|
1
|
Wu Q, Qian W, Sun X and Jiang S:
Small-molecule inhibitors, immune checkpoint inhibitors, and more:
FDA-approved novel therapeutic drugs for solid tumors from 1991 to
2021. J Hematol Oncol. 15:1432022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
3
|
Nicolò E, Giugliano F, Ascione L,
Tarantino P, Corti C, Tolaney SM, Cristofanilli M and Curigliano G:
Combining antibody-drug conjugates with immunotherapy in solid
tumors: Current landscape and future perspectives. Cancer Treat
Rev. 106:1023952022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen EY, Rai M, Tadikonda Y, Roy P,
Nollner DW, Chitkara A, Hamilton J and Thawani R: Trends in
complexity of single-agent and combination therapies for solid
tumor cancers approved by the US food and drug administration. The
oncologist. 30:oyae3022025. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Naimi A, Mohammed RN, Raji A, Chupradit S,
Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S,
Shomali N, et al: Tumor immunotherapies by immune checkpoint
inhibitors (ICIs); The pros and cons. Cell Commun Signal.
20:442022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nagasaki J, Ishino T and Togashi Y:
Mechanisms of resistance to immune checkpoint inhibitors. Cancer
Sci. 113:3303–3312. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sharma P, Siddiqui BA, Anandhan S, Yadav
SS, Subudhi SK, Gao J, Goswami S and Allison JP: The next decade of
immune checkpoint therapy. Cancer Discov. 11:838–857. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Song Y, Fu Y, Xie Q, Zhu B, Wang J and
Zhang B: Anti-angiogenic agents in combination with immune
checkpoint inhibitors: A promising strategy for cancer treatment.
Front Immunol. 11:19562020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yap TA, Parkes EE, Peng W, Moyers JT,
Curran MA and Tawbi HA: Development of immunotherapy combination
strategies in cancer. Cancer Discov. 11:1368–1397. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Garassino MC, Gadgeel S, Speranza G, Felip
E, Esteban E, Dómine M, Hochmair MJ, Powell SF, Bischoff HG, Peled
N, et al: Pembrolizumab plus pemetrexed and platinum in nonsquamous
non-small-cell lung cancer: 5-Year outcomes from the phase 3
KEYNOTE-189 study. J Clin Oncol. 41:1992–1998. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Horn L, Mansfield AS, Szczęsna A, Havel L,
Krzakowski M, Hochmair MJ, Huemer F, Losonczy G, Johnson ML, Nishio
M, et al: First-line atezolizumab plus chemotherapy in
extensive-stage small-cell lung cancer. N Engl J Med.
379:2220–2229. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Janjigian YY, Shitara K, Moehler M,
Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T,
Campos Bragagnoli A, et al: First-line nivolumab plus chemotherapy
versus chemotherapy alone for advanced gastric, gastro-oesophageal
junction, and oesophageal adenocarcinoma (CheckMate 649): A
randomised, open-label, phase 3 trial. Lancet. 398:27–40. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fuentes-Antrás J, Genta S, Vijenthira A
and Siu LL: Antibody-drug conjugates: In search of partners of
choice. Trends Cancer. 9:339–354. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Drago JZ, Modi S and Chandarlapaty S:
Unlocking the potential of antibody-drug conjugates for cancer
therapy. Nat Rev Clin Oncol. 18:327–344. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Salifu I, Singh N, Berraondo M, Remon J,
Salifu S, Severson E, Quintana A, Peiró S, Ramkissoon S, Vidal L,
et al: Antibody-drug conjugates, immune-checkpoint inhibitors, and
their combination in advanced non-small cell lung cancer. Cancer
Treat Res Commun. 36:1007132023.PubMed/NCBI
|
|
16
|
Wang Z, Li H, Gou L, Li W and Wang Y:
Antibody-drug conjugates: Recent advances in payloads. Acta Pharm
Sin B. 13:4025–4059. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Metrangolo V and Engelholm LH:
Antibody-drug conjugates: The dynamic evolution from conventional
to next-generation constructs. Cancers (Basel). 16:4472024.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
He L, Wang L, Wang Z, Li T, Chen H, Zhang
Y, Hu Z, Dimitrov DS, Du J and Liao X: Immune modulating
antibody-drug conjugate (IM-ADC) for cancer immunotherapy. J Med
Chem. 64:15716–15726. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yu P, Zhu C, You X, Gu W, Wang X, Wang Y,
Bu R and Wang K: The combination of immune checkpoint inhibitors
and antibody-drug conjugates in the treatment of urogenital tumors:
A review insights from phase 2 and 3 studies. Cell Death Dis.
15:4332024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bhardwaj PV and Abdou YG: The evolving
landscape of immune checkpoint inhibitors and antibody drug
conjugates in the treatment of early-stage breast cancer.
Oncologist. 28:832–844. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
D'Amico L, Menzel U, Prummer M, Müller P,
Buchi M, Kashyap A, Haessler U, Yermanos A, Gébleux R, Briendl M,
et al: A novel anti-HER2 anthracycline-based antibody-drug
conjugate induces adaptive anti-tumor immunity and potentiates PD-1
blockade in breast cancer. J Immunother Cancer. 7:162019.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Müller P, Martin K, Theurich S, Schreiner
J, Savic S, Terszowski G, Lardinois D, Heinzelmann-Schwarz VA,
Schlaak M, Kvasnicka HM, et al: Microtubule-depolymerizing agents
used in antibody-drug conjugates induce antitumor immunity by
stimulation of dendritic cells. Cancer Immunol Res. 2:741–755.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Iwata TN, Ishii C, Ishida S, Ogitani Y,
Wada T and Agatsuma T: A HER2-targeting antibody-drug conjugate,
trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a
mouse model. Mol Cancer Ther. 17:1494–1503. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Rios-Doria J, Harper J, Rothstein R,
Wetzel L, Chesebrough J, Marrero A, Chen C, Strout P, Mulgrew K,
McGlinchey K, et al: Antibody-drug conjugates bearing
pyrrolobenzodiazepine or tubulysin payloads are immunomodulatory
and synergize with multiple immunotherapies. Cancer Res.
77:2686–2698. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Okajima D, Yasuda S, Maejima T, Karibe T,
Sakurai K, Aida T, Toki T, Yamaguchi J, Kitamura M, Kamei R, et al:
Datopotamab deruxtecan, a novel TROP2-directed antibody-drug
conjugate, demonstrates potent antitumor activity by efficient drug
delivery to tumor cells. Mol Cancer Ther. 20:2329–2340. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Inamura K, Yokouchi Y, Kobayashi M,
Ninomiya H, Sakakibara R, Subat S, Nagano H, Nomura K, Okumura S,
Shibutani T and Ishikawa Y: Association of tumor TROP2 expression
with prognosis varies among lung cancer subtypes. Oncotarget.
8:28725–28735. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sakach E, Sacks R and Kalinsky K: Trop-2
as a therapeutic target in breast cancer. Cancers (Basel).
14:59362022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nelson BE and Meric-Bernstam F: Leveraging
TROP2 antibody-drug conjugates in solid tumors. Annu Rev Med.
75:31–48. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cardillo TM, Zalath MB, Arrojo R, Sharkey
RM, Govindan SV, Chang CH and Goldenberg DM: Sacituzumab govitecan
plus platinum-based chemotherapy mediates significant antitumor
effects in triple-negative breast, urinary bladder, and small-cell
lung carcinomas. Oncotarget. 15:144–158. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Grivas P, Pouessel D, Park CH, Barthelemy
P, Bupathi M, Petrylak DP, Agarwal N, Gupta S, Fléchon A,
Ramamurthy C, et al: Sacituzumab govitecan in combination with
pembrolizumab for patients with metastatic urothelial cancer that
progressed after platinum-based chemotherapy: TROPHY-U-01 cohort 3.
J Clin Oncol. 42:1415–1425. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Roisman LC, Mann S, Basel A, Marei R,
Krayim B, Kornev G, Asna N and Peled N: The PESGA trial: A
prospective, open-label, single-arm, phase II study to evaluate
first line therapy for extensive-stage small cell lung cancer
(ES-SCLC) patients, treated by induction
carboplatin/etoposide/pembrolizumab followed by maintenance of
pembrolizumab/sacituzumab govitecan. Clin Lung Cancer. 26:267–270.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tolaney SM, DeMichele A, Takano T, Rugo
HS, Perou C, Lynce F, Parsons HA, Santa-Maria CA, Rocque GB, Yao W,
et al: OptimICE-RD: sacituzumab govitecan + pembrolizumab vs
pembrolizumab (± capecitabine) for residual triple-negative breast
cancer. Future Oncol. 20:2343–2355. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Patel JD, Cho BC, Cobo M, Cabanillas RR,
Vicente D, Pradera JF, Garon EB, Mok TSK, Cappuzzo F, Neal JW, et
al: Sacituzumab govitecan (SG) + pembrolizumab (pembro) in
first-line (1L) metastatic non-small cell lung cancer (mNSCLC) with
PD-L1 ≥50%: Cohort A of EVOKE-02. J Clin Oncol 42 (16 Suppl).
S85922024. View Article : Google Scholar
|
|
34
|
Jain RK, Yang Y, Chadha J, Chatwal MC,
Kish JA, Raymond S, Rembisz J, Jameel G, Mustasam A, Poehlman T, et
al: Phase I/II study of ipilimumab plus nivolumab combined with
sacituzumab govitecan in patients with metastatic
cisplatin-ineligible urothelial carcinoma. J Clin Oncol 41 (6
Suppl). S5212023. View Article : Google Scholar
|
|
35
|
Necchi A, Raggi D, Bandini M, Gallina A,
Capitanio U, Gandaglia G, Cucchiara V, Fossati N, De Cobelli F,
Salonia A, et al: SURE: An open label, sequential-arm, phase II
study of neoadjuvant sacituzumab govitecan (SG), and SG plus
pembrolizumab (pembro) before radical cystectomy, for patients with
muscle-invasive bladder cancer (MIBC) who cannot receive or refuse
cisplatin-based chemotherapy. J Clin Oncol 39 (6 Suppl).
TPS5062021. View Article : Google Scholar
|
|
36
|
Tolaney SM, de Azambuja E, Emens LA, Loi
S, Pan W, Huang J, Sun SW, Lai C and Schmid P: 276TiP
ASCENT-04/KEYNOTE-D19: Phase III study of sacituzumab govitecan
(SG) plus pembrolizumab (pembro) vs treatment of physician's choice
(TPC) plus pembro in first-line (1L) programmed death-ligand
1-positive (PD-L1+) metastatic triple-negative breast cancer
(mTNBC). Ann Oncol. 33 (Suppl 7):S664–S665. 2022. View Article : Google Scholar
|
|
37
|
Garrido-Castro AC, Keenan TE, Li T, Lange
P, Callahan C, Guerriero J, Tayob N, Anderson L, Yam C, Daniel BR,
et al: Saci-IO TNBC: Randomized phase II trial of sacituzumab
govitecan (SG) +/- pembrolizumab in PD-L1- metastatic
triple-negative breast cancer (mTNBC). J Clin Oncol 39 (15 Suppl).
TPS11062021. View Article : Google Scholar
|
|
38
|
Garrido-Castro AC, Kim SE, Desrosiers J,
Nanda R, Carey LA, Clark AS, Sacks RL, O'Connor TP, Sinclair NF, Lo
KNM, et al: SACI–IO HR+: A randomized phase II trial of sacituzumab
govitecan with or without pembrolizumab in patients with metastatic
hormone receptor-positive/HER2-negative breast cancer. J Clin Oncol
42 (17 Suppl). LBA10042024. View Article : Google Scholar
|
|
39
|
Ahn MJ, Tanaka K, Paz-Ares L, Cornelissen
R, Girard N, Pons-Tostivint E, Vicente Baz D, Sugawara S, Cobo M,
Pérol M, et al: Datopotamab deruxtecan versus docetaxel for
previously treated advanced or metastatic non-small cell lung
cancer: The randomized, open-label phase III TROPION-Lung01 study.
J Clin Oncol. 43:260–272. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bardia A, Krop IE, Kogawa T, Juric D,
Tolcher AW, Hamilton EP, Mukohara T, Lisberg A, Shimizu T, Spira
AI, et al: Datopotamab deruxtecan in advanced or metastatic
HR+/HER2- and triple-negative breast cancer: Results from the phase
I TROPION-PanTumor01 study. J Clin Oncol. 42:2281–2294. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Levy BP, Paz-Ares LG, Su WC, Herbert SM,
Yang TY, Tolcher AW, Lou Y, Zenke Y, Cortinovis DL, Felip E, et al:
Datopotamab deruxtecan (Dato-DXd) plus pembrolizumab (pembro) with
or without platinum chemotherapy (Pt-CT) as first-line (1L) therapy
for advanced non-small cell lung cancer (aNSCLC): Subgroup analysis
from TROPION-Lung02. J Clin Oncol 42 (16 Suppl). S86172024.
View Article : Google Scholar
|
|
42
|
AstraZeneca, . Datopotamab deruxtecan plus
Imfinzi showed promising clinical activity in the first-line
advanced non-small cell lung cancer setting in TROPION-Lung04 phase
Ib trial (Cision). AstraZeneca; Cambridge: 2023
|
|
43
|
Levy BP, Felip E, Reck M, Yang JC,
Cappuzzo F, Yoneshima Y, Zhou C, Rawat S, Xie J, Basak P, et al:
TROPION-Lung08: Phase III study of datopotamab deruxtecan plus
pembrolizumab as first-line therapy for advanced NSCLC. Future
Oncol. 19:1461–1472. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Schmid P, Jung KH, Wysocki PJ, Jassem J,
Ma CX, Fernandes R, Huisden R, Stewart R, Vukovic P, Nunes AT and
Nowecki Z: 166MO datopotamab deruxtecan (Dato-DXd) + durvalumab (D)
as first-line (1L) treatment for unresectable locally
advanced/metastatic triple-negative breast cancer (a/mTNBC):
Initial results from BEGONIA, a phase Ib/II study. Ann Oncol. 33
(Suppl 3):S1992022. View Article : Google Scholar
|
|
45
|
Cheng Y, Yuan X, Tian Q, Huang X, Chen Y,
Pu Y, Long H, Xu M, Ji Y, Xie J, et al: Preclinical profiles of
SKB264, a novel anti-TROP2 antibody conjugated to topoisomerase
inhibitor, demonstrated promising antitumor efficacy compared to
IMMU-132. Front Oncol. 12:9515892022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fang W, Wang Q, Cheng Y, Luo Y, Qu X, Zhu
H, Ding Z, Li X, Wu L, Wang Y, et al: Sacituzumab tirumotecan
(SKB264/MK-2870) in combination with KL-A167 (anti-PD-L1) as
first-line treatment for patients with advanced NSCLC from the
phase II OptiTROP-Lung01 study. J Clin Oncol 42 (16 Suppl).
S85022024. View Article : Google Scholar
|
|
47
|
Zimmerman BS and Esteva FJ:
Next-generation HER2-targeted antibody-drug conjugates in breast
cancer. Cancers(Basel). 16:8002024.PubMed/NCBI
|
|
48
|
Nakada T, Sugihara K, Jikoh T, Abe Y and
Agatsuma T: The latest research and development into the
antibody-drug conjugate, [fam-] trastuzumab deruxtecan (DS-8201a),
for HER2 cancer therapy. Chem Pharm Bull (Tokyo). 67:173–185. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang D, Chen X, Du Y, Li X, Ying L, Lu Y,
Shen B, Gao X, Yi X, Xia X, et al: Associations of HER2 mutation
with immune-related features and immunotherapy outcomes in solid
tumors. Front Immunol. 13:7999882022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
McNamara B, Greenman M, Pebley N, Mutlu L
and Santin AD: Antibody-drug conjugates (ADC) in HER2/neu-positive
gynecologic tumors. Molecules. 28:73892023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Najjar MK, Manore SG, Regua AT and Lo HW:
Antibody-drug conjugates for the treatment of HER2-positive breast
cancer. Genes (Basel). 13:20652022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hunter FW, Barker HR, Lipert B, Rothé F,
Gebhart G, Piccart-Gebhart MJ, Sotiriou C and Jamieson SMF:
Mechanisms of resistance to trastuzumab emtansine (T-DM1) in
HER2-positive breast cancer. Br J Cancer. 122:603–612. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Emens LA, Esteva FJ, Beresford M, Saura C,
De Laurentiis M, Kim SB, Im SA, Wang Y, Salgado R, Mani A, et al:
Trastuzumab emtansine plus atezolizumab versus trastuzumab
emtansine plus placebo in previously treated, HER2-positive
advanced breast cancer (KATE2): A phase 2, multicentre, randomised,
double-blind trial. Lancet Oncol. 21:1283–1295. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hamilton EP, Kaklamani V, Falkson C, Vidal
GA, Ward PJ, Patre M, Chui SY, Rotmensch J, Gupta K, Molinero L, et
al: Impact of anti-HER2 treatments combined with atezolizumab on
the tumor immune microenvironment in early or metastatic breast
cancer: Results from a phase Ib study. Clin Breast Cancer.
21:539–551. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Waks AG, Keenan TE, Li T, Tayob N, Wulf
GM, Richardson ET III, Attaya V, Anderson L, Mittendorf EA,
Overmoyer B, et al: Phase Ib study of pembrolizumab in combination
with trastuzumab emtansine for metastatic HER2-positive breast
cancer. J Immunother Cancer. 10:e0051192022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hurvitz SA, Bachelot T, Bianchini G,
Harbeck N, Loi S, Park YH, Prat A, Gilham L, Boulet T,
Gochitashvili N, et al: ASTEFANIA: Adjuvant ado-trastuzumab
emtansine and atezolizumab for high-risk, HER2-positive breast
cancer. Future Oncol. 18:3563–3572. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cortés J, Kim SB, Chung WP, Im SA, Park
YH, Hegg R, Kim MH, Tseng LM, Petry V, Chung CF, et al: Trastuzumab
deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J
Med. 386:1143–1154. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Narayan P, Dilawari A, Osgood C, Feng Z,
Bloomquist E, Pierce WF, Jafri S, Kalavar S, Kondratovich M, Jha P,
et al: US food and drug administration approval summary:
Fam-trastuzumab deruxtecan-nxki for human epidermal growth factor
receptor 2-low unresectable or metastatic breast cancer. J Clin
Oncol. 41:2108–2116. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hamilton E, Galsky MD, Ochsenreither S,
Del Conte G, Martín M, De Miguel MJ, Yu EY, Williams A, Gion M, Tan
AR, et al: Trastuzumab deruxtecan with nivolumab in HER2-expressing
metastatic breast or urothelial cancer: Analysis of the phase Ib
DS8201-A-U105 study. Clin Cancer Res. 30:5548–5558. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cheema P, Hartl S, Koczywas M, Hochmair M,
Shepherd FA, Chu Q, Galletti G, Gustavson M, Iyer S, Barrett C, et
al: 695 Efficacy and safety of trastuzumab deruxtecan (T-DXd) with
durvalumab in patients with non-small cell lung cancer (HER2
altered NSCLC) who progressed on anti-PD1/PD-L1 therapy (HUDSON). J
Immunother Cancer. 11 (Suppl 1):S7872023.
|
|
61
|
Schmid P, Im SA, Armstrong A, Park YH,
Chung WP, Nowecki Z, Lord S, Wysocki PJ, Lu YS, Dry H, et al:
BEGONIA: Phase 1b/2 study of durvalumab (D) combinations in locally
advanced/metastatic triple-negative breast cancer (TNBC)-initial
results from arm 1, d+paclitaxel (P), and arm 6, d+trastuzumab
deruxtecan (T-DXd). J Clin Oncol 39 (15 Suppl). S10232021.
View Article : Google Scholar
|
|
62
|
Tarantino P, Niman S, Giordano A, Nakhlis
F, Bellon J, Woodward W, Nasrazadani A, Saleem S, Lucci A, DeMeo M,
et al: Abstract PO3-20-06: TRUDI: A phase II study of neoadjuvant
TRastuzumab derUxtecan and Durvalumab for stage III HER2-expressing
Inflammatory breast cancer. Cancer Res. 84 (9 Suppl):PO3-20-06.
2024. View Article : Google Scholar
|
|
63
|
Hiltermann TJN, Izumi H, Cho BC, Cunha S,
Danchaivijitr P, Felip E, Ho TY, Leventakos K, Li Y, Sugawara S, et
al: OA11.03 Efficacy and safety of rilvegostomig, an
anti-PD-1/TIGIT bispecific, for CPI-naïve metastatic NSCLC with
PD-L1 1–49% or ≥50%. J Thorac Oncol. 19 (Suppl):S332024. View Article : Google Scholar
|
|
64
|
Wang Y, Gong J, Wang A, Wei J, Peng Z,
Wang X, Zhou J, Qi C, Liu D, Li J, et al: Disitamab vedotin (RC48)
plus toripalimab for HER2-expressing advanced gastric or
gastroesophageal junction and other solid tumours: A multicentre,
open label, dose escalation and expansion phase 1 trial.
EClinicalMedicine. 68:1024152024. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhou L, Yang KW, Zhang S, Yan XQ, Li SM,
Xu HY, Li J, Liu YQ, Tang BX, Chi ZH, et al: Disitamab vedotin plus
toripalimab in patients with locally advanced or metastatic
urothelial carcinoma (RC48-C014): A phase Ib/II dose-escalation and
dose-expansion study. Ann Oncol. 36:331–339. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen M, Yao K, Cao M, Liu H, Xue C, Qin T,
Meng L, Zheng Z, Qin Z, Zhou F, et al: HER2-targeting antibody-drug
conjugate RC48 alone or in combination with immunotherapy for
locally advanced or metastatic urothelial carcinoma: A multicenter,
real-world study. Cancer Immunol Immunother. 72:2309–2318. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Pang X, Huang Z, Zhong T, Zhang P, Wang
ZM, Xia M and Li B: Cadonilimab, a tetravalent PD-1/CTLA-4
bispecific antibody with trans-binding and enhanced target binding
avidity. MAbs. 15:21807942023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li Z, Wang Y, Sun Y, Wang L, Li X, Sun L,
He Z, Yang H, Wang Y, Wang Q, et al: Trastuzumab rezetecan, a
HER2-directed antibody-drug conjugate, in patients with advanced
HER2-mutant non-small-cell lung cancer (HORIZON-Lung): Phase 2
results from a multicentre, single-arm study. Lancet Oncol.
26:437–446. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rosenberg J, Sridhar SS, Zhang J, Smith D,
Ruether D, Flaig TW, Baranda J, Lang J, Plimack ER, Sangha R, et
al: EV-101: A phase I study of single-agent enfortumab vedotin in
patients with nectin-4-positive solid tumors, including metastatic
urothelial carcinoma. J Clin Oncol. 38:1041–1049. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chatterjee S, Sinha S and Kundu CN: Nectin
cell adhesion molecule-4 (NECTIN-4): A potential target for cancer
therapy. Eur J Pharmacol. 911:1745162021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wong JL and Rosenberg JE: Targeting
nectin-4 by antibody-drug conjugates for the treatment of
urothelial carcinoma. Expert Opin Biol Ther. 21:863–873. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Alt M, Stecca C, Tobin S, Jiang DM and
Sridhar SS: Enfortumab vedotin in urothelial cancer. Ther Adv Urol.
12:17562872209801922020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Powles T, Rosenberg JE, Sonpavde GP,
Loriot Y, Durán I, Lee JL, Matsubara N, Vulsteke C, Castellano D,
Wu C, et al: Enfortumab vedotin in previously treated advanced
urothelial carcinoma. N Engl J Med. 384:1125–1135. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fradet Y, Bellmunt J, Vaughn DJ, Lee JL,
Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, Necchi
A, et al: Randomized phase III KEYNOTE-045 trial of pembrolizumab
versus paclitaxel, docetaxel, or vinflunine in recurrent advanced
urothelial cancer: results of >2 years of follow-up. Ann Oncol.
30:970–976. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
O'Donnell PH, Milowsky MI, Petrylak DP,
Hoimes CJ, Flaig TW, Mar N, Moon HH, Friedlander TW, McKay RR,
Bilen MA, et al: Enfortumab vedotin with or without pembrolizumab
in cisplatin-ineligible patients with previously untreated locally
advanced or metastatic urothelial cancer. J Clin Oncol.
41:4107–4117. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Powles T, Valderrama BP, Gupta S, Bedke J,
Kikuchi E, Hoffman-Censits J, Iyer G, Vulsteke C, Park SH, Shin SJ,
et al: Enfortumab vedotin and pembrolizumab in untreated advanced
urothelial cancer. N Engl J Med. 390:875–888. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fang P, You M, Cao Y, Feng Q, Shi L, Wang
J, Sun X, Yu D, Zhou W, Yin L, et al: Development and validation of
bioanalytical assays for the quantification of 9MW2821, a
nectin-4-targeting antibody-drug conjugate. J Pharm Biomed Anal.
248:1163182024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang J, Liu R, Gao S, Yang H, Chen J,
Yuan F, Liu J, Guo H, Zhang S, Li X, et al: 9MW2821, a nectin-4
antibody-drug conjugate (ADC), in patients with advanced solid
tumor: Results from a phase 1/2a study. J Clin Oncol 42 (16 Suppl).
S30132024. View Article : Google Scholar
|
|
79
|
Gilbert L, Oaknin A, Matulonis UA,
Mantia-Smaldone GM, Lim PC, Castro CM, Provencher D, Memarzadeh S,
Method M, Wang J, et al: Safety and efficacy of mirvetuximab
soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug
conjugate (ADC), in combination with bevacizumab in patients with
platinum-resistant ovarian cancer. Gynecol Oncol. 170:241–247.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Moore KN, O'Malley DM, Vergote I, Martin
LP, Gonzalez-Martin A, Malek K and Birrer MJ: Safety and activity
findings from a phase 1b escalation study of mirvetuximab
soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug
conjugate (ADC), in combination with carboplatin in patients with
platinum-sensitive ovarian cancer. Gynecol Oncol. 151:46–52. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Heo YA: Mirvetuximab soravtansine: First
approval. Drugs. 83:265–273. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Matulonis UA, Moore KN, Martin LP, Vergote
IB, Castro C, Gilbert L, Malek K, Birrer MJ and O'Malley DM:
949P-Mirvetuximab soravtansine, a folate receptor alpha
(FRα)-targeting antibody-drug conjugate (ADC), with pembrolizumab
in platinum-resistant ovarian cancer (PROC): Initial results of an
expansion cohort from FORWARD II, a phase Ib study. Ann Oncol. 29
(Suppl 8):viii3392018. View Article : Google Scholar
|
|
83
|
Porter R, Tayob N, Polak M, Sawyer H,
Gardner J, Campos S, Krasner C, Lee E, Liu J, Stover E, et al:
TP015/#1566 A phase 2, two-stage, study of mirvetuximab
soravtansine (IMGN853) in combination with pembrolizumab in
patients with microsatellite stable (MSS) recurrent or persistent
endometrial cancer (EC). Int J Gynecol Cancer. 32 (Suppl
3):A229–A230. 2022.
|
|
84
|
Pastan I and Hassan R: Discovery of
mesothelin and exploiting it as a target for immunotherapy. Cancer
Res. 74:2907–2912. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
O'Hara M, Stashwick C, Haas AR and Tanyi
JL: Mesothelin as a target for chimeric antigen receptor-modified T
cells as anticancer therapy. Immunotherapy. 8:449–460. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Rottey S, Clarke J, Aung K, Machiels JP,
Markman B, Heinhuis KM, Millward M, Lolkema M, Patel SP, de Souza
P, et al: Phase I/IIa trial of BMS-986148, an anti-mesothelin
antibody-drug conjugate, alone or in combination with nivolumab in
patients with advanced solid tumors. Clin Cancer Res. 28:95–105.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Mansfield AS, Vivien Yin J, Bradbury P,
Kwiatkowski DJ, Patel S, Bazhenova LA, Forde P, Lou Y, Dizona P,
Villaruz LC, et al: Randomized trial of anetumab ravtansine and
pembrolizumab compared to pembrolizumab for mesothelioma. Lung
Cancer. 195:1079282024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Jiang J and Li S, Tang N, Wang L, Xin W
and Li S: Preclinical safety profile of RC88-ADC: A novel
mesothelin-targeted antibody conjugated with Monomethyl auristatin
E. Drug Chem Toxicol. 46:24–34. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Camidge DR, Morgensztern D, Heist RS,
Barve M, Vokes E, Goldman JW, Hong DS, Bauer TM, Strickler JH,
Angevin E, et al: Phase I study of 2- or 3-week dosing of
telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met,
monotherapy in patients with advanced non-small cell lung
carcinoma. Clin Cancer Res. 27:5781–5792. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Camidge DR, Barlesi F, Goldman JW,
Morgensztern D, Heist R, Vokes E, Angevin E, Hong DS, Rybkin II,
Barve M, et al: A phase 1b study of telisotuzumab vedotin in
combination with nivolumab in patients with NSCLC. JTO Clin Res
Rep. 3:1002622021.PubMed/NCBI
|
|
91
|
Hisada Y and Mackman N: Tissue factor and
cancer: Regulation, tumor growth, and metastasis. Semin Thromb
Hemost. 45:385–395. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Coleman RL, Lorusso D, Gennigens C,
González-Martín A, Randall L, Cibula D, Lund B, Woelber L, Pignata
S, Forget F, et al: Efficacy and safety of tisotumab vedotin in
previously treated recurrent or metastatic cervical cancer
(innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label,
single-arm, phase 2 study. Lancet Oncol. 22:609–619. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Markham A: Tisotumab vedotin: First
approval. Drugs. 81:2141–2147. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Vergote I, Van Nieuwenhuysen E,
O'Cearbhaill RE, Westermann A, Lorusso D, Ghamande S, Collins DC,
Banerjee S, Mathews CA, Gennigens C, et al: Tisotumab vedotin in
combination with carboplatin, pembrolizumab, or bevacizumab in
recurrent or metastatic cervical cancer: Results from the innovaTV
205/GOG-3024/ENGOT-cx8 study. J Clin Oncol. 41:5536–5549. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Corti C, Boscolo Bielo L, Schianca AC,
Salimbeni BT, Criscitiello C and Curigliano G: Future potential
targets of antibody-drug conjugates in breast cancer. Breast.
69:312–322. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Dillon P, Basho R, Han HS, Kolberg HC,
Tkaczuk K, Zahrah G, Gion M, Voss H, Meisel J, Pluard T, et al:
Abstract OT1-03-06: Phase 1b/2 study of ladiratuzumab vedotin (LV)
in combination with pembrolizumab for first-line treatment of
triple-negative breast cancer (SGNLVA-002, trial in progress).
Cancer Res. 83 (Suppl 5):OT1-03-06. 2023. View Article : Google Scholar
|
|
97
|
Rudin CM, Reck M, Johnson ML, Blackhall F,
Hann CL, Yang JC, Bailis JM, Bebb G, Goldrick A, Umejiego J and
Paz-Ares L: Emerging therapies targeting the delta-like ligand 3
(DLL3) in small cell lung cancer. J Hematol Oncol. 16:662023.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Owen DH, Giffin MJ, Bailis JM, Smit MD,
Carbone DP and He K: DLL3: An emerging target in small cell lung
cancer. J Hematol Oncol. 12:612019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Rudin CM, Pietanza MC, Bauer TM, Ready N,
Morgensztern D, Glisson BS, Byers LA, Johnson ML, Burris HA III,
Robert F, et al: Rovalpituzumab tesirine, a DLL3-targeted
antibody-drug conjugate, in recurrent small-cell lung cancer: A
first-in-human, first-in-class, open-label, phase 1 study. Lancet
Oncol. 18:42–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Malhotra J, Nikolinakos P, Leal T, Lehman
J, Morgensztern D, Patel JD, Wrangle JM, Curigliano G, Greillier L,
Johnson ML, et al: A phase 1–2 study of rovalpituzumab tesirine in
combination with nivolumab plus or minus ipilimumab in patients
with previously treated extensive-stage SCLC. J Thorac Oncol.
16:1559–1569. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhou WT and Jin WL: B7-H3/CD276: An
emerging cancer immunotherapy. Front Immunol. 12:7010062021.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kontos F, Michelakos T, Kurokawa T,
Sadagopan A, Schwab JH, Ferrone CR and Ferrone S: B7-H3: An
attractive target for antibody-based immunotherapy. Clin Cancer
Res. 27:1227–1235. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wespiser M, Gille R and Pérol M: Clinical
progress of B7-H3 targeted antibody drug conjugate ifinatamab
deruxtecan for small-cell lung cancer. Expert Opin Investig Drugs.
34:463–471. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Toader D, Fessler SP, Collins SD, Conlon
PR, Bollu R, Catcott KC, Chin CN, Dirksen A, Du B, Duvall JR, et
al: Discovery and preclinical characterization of XMT-1660, an
optimized B7-H4-targeted antibody-drug conjugate for the treatment
of cancer. Mol Cancer Ther. 22:999–1012. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Inaki K, Shibutani T, Maeda N,
Eppenberger-Castori S, Nicolet S, Kaneda Y, Koyama K, Qiu Y, Wakita
K and Murakami M: Pan-cancer gene expression analysis of tissue
microarray using EdgeSeq oncology biomarker panel and a
cross-comparison with HER2 and HER3 immunohistochemical analysis.
PLoS One. 17:e02741402022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li X, Yao J, Qu C, Luo L, Li B, Zhang Y,
Zhu Z, Qiu Y and Hua H: DB-1310, an ADC comprised of a novel
anti-HER3 antibody conjugated to a DNA topoisomerase I inhibitor,
is highly effective for the treatment of HER3-positive solid
tumors. J Transl Med. 22:3622024. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhou Q, Wu YL, Li J, Liu A, Cui J, Kuboki
Y, Yamamoto N, Han SW, Lin G, Sun JM, et al: 658MO Phase I study of
SHR-A2009, a HER3-targeted ADC, in advanced solid tumors. Ann
Oncol. 34 (Suppl 2):S4632023. View Article : Google Scholar
|
|
108
|
Inamoto R, Takahashi N and Yamada Y:
Claudin18.2 in advanced gastric cancer. Cancers (Basel).
15:57422023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Xu G, Liu W, Wang Y, Wei X, Liu F, He Y,
Zhang L, Song Q, Li Z, Wang C, et al: CMG901, a
Claudin18.2-specific antibody-drug conjugate, for the treatment of
solid tumors. Cell Rep Med. 5:1017102024. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ruan DY, Liu FR, Wei XL, Luo SX, Zhuang
ZX, Wang ZN, Liu FN, Zhang YQ, Yang JW, Chen ZD, et al: Claudin
18.2-targeting antibody-drug conjugate CMG901 in patients with
advanced gastric or gastro-oesophageal junction cancer (KYM901): A
multicentre, open-label, single-arm, phase 1 trial. Lancet Oncol.
26:227–238. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zhao L, Cheng S, Fan L, Zhang B and Xu S:
TIM-3: An update on immunotherapy. Int Immunopharmacol.
99:1079332021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Qiu MZ, Zhang Y, Guo Y, Guo W, Nian W,
Liao W, Xu Z, Zhang W, Zhao HY, Wei X, et al: Evaluation of safety
of treatment with anti-epidermal growth factor receptor antibody
drug conjugate MRG003 in patients with advanced solid tumors: A
phase 1 nonrandomized clinical trial. JAMA Oncol. 8:1042–1046.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ruan DY, Han F, Zhou Y, Wang F, Tang LQ,
Li Z, Chen QY, Chen C, Lin J, Liu FR, et al: Preliminary results of
phase I/II study to evaluate safety and efficacy of combination
pucotenlimab with epidermal growth factor receptor-ADC (EGFR-ADC)
MRG003 in patients with EGFR positive solid tumors. J Clin Oncol 42
(16 Suppl). S60132024. View Article : Google Scholar
|
|
114
|
Hellmann I, Waldmeier L, Bannwarth-Escher
MC, Maslova K, Wolter FI, Grawunder U and Beerli RR: Novel antibody
drug conjugates targeting tumor-associated receptor tyrosine kinase
ROR2 by functional screening of fully human antibody libraries
using transpo-mAb display on progenitor B cells. Front Immunol.
9:24902018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Chang HW, Frey G, Wang J, Liu H, Xing C,
Chen J, Boyle WJ and Short JM: Preclinical development of
ozuriftamab vedotin (BA3021), a novel ROR2-specific conditionally
active biologic antibody-drug conjugate. MAbs. 17:24900782025.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zammarchi F, Havenith KE, Chivers S, Hogg
P, Bertelli F, Tyrer P, Janghra N, Reinert HW, Hartley JA and van
Berkel PH: Preclinical development of ADCT-601, a novel
pyrrolobenzodiazepine dimer-based antibody-drug conjugate targeting
AXL-expressing cancers. Mol Cancer Ther. 21:582–593. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Yin F, DeCiantis C, Pinkas J, Das B, Wang
F, Zheng N, Hahn D, Amrite A, Adhikari D, Kane C, et al:
Quantification of antibody-drug conjugate PYX-201 in rat and monkey
plasma via ELISA and its application in preclinical studies.
Bioanalysis. 15:43–52. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Lyon RP, Jonas M, Frantz C, Trueblood ES,
Yumul R, Westendorf L, Hale CJ, Stilwell JL, Yeddula N, Snead KM,
et al: SGN-B6A: A new vedotin antibody-drug conjugate directed to
integrin beta-6 for multiple carcinoma indications. Mol Cancer
Ther. 22:1444–1453. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Peters S, Hollebecque A, Sehgal K, Lopez
JS, Calvo E, Dowlati A, Bockorny B, Perez CA, Sanborn RE, Patnaik
A, et al: Efficacy and safety of sigvotatug vedotin, an
investigational ADC, in NSCLC: Updated phase 1 results
(SGNB6A-001). J Clin Oncol 42 (16 Suppl). S85212024. View Article : Google Scholar
|
|
120
|
Brave MH, Maguire WF, Weinstock C, Zhang
H, Gao X, Li F, Yu J, Fu W, Zhao H, Pierce WF, et al: FDA approval
summary: Enfortumab vedotin plus pembrolizumab for locally advanced
or metastatic urothelial carcinoma. Clin Cancer Res. 30:4815–4821.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wei Q, Li P, Yang T, Zhu J, Sun L, Zhang
Z, Wang L, Tian X, Chen J, Hu C, et al: The promise and challenges
of combination therapies with antibody-drug conjugates in solid
tumors. J Hematol Oncol. 17:12024. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Fong JY, Phuna Z, Chong DY, Heryanto CM,
Low YS, Oh KC, Lee YS, Ng AWR, In LLA and Teo MYM: Advancements in
antibody-drug conjugates as cancer therapeutics. Journal of the
National Cancer Center; 2025, View Article : Google Scholar
|
|
123
|
Saini KS, Punie K, Twelves C, Bortini S,
de Azambuja E, Anderson S, Criscitiello C, Awada A and Loi S:
Antibody-drug conjugates, immune-checkpoint inhibitors, and their
combination in breast cancer therapeutics. Expert Opin Biol Ther.
21:945–962. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Li T, Niu M, Zhou J, Wu K and Yi M: The
enhanced antitumor activity of bispecific antibody targeting
PD-1/PD-L1 signaling. Cell Commun Signal. 22:1792024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zhou C, Chen J, Wu L, Wang L, Liu B, Yao
J, Zhong H, Li J, Cheng Y, Sun Y, et al: PL02.04 phase 3 study of
ivonescimab (AK112) vs pembrolizumab as first-line treatment for
PD-L1-positive advanced NSCLC: Primary analysis of HARMONi-2. J
Thorac Oncolo. 19 (Suppl):S12024. View Article : Google Scholar
|
|
126
|
Gu Y, Wang Z and Wang Y: Bispecific
antibody drug conjugates: Making 1+1>2. Acta Pharm Sin B.
14:1965–1986. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Tao J, Gu Y, Zhou W and Wang Y:
Dual-payload antibody-drug conjugates: Taking a dual shot. Eur J
Med Chem. 281:1169952025. View Article : Google Scholar : PubMed/NCBI
|