat95192019. View Article : Google Scholar : PubMed/NCBI

53 

Zhang Q, Yang X, Wu J, Ye S, Gong J, Cheng WM, Luo Z, Yu J, Liu Y, Zeng W, et al: Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression. Cell Discov. 9:262023. View Article : Google Scholar : PubMed/NCBI

54 

Yuan M, Chen X, Sun Y, Jiang L, Xia Z, Ye K, Jiang H, Yang B, Ying M, Cao J, et al: ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B. 10:1426–1439. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Mo Y, Han Y, Chen Y, Fu C, Li Q, Liu Z, Xiao M and Xu B: ZDHHC20 mediated S-palmitoylation of fatty acid synthase (FASN) promotes hepatocarcinogenesis. Mol Cancer. 23:2742024. View Article : Google Scholar : PubMed/NCBI

56 

Li M, Zhang L and Chen CW: Diverse roles of protein palmitoylation in cancer progression, immunity, stemness, and beyond. Cells. 12:22092023. View Article : Google Scholar : PubMed/NCBI

57 

Gang X, Yan J, Li X, Shi S, Xu L, Liu R, Cai L, Li H and Zhao M: Immune checkpoint inhibitors rechallenge in non-small cell lung cancer: Current evidence and future directions. Cancer Lett. 604:2172412024. View Article : Google Scholar : PubMed/NCBI

58 

De Martin E, Fulgenzi C, Celsa C, Laurent-Bellue A, Torkpour A, Lombardi P, D'Alessio A and Pinato DJ: Immune checkpoint inhibitors and the liver: Balancing therapeutic benefit and adverse events. Gut. 74:1165–1177. 2025. View Article : Google Scholar : PubMed/NCBI

59 

Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y and Li J: Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer. 1880:1892772025. View Article : Google Scholar : PubMed/NCBI

60 

Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M and Xiang B: Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer. 23:1082024. View Article : Google Scholar : PubMed/NCBI

61 

Bardhan K, Anagnostou T and Boussiotis VA: The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol. 7:5502016. View Article : Google Scholar : PubMed/NCBI

62 

Zhang S, Wang HY, Tao X, Chen Z, Levental I and Lin X: Palmitoylation of PD-L1 regulates its membrane orientation and immune evasion. Langmuir. 41:5170–5178. 2025. View Article : Google Scholar : PubMed/NCBI

63 

Zhang Z, Ren C, Xiao R, Ma S, Liu H, Dou Y, Fan Y, Wang S, Zhan P, Gao C, et al: Palmitoylation of TIM-3 promotes immune exhaustion and restrains antitumor immunity. Sci Immunol. 9:eadp73022024. View Article : Google Scholar : PubMed/NCBI

64 

Wang J, Wang Y, Jiang X, Xu M, Wang M, Wang R, Zheng B, Chen M, Ke Q and Long J: Unleashing the power of immune checkpoints: Post-translational modification of novel molecules and clinical applications. Cancer Lett. 588:2167582024. View Article : Google Scholar : PubMed/NCBI

65 

Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, Lu H, Fang C, Zhang Y, Liang L, et al: Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 3:306–317. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Shi X, Zhao X, He Y, Zhang L, Zheng X, Qin X, Li K, Li J, Wang Y, Dai L and Li X: Posttranslational remodeling micelle reverses cell-surface and exosomal PD-L1 immunosuppression in tumors resistant to PD-L1 antibody therapy. J Control Release. 384:1139612025. View Article : Google Scholar : PubMed/NCBI

67 

Cuyàs E, Pedarra S, Verdura S, Pardo MA, Espin Garcia R, Serrano-Hervás E, Llop-Hernández À, Teixidor E, Bosch-Barrera J, López-Bonet E, et al: Fatty acid synthase (FASN) is a tumor-cell-intrinsic metabolic checkpoint restricting T-cell immunity. Cell Death Discov. 10:4172024. View Article : Google Scholar : PubMed/NCBI

68 

Huang J, Tsang WY, Fang XN, Zhang Y, Luo J, Gong LQ, Zhang BF, Wong CN, Li ZH, Liu BL, et al: FASN inhibition decreases MHC-I degradation and synergizes with PD-L1 checkpoint blockade in hepatocellular carcinoma. Cancer Res. 84:855–871. 2024. View Article : Google Scholar : PubMed/NCBI

69 

Lee TA, Tsai EY, Liu SH, Hsu Hung SD, Chang SJ, Chao CH, Lai YJ, Yamaguchi H and Li CW: Post-translational modification of PD-1: Potential targets for cancer immunotherapy. Cancer Res. 84:800–807. 2024. View Article : Google Scholar : PubMed/NCBI

70 

Zhang G, Jiang P, Tang W, Wang Y, Qiu F, An J, Zheng Y, Wu D, Zhou J, Neculai D, et al: CPT1A induction following epigenetic perturbation promotes MAVS palmitoylation and activation to potentiate antitumor immunity. Mol Cell. 83:4370–4385.e9. 2023. View Article : Google Scholar : PubMed/NCBI

71 

Du W, Hua F, Li X, Zhang J, Li S, Wang W, Zhou J, Wang W, Liao P, Yan Y, et al: Loss of optineurin drives cancer immune evasion via Palmitoylation-dependent IFNGR1 lysosomal sorting and degradation. Cancer Discov. 11:1826–1843. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Tohumeken S, Baur R, Böttcher M, Stoll A, Loschinski R, Panagiotidis K, Braun M, Saul D, Völkl S, Baur AS, et al: Palmitoylated proteins on AML-Derived extracellular vesicles promote Myeloid-derived suppressor cell differentiation via TLR2/Akt/mTOR signaling. Cancer Res. 80:3663–3676. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Lin Z, Huang K, Guo H, Jia M, Sun Q, Chen X, Wu J, Yao Q, Zhang P, Vakal S, et al: Targeting ZDHHC9 potentiates anti-programmed death-ligand 1 immunotherapy of pancreatic cancer by modifying the tumor microenvironment. Biomed Pharmacother. 161:1145672023. View Article : Google Scholar : PubMed/NCBI

74 

Wang Q, Wang J, Yu D, Zhang Q, Hu H, Xu M, Zhang H, Tian S, Zheng G, Lu D, et al: Benzosceptrin C induces lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting DHHC3. Cell Rep Med. 5:1013572024. View Article : Google Scholar : PubMed/NCBI

75 

Martin-Perez M, Urdiroz-Urricelqui U, Bigas C and Benitah SA: The role of lipids in cancer progression and metastasis. Cell Metab. 34:1675–1699. 2022. View Article : Google Scholar : PubMed/NCBI

76 

Parton RG and Simons K: The biology of lipids. Cold Spring Harb Perspect Biol. 16:a0417132024. View Article : Google Scholar : PubMed/NCBI

77 

Domingues N, Pires J, Milosevic I and Raimundo N: Role of lipids in interorganelle communication. Trends Cell Biol. 35:46–58. 2025. View Article : Google Scholar : PubMed/NCBI

78 

Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y and Zhou H: Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr. 43:332–345. 2024. View Article : Google Scholar : PubMed/NCBI

79 

Ye L, Wen X, Qin J, Zhang X, Wang Y, Wang Z, Zhou T, Di Y and He W: Metabolism-regulated ferroptosis in cancer progression and therapy. Cell Death Dis. 15:1962024. View Article : Google Scholar : PubMed/NCBI

80 

Tufail M, Jiang CH and Li N: Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol Cancer. 23:2032024. View Article : Google Scholar : PubMed/NCBI

81 

Bian X, Liu R, Meng Y, Xing D, Xu D and Lu Z: Lipid metabolism and cancer. J Exp Med. 218:e202016062021. View Article : Google Scholar : PubMed/NCBI

82 

Gu Q, Wang Y, Yi P and Cheng C: Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol. 108:48–70. 2025. View Article : Google Scholar : PubMed/NCBI

83 

Ruan C, Meng Y and Song H: CD36: An emerging therapeutic target for cancer and its molecular mechanisms. J Cancer Res Clin Oncol. 148:1551–1558. 2022. View Article : Google Scholar : PubMed/NCBI

84 

Xu S, Chaudhary O, Rodríguez-Morales P, Sun X, Chen D, Zappasodi R, Xu Z, Pinto A, Williams A, Schulze I, et al: Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity. 54:1561–1577.e7. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Wang Z, Chao Z, Wang Q, Zou F, Song T, Xu L, Ning J and Cheng F: EXO1/P53/SREBP1 axis-regulated lipid metabolism promotes prostate cancer progression. J Transl Med. 22:1042024. View Article : Google Scholar : PubMed/NCBI

86 

Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K and Yang JL: Lipid metabolic reprogramming in tumor microenvironment: From mechanisms to therapeutics. J Hematol Oncol. 16:1032023. View Article : Google Scholar : PubMed/NCBI

87 

Fatima S, Hu X, Gong RH, Huang C, Chen M, Wong H, Bian Z and Kwan HY: Palmitic acid is an intracellular signaling molecule involved in disease development. Cell Mol Life Sci. 76:2547–2557. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Zhao Z, Wang J, Kong W, Newton MA, Burkett WC, Sun W, Buckingham L, O'Donnell J, Suo H, Deng B, et al: Palmitic acid exerts Anti-tumorigenic activities by modulating cellular stress and lipid droplet formation in endometrial cancer. Biomolecules. 14:6012024. View Article : Google Scholar : PubMed/NCBI

89 

Annevelink CE, Sapp PA, Petersen KS, Shearer GC and Kris-Etherton PM: Diet-derived and diet-related endogenously produced palmitic acid: Effects on metabolic regulation and cardiovascular disease risk. J Clin Lipidol. 17:577–586. 2023. View Article : Google Scholar : PubMed/NCBI

90 

Murru E, Manca C, Carta G and Banni S: Impact of dietary palmitic acid on lipid metabolism. Front Nutr. 9:8616642022. View Article : Google Scholar : PubMed/NCBI

91 

Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, et al: Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun. 15:82732024. View Article : Google Scholar : PubMed/NCBI

92 

Jeong DW, Park JW, Kim KS, Kim J, Huh J, Seo J, Kim YL, Cho JY, Lee KW, Fukuda J, et al: Palmitoylation-driven PHF2 ubiquitination remodels lipid metabolism through the SREBP1c axis in hepatocellular carcinoma. Nat Commun. 14:63702023. View Article : Google Scholar : PubMed/NCBI

93 

Wang J, Hao JW, Wang X, Guo H, Sun HH, Lai XY, Liu LY, Zhu M, Wang HY, Li YF, et al: DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane. Cell Rep. 26:209–221.e5. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Shan J, Li X, Sun R, Yao Y and Sun Y, Kuang Q, Dai X and Sun Y: Palmitoyltransferase ZDHHC6 promotes colon tumorigenesis by targeting PPARγ-driven lipid biosynthesis via regulating lipidome metabolic reprogramming. J Exp Clin Cancer Res. 43:2272024. View Article : Google Scholar : PubMed/NCBI

95 

Qu M, Zhou X, Wang X and Li H: Lipid-induced S-palmitoylation as a vital regulator of cell signaling and disease development. Int J Biol Sci. 17:4223–4237. 2021. View Article : Google Scholar : PubMed/NCBI

96 

Fan JJ and Huang X: Ion channels in cancer: Orchestrators of electrical signaling and cellular crosstalk. Rev Physiol Biochem Pharmacol. 183:103–133. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Li Y, Fu J and Wang H: Advancements in targeting ion channels for the treatment of neurodegenerative diseases. Pharmaceuticals (Basel). 17:14622024. View Article : Google Scholar : PubMed/NCBI

98 

Hu M, Feng X, Liu Q, Liu S, Huang F and Xu H: The ion channels of endomembranes. Physiol Rev. 104:1335–1385. 2024. View Article : Google Scholar : PubMed/NCBI

99 

Shi Q, Yang Z, Yang H, Xu L, Xia J, Gu J, Chen M, Wang Y, Zhao X, Liao Z, et al: Targeting ion channels: Innovative approaches to combat cancer drug resistance. Theranostics. 15:521–545. 2025. View Article : Google Scholar : PubMed/NCBI

100 

Yuan S, Sun R, Shi H, Chapman NM, Hu H, Guy C, Rankin S, Kc A, Palacios G, Meng X, et al: VDAC2 loss elicits tumour destruction and inflammation for cancer therapy. Nature. 640:1062–1071. 2025. View Article : Google Scholar : PubMed/NCBI

101 

Sobradillo D, Hernández-Morales M, Ubierna D, Moyer MP, Núñez L and Villalobos C: A reciprocal shift in transient receptor potential channel 1 (TRPC1) and stromal interaction molecule 2 (STIM2) contributes to Ca2+ remodeling and cancer hallmarks in colorectal carcinoma cells. J Biol Chem. 289:28765–28782. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Prevarskaya N, Skryma R and Shuba Y: Ion channels and the hallmarks of cancer. Trends Mol Med. 16:107–121. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, Zheng L, Yang X, Du Q, An J, et al: Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther. 31:1611–1618. 2024. View Article : Google Scholar : PubMed/NCBI

104 

Ji R, Chang L, An C and Zhang J: Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: Implications for cancer. Front Cell Dev Biol. 12:13262312024. View Article : Google Scholar : PubMed/NCBI

105 

Panda S, Chatterjee O, Roy L and Chatterjee S: Targeting Ca2+ signaling: A new arsenal against cancer. Drug Discov Today. 27:923–934. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Gao SH, Wang GZ, Wang LP, Feng L, Zhou YC, Yu XJ, Liang F, Yang FY, Wang Z, Sun BB, et al: Mutations and clinical significance of calcium voltage-gated channel subunit alpha 1E (CACNA1E) in non-small cell lung cancer. Cell Calcium. 102:1025272022. View Article : Google Scholar : PubMed/NCBI

107 

Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, Zhuang H, Xie D and Wu S: T-type Ca2+ channel expression in human esophageal carcinomas: A functional role in proliferation. Cell Calcium. 43:49–58. 2008. View Article : Google Scholar : PubMed/NCBI

108 

Taylor JT, Huang L, Pottle JE, Liu K, Yang Y, Zeng X, Keyser BM, Agrawal KC, Hansen JB and Li M: Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 267:116–124. 2008. View Article : Google Scholar : PubMed/NCBI

109 

Zhang L, Ren C, Liu J, Huang S, Wu C and Zhang J: Development and therapeutic implications of small molecular inhibitors that target calcium-related channels in tumor treatment. Drug Discov Today. 29:1039952024. View Article : Google Scholar : PubMed/NCBI

110 

Banderali U, Jayanthan A, Hoeksema KA, Narendran A and Giles WR: Ion channels in pediatric CNS Atypical Teratoid/Rhabdoid Tumor (AT/RT) cells: Potential targets for novel therapeutic agents. J Neurooncol. 107:111–119. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Shipston MJ: Ion channel regulation by protein S-acylation. J Gen Physiol. 143:659–678. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Zhu Z, Zhou X, Du H, Cloer EW, Zhang J, Mei L, Wang Y, Tan X, Hepperla AJ, Simon JM, et al: STING suppresses mitochondrial VDAC2 to govern RCC growth independent of innate immunity. Adv Sci (Weinh). 10:e22037182023. View Article : Google Scholar : PubMed/NCBI

113 

Cassinelli S, Viñola-Renart C, Benavente-Garcia A, Navarro-Pérez M, Capera J and Felipe A: Palmitoylation of voltage-gated ion channels. Int J Mol Sci. 23:93572022. View Article : Google Scholar : PubMed/NCBI

114 

Zhao L, Zhang C, Luo X, Wang P, Zhou W, Zhong S, Xie Y, Jiang Y, Yang P, Tang R, et al: CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis. J Hepatol. 69:705–717. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Li W, Liu J, Yu T, Lu F, Miao Q, Meng X, Xiao W, Yang H and Zhang X: ZDHHC9-mediated Bip/GRP78 S-palmitoylation inhibits unfolded protein response and promotes bladder cancer progression. Cancer Lett. 598:2171182024. View Article : Google Scholar : PubMed/NCBI

116 

Jeyifous O, Lin EI, Chen X, Antinone SE, Mastro R, Drisdel R, Reese TS and Green WN: Palmitoylation regulates glutamate receptor distributions in postsynaptic densities through control of PSD95 conformation and orientation. Proc Natl Acad Sci USA. 113:E8482–E8491. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Chamberlain LH and Shipston MJ: The physiology of protein S-acylation. Physiol Rev. 95:341–376. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Zheng S, Que X, Wang S, Zhou Q, Xing X, Chen L, Hou C, Ma J, An P, Peng Y, et al: ZDHHC5-mediated NLRP3 palmitoylation promotes NLRP3-NEK7 interaction and inflammasome activation. Mol Cell. 83:4570–4585.e7. 2023. View Article : Google Scholar : PubMed/NCBI

119 

Gök C, Plain F, Robertson AD, Howie J, Baillie GS, Fraser NJ and Fuller W: Dynamic palmitoylation of the Sodium-calcium exchanger modulates its structure, affinity for Lipid-ordered domains, and inhibition by XIP. Cell Rep. 31:1076972020. View Article : Google Scholar : PubMed/NCBI

120 

Chen B, Sun Y, Niu J, Jarugumilli GK and Wu X: Protein lipidation in cell signaling and diseases: Function, regulation, and therapeutic opportunities. Cell Chem Biol. 25:817–831. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Rebecca VW, Nicastri MC, Fennelly C, Chude CI, Barber-Rotenberg JS, Ronghe A, McAfee Q, McLaughlin NP, Zhang G, Goldman AR, et al: PPT1 Promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov. 9:220–229. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Chen X, Li H, Fan X, Zhao C, Ye K, Zhao Z, Hu L, Ma H, Wang H and Fang Z: Protein palmitoylation regulates cell survival by modulating XBP1 activity in glioblastoma multiforme. Mol Ther Oncolytics. 17:518–530. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Lan T, Delalande C and Dickinson BC: Inhibitors of DHHC family proteins. Curr Opin Chem Biol. 65:118–125. 2021. View Article : Google Scholar : PubMed/NCBI

124 

Yang Q, Qin T, An T, Wu H, Xu G, Xiang J, Lei K, Zhang S, Xia J, Su G, et al: Novel PORCN inhibitor WHN-88 targets Wnt/β-catenin pathway and prevents the growth of Wnt-driven cancers. Eur J Pharmacol. 945:1756282023. View Article : Google Scholar : PubMed/NCBI

125 

Kharbanda A, Walter DM, Gudiel AA, Schek N, Feldser DM and Witze ES: Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Sci Signal. 13:eaax23642020. View Article : Google Scholar : PubMed/NCBI

126 

Zhang C, Zhang Y, Dong Y, Zi R, Wang Y, Chen Y, Liu C, Wang J, Wang X, Li J, et al: Non-alcoholic fatty liver disease promotes liver metastasis of colorectal cancer via fatty acid synthase dependent EGFR palmitoylation. Cell Death Discov. 10:412024. View Article : Google Scholar : PubMed/NCBI

127 

Lemonidis K, Salaun C, Kouskou M, Diez-Ardanuy C, Chamberlain LH and Greaves J: Substrate selectivity in the zDHHC family of S-acyltransferases. Biochem Soc Trans. 45:751–758. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Balasubramanian A, Hsu AY, Ghimire L, Tahir M, Devant P, Fontana P, Du G, Liu X, Fabin D, Kambara H, et al: The palmitoylation of gasdermin D directs its membrane translocation and pore formation during pyroptosis. Sci Immunol. 9:eadn14522024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hao S, Mei Y, Chen S, Liu J, Zhang Y, Zhu Z and Zuo K: Potential therapeutic target in oncology: Protein palmitoylation (Review). Oncol Rep 54: 117, 2025.
APA
Hao, S., Mei, Y., Chen, S., Liu, J., Zhang, Y., Zhu, Z., & Zuo, K. (2025). Potential therapeutic target in oncology: Protein palmitoylation (Review). Oncology Reports, 54, 117. https://doi.org/10.3892/or.2025.8950
MLA
Hao, S., Mei, Y., Chen, S., Liu, J., Zhang, Y., Zhu, Z., Zuo, K."Potential therapeutic target in oncology: Protein palmitoylation (Review)". Oncology Reports 54.4 (2025): 117.
Chicago
Hao, S., Mei, Y., Chen, S., Liu, J., Zhang, Y., Zhu, Z., Zuo, K."Potential therapeutic target in oncology: Protein palmitoylation (Review)". Oncology Reports 54, no. 4 (2025): 117. https://doi.org/10.3892/or.2025.8950
Copy and paste a formatted citation
x
Spandidos Publications style
Hao S, Mei Y, Chen S, Liu J, Zhang Y, Zhu Z and Zuo K: Potential therapeutic target in oncology: Protein palmitoylation (Review). Oncol Rep 54: 117, 2025.
APA
Hao, S., Mei, Y., Chen, S., Liu, J., Zhang, Y., Zhu, Z., & Zuo, K. (2025). Potential therapeutic target in oncology: Protein palmitoylation (Review). Oncology Reports, 54, 117. https://doi.org/10.3892/or.2025.8950
MLA
Hao, S., Mei, Y., Chen, S., Liu, J., Zhang, Y., Zhu, Z., Zuo, K."Potential therapeutic target in oncology: Protein palmitoylation (Review)". Oncology Reports 54.4 (2025): 117.
Chicago
Hao, S., Mei, Y., Chen, S., Liu, J., Zhang, Y., Zhu, Z., Zuo, K."Potential therapeutic target in oncology: Protein palmitoylation (Review)". Oncology Reports 54, no. 4 (2025): 117. https://doi.org/10.3892/or.2025.8950
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team