|
1
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI
|
|
2
|
De Smedt L, Lemahieu J, Palmans S, Govaere
O, Tousseyn T, Van Cutsem E, Prenen H, Tejpar S, Spaepen M,
Matthijs G, et al: Microsatellite instable vs stable colon
carcinomas: Analysis of tumour heterogeneity, inflammation and
angiogenesis. Br J Cancer. 113:500–509. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
O'Connell JB, Maggard MA and Ko CY: Colon
cancer survival rates with the new American joint committee on
cancer sixth edition staging. J Natl Cancer Inst. 96:1420–1425.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Aragane H, Sakakura C, Nakanishi M,
Yasuoka R, Fujita Y, Taniguchi H, Hagiwara A, Yamaguchi T, Abe T,
Inazawa J and Yamagishi H: Chromosomal aberrations in colorectal
cancers and liver metastases analyzed by comparative genomic
hybridization. Int J Cancer. 94:623–629. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hidaka S, Yasutake T, Takeshita H, Kondo
M, Tsuji T, Nanashima A, Sawai T, Yamaguchi H, Nakagoe T, Ayabe H
and Tagawa Y: Differences in 20q13.2 copy number between colorectal
cancers with and without liver metastasis. Clin Cancer Res.
6:2712–2717. 2000.PubMed/NCBI
|
|
6
|
Mamlouk S, Simon T, Tomás L, Wedge DC,
Arnold A, Menne A, Horst D, Capper D, Morkel M, Posada D, et al:
Malignant transformation and genetic alterations are uncoupled in
early colorectal cancer progression. BMC Biol. 18:1162020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
De Angelis PM, Stokke T, Beigi M, Mjåland
O and Clausen OP: Prognostic significance of recurrent chromosomal
aberrations detected by comparative genomic hybridization in
sporadic colorectal cancer. Int J Colorectal Dis. 16:38–45. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Diep CB, Thorstensen L, Meling GI,
Skovlund E, Rognum TO and Lothe RA: Genetic tumor markers with
prognostic impact in Dukes' stages B and C colorectal cancer
patients. J Clin Oncol. 21:820–829. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Aust DE, Muders M, Köhler A, Schmidt M,
Diebold J, Müller C, Löhrs U, Waldman FM and Baretton GB:
Prognostic relevance of 20q13 gains in sporadic colorectal cancers:
A FISH analysis. Scand J Gastroenterol. 39:766–772. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi
Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, et al:
Proteogenomic characterization of human colon and rectal cancer.
Nature. 513:382–387. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ptashkin RN, Pagan C, Yaeger R, Middha S,
Shia J, O'Rourke KP, Berger MF, Wang L, Cimera R, Wang J, et al:
Chromosome 20q amplification defines a subtype of microsatellite
stable, left-sided colon cancers with wild-type RAS/RAF and better
overall survival. Mol Cancer Res. 15:708–713. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mosse YP, Greshock J, Margolin A, Naylor
T, Cole K, Khazi D, Hii G, Winter C, Shahzad S, Asziz MU, et al:
High-resolution detection and mapping of genomic DNA alterations in
neuroblastoma. Genes Chromosomes Cancer. 43:390–403. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lo KC, Stein LC, Panzarella JA, Cowell JK
and Hawthorn L: Identification of genes involved in squamous cell
carcinoma of the lung using synchronized data from DNA copy number
and transcript expression profiling analysis. Lung Cancer.
59:315–331. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Morikawa K, Walker SM, Nakajima M, Pathak
S, Jessup JM and Fidler IJ: Influence of organ environment on the
growth, selection, and metastasis of human colon carcinoma cells in
nude mice. Cancer Res. 48:6863–6871. 1988.PubMed/NCBI
|
|
16
|
Camps J, Morales C, Prat E, Ribas M,
Capellà G, Egozcue J, Peinado MA and Miró R: Genetic evolution in
colon cancer KM12 cells and metastatic derivates. Int J Cancer.
110:869–874. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Leibovitz A, Stinson JC, McCombs WB III,
McCoy CE, Mazur KC and Mabry ND: Classification of human colorectal
adenocarcinoma cell lines. Cancer Res. 36:4562–4569.
1976.PubMed/NCBI
|
|
18
|
Brattain MG, Fine WD, Khaled FM, Thompson
J and Brattain DE: Heterogeneity of malignant cells from a human
colonic carcinoma. Cancer Res. 41:1751–1756. 1981.PubMed/NCBI
|
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Goel A, Nagasaka T, Hamelin R and Boland
CR: An optimized pentaplex PCR for detecting DNA mismatch
repair-deficient colorectal cancers. PLoS One. 5:e93932010.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gibson J, Lacy J, Matloff E and Robert M:
Microsatellite instability testing in colorectal carcinoma: A
practical guide. Clin Gastroenterol Hepatol. 12:171–176.e1. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Olshen AB, Venkatraman ES, Lucito R and
Wigler M: Circular binary segmentation for the analysis of
array-based DNA copy number data. Biostatistics. 5:557–572. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cancer Genome Atlas Network, .
Comprehensive molecular characterization of human colon and rectal
cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Melcher R, Steinlein C, Feichtinger W,
Müller CR, Menzel T, Lührs H, Scheppach W and Schmid M: Spectral
karyotyping of the human colon cancer cell lines SW480 and SW620.
Cytogenet Cell Genet. 88:145–152. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Masramon L, Ribas M, Cifuentes P, Arribas
R, García F, Egozcue J, Peinado MA and Miró R: Cytogenetic
characterization of two colon cell lines by using conventional
G-banding, comparative genomic hybridization, and whole chromosome
painting. Cancer Genet Cytogenet. 121:17–21. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Roschke AV, Stover K, Tonon G, Schäffer AA
and Kirsch IR: Stable karyotypes in epithelial cancer cell lines
despite high rates of ongoing structural and numerical chromosomal
instability. Neoplasia. 4:19–31. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hegde P, Qi R, Gaspard R, Abernathy K,
Dharap S, Earle-Hughes J, Gay C, Nwokekeh NU, Chen T, Saeed AI, et
al: Identification of tumor markers in models of human colorectal
cancer using a 19,200-element complementary DNA microarray. Cancer
Res. 61:7792–7797. 2001.PubMed/NCBI
|
|
28
|
Yamamoto S, Midorikawa Y, Morikawa T,
Nishimura Y, Sakamoto H, Ishikawa S, Akagi K and Aburatani H:
Identification of chromosomal aberrations of metastatic potential
in colorectal carcinoma. Genes Chromosomes Cancer. 49:487–496.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang B, Yao K, Zhou E, Zhang L and Cheng
C: Chr20q amplification defines a distinct molecular subtype of
microsatellite stable colorectal cancer. Cancer Res. 81:1977–1987.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schmitt M and Greten FR: The inflammatory
pathogenesis of colorectal cancer. Nat Rev Immunol. 21:653–667.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sinicrope FA, Rego RL, Halling KC, Foster
N, Sargent DJ, La Plant B, French AJ, Laurie JA, Goldberg RM,
Thibodeau SN and Witzig TE: Prognostic impact of microsatellite
instability and DNA ploidy in human colon carcinoma patients.
Gastroenterology. 131:729–737. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Walther A, Houlston R and Tomlinson I:
Association between chromosomal instability and prognosis in
colorectal cancer: A meta-analysis. Gut. 57:941–950. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Singh A, Sweeney MF, Yu M, Burger A,
Greninger P, Benes C, Haber DA and Settleman J: TAK1 inhibition
promotes apoptosis in KRAS-dependent colon cancers. Cell.
148:639–650. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Alarmo EL, Rauta J, Kauraniemi P, Karhu R,
Kuukasjärvi T and Kallioniemi A: Bone morphogenetic protein 7 is
widely overexpressed in primary breast cancer. Genes Chromosomes
Cancer. 45:411–419. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sunde JS, Donninger H, Wu K, Johnson ME,
Pestell RG, Rose GS, Mok SC, Brady J, Bonome T and Birrer MJ:
Expression profiling identifies altered expression of genes that
contribute to the inhibition of transforming growth factor-beta
signaling in ovarian cancer. Cancer Res. 66:8404–8412. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Xu G, Tang S, Yang J, Chen K, Kang J, Zhao
G, Feng F, Yang X, Zhao L, Lu Q, et al: BMP7 expression in
esophageal squamous cell carcinoma and its potential role in
modulating metastasis. Dig Dis Sci. 58:1871–1879. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Cortez MA, Masrorpour F, Ivan C, Zhang J,
Younes AI, Lu Y, Estecio MR, Barsoumian HB, Menon H, Caetano MDS,
et al: Bone morphogenetic protein 7 promotes resistance to
immunotherapy. Nat Commun. 11:48402020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
van Ree JH, Jeganathan KB, Malureanu L and
van Deursen JM: Overexpression of the E2 ubiquitin-conjugating
enzyme UbcH10 causes chromosome missegregation and tumor formation.
J Cell Biol. 188:83–100. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bavi P, Uddin S, Ahmed M, Jehan Z, Bu R,
Abubaker J, Sultana M, Al-Sanea N, Abduljabbar A, Ashari LH, et al:
Bortezomib stabilizes mitotic cyclins and prevents cell cycle
progression via inhibition of UBE2C in colorectal carcinoma. Am J
Pathol. 178:2109–2120. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kadara H, Behrens C, Yuan P, Solis L, Liu
D, Gu X, Minna JD, Lee JJ, Kim E, Hong WK, et al: A five-gene and
corresponding protein signature for stage-I lung adenocarcinoma
prognosis. Clin Cancer Res. 17:1490–1501. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Niu L, Gao C and Li Y: Identification of
potential core genes in colorectal carcinoma and key genes in
colorectal cancer liver metastasis using bioinformatics analysis.
Sci Rep. 11:239382021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Takahashi Y, Ishii Y, Nishida Y, Ikarashi
M, Nagata T, Nakamura T, Yamamori S and Asai S: Detection of
aberrations of ubiquitin-conjugating enzyme E2C gene (UBE2C) in
advanced colon cancer with liver metastases by DNA microarray and
two-color FISH. Cancer Genet Cytogenet. 168:30–35. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang Q, Liu S, Zhang Q, Xiong Z, Wang AR,
Myers L, Melamed J, Tang WW and You Z: Interleukin-17 promotes
development of castration-resistant prostate cancer potentially
through creating an immunotolerant and pro-angiogenic tumor
microenvironment. Prostate. 74:869–879. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhou H, Wang L, Huang J, Jiang M, Zhang X,
Zhang L, Wang Y, Jiang Z and Zhang Z: High EGFR_1 inside-out
activated inflammation-induced motility through
SLC2A1-CCNB2-HMMR-KIF11-NUSAP1-PRC1-UBE2C. J Cancer. 6:519–524.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Uchida S, Kuma A, Ohtsubo M, Shimura M,
Hirata M, Nakagama H, Matsunaga T, Ishizaka Y and Yamashita K:
Binding of 14-3-3beta but not 14-3-3sigma controls the cytoplasmic
localization of CDC25B: binding site preferences of 14-3-3 subtypes
and the subcellular localization of CDC25B. J Cell Sci.
117:3011–3020. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Van Der Hoeven PC, Van Der Wal JC, Ruurs
P, Van Dijk MC and Van Blitterswijk J: 14-3-3 Isotypes facilitate
coupling of protein kinase C-zeta to Raf-1: Negative regulation by
14-3-3 phosphorylation. Biochem J. 345:297–306. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Rodriguez LG and Guan JL: 14-3-3
Regulation of cell spreading and migration requires a functional
amphipathic groove. J Cell Physiol. 202:285–294. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liu TA, Jan YJ, Ko BS, Chen SC, Liang SM,
Hung YL, Hsu C, Shen TL, Lee YM, Chen PF, et al: Increased
expression of 14-3-3β promotes tumor progression and predicts
extrahepatic metastasis and worse survival in hepatocellular
carcinoma. Am J Pathol. 179:2698–2708. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ahluwalia P, Mondal AK, Bloomer C, Fulzele
S, Jones K, Ananth S, Gahlay GK, Heneidi S, Rojiani AM, Kota V and
Kolhe R: Identification and clinical validation of a novel 4
gene-signature with prognostic utility in colorectal cancer. Int J
Mol Sci. 20:38182019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Song X, Zhang Y, Zhao L, Fan J, Peng T, Ma
Y, Guo N, Wang X, Liu X, Liu Z and Wang L: Analyzation of the
peripheral blood mononuclear cells atlas and cell communication of
rheumatoid arthritis patients based on single-cell RNA-Seq. J
Immunol Res. 2023:63006332023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang JJ, Zhu Y, Zhu Y, Wu JL, Liang WB,
Zhu R, Xu ZK, Du Q and Miao Y: Association of increased DNA
methyltransferase expression with carcinogenesis and poor prognosis
in pancreatic ductal adenocarcinoma. Clin Transl Oncol. 14:116–124.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gravina GL, Ranieri G, Muzi P, Marampon F,
Mancini A, Di Pasquale B, Di Clemente L, Dolo V, D'Alessandro AM
and Festuccia C: Increased levels of DNA methyltransferases are
associated with the tumorigenic capacity of prostate cancer cells.
Oncol Rep. 29:1189–1195. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lin H, Yamada Y, Nguyen S, Linhart H,
Jackson-Grusby L, Meissner A, Meletis K, Lo G and Jaenisch R:
Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol Cell
Biol. 26:2976–2983. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ibrahim ML, Klement JD, Lu C, Redd PS,
Xiao W, Yang D, Browning DD, Savage NM, Buckhaults PJ, Morse HC III
and Liu K: Myeloid-derived suppressor cells produce IL-10 to elicit
DNMT3b-dependent irf8 silencing to promote colitis-associated colon
tumorigenesis. Cell Rep. 25:3036–3046.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|