|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
2
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung
H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45.
2025.PubMed/NCBI
|
|
3
|
Jamal MH and Khan MN: Developments in
pancreatic cancer emerging therapies, diagnostic methods, and
epidemiology. Pathol Res Pract. 271:1560122025. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fu Z, Zhou Y, Zhang Y, Zhou Z, Yu Y, Yuan
C, Dong J and Duan S: MicroRNA-325: A comprehensive exploration of
its multifaceted roles in cancer pathogenesis and therapeutic
implications (Review). Oncol Lett. 28:4592024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ameya KP, Ashikha Shirin Usman PP and
Sekar D: Navigating the tumor landscape: VEGF, MicroRNAs, and the
future of cancer treatment. Biochim Biophys Acta Gene Regul Mech.
1868:1950912025. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Barbagallo D, Ponti D, Bassani B, Bruno A,
Pulze L, Akkihal SA, George-William JN, Gundamaraju R and
Campomenosi P: MiR-223-3p in cancer development and cancer drug
resistance: Same coin, different faces. Int J Mol Sci. 25:81912024.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Choi JY, Seok HJ, Lee DH, Kwon J, Shin US,
Shin I and Bae IH: miR-1226-5p is involved in radioresistance of
colorectal cancer by activating M2 macrophages through suppressing
IRF1. J Transl Med. 22:9802024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hill M and Tran N: miRNA interplay:
Mechanisms and consequences in cancer. Dis Model Mech.
14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang X, Xu J, Hua F, Wang Y, Fang G, Zhang
H and Wu X: MiR-214-3p suppresses cervical cancer cell metastasis
by downregulating THBS2. Cell Mol Biol (Noisy-le-grand).
69:195–200. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lu T, Yang Y, Li Z and Lu S:
MicroRNA-214-3p inhibits the stem-like properties of lung squamous
cell cancer by targeting YAP1. Cancer Cell Int. 20:4132020.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu G, Shi H, Zheng H, Kong W, Cheng X and
Deng L: Circular RNA NFIX functions as an oncogene in non-small
cell lung cancer by modulating the miR-214-3p/TRIAP1 axis. Clin
Respir J. 18:e138012024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ren J, Chen W, Zhou Y, Sun J and Jiang G:
The novel circRNA circ_0045881 inhibits cell proliferation and
invasion by targeting mir-214-3p in triple-negative breast cancer.
BMC Cancer. 24:2782024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bhingardeve S, Sagvekar P, Desai S,
Mangoli V, Jagtap R and Mukherjee S: The regulatory interplay
between miRNA and DNA methylation orchestrates vital ovarian
functions and associated traits in PCOS. Gene. 940:1491652025.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hsieh TH, Liu YR, Chang TY, Liang ML, Chen
HH, Wang HW, Yen Y and Wong TT: Global DNA methylation analysis
reveals miR-214-3p contributes to cisplatin resistance in pediatric
intracranial nongerminomatous malignant germ cell tumors. Neuro
Oncol. 20:519–530. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mirjat D, Kashif M and Roberts CM: Shake
it up baby now: The changing focus on TWIST1 and epithelial to
mesenchymal transition in cancer and other diseases. Int J Mol Sci.
24:175392023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yin G, Chen R, Alvero AB, Fu HH, Holmberg
J, Glackin C, Rutherford T and Mor G: TWISTing stemness,
inflammation and proliferation of epithelial ovarian cancer cells
through MIR199A2/214. Oncogene. 29:3545–3553. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen W, Wang S, Wei D, Zhai L, Liu L, Pan
C, Han Z, Liu H, Zhong W and Jiang X: LncRNA ZFAS1 promotes
invasion of medullary thyroid carcinoma by enhancing EPAS1
expression via miR-214-3p/UCHL1 axis. J Cell Commun Signal.
18:e120212024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tap WD, Eilber FC, Ginther C, Dry SM,
Reese N, Barzan-Smith K, Chen HW, Wu H, Eilber FR, Slamon DJ and
Anderson L: Evaluation of well-differentiated/de-differentiated
liposarcomas by high-resolution oligonucleotide array-based
comparative genomic hybridization. Genes Chromosomes Cancer.
50:95–112. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hou D, Wu Q, Wang S, Pang S, Liang H, Lyu
H, Zhou L, Wang Q and Hao L: Knockdown of miR-214 alleviates renal
interstitial fibrosis by targeting the regulation of the
PTEN/PI3K/AKT Knockdown of miR-214 alleviates renal interstitial
fibrosis by targeting the regulation of the PTEN/PI3K/AKT
signalling pathway. Oxid Med Cell Longev. 2022:75539282022.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yang Y, Li Z, Yuan H, Ji W, Wang K, Lu T,
Yu Y, Zeng Q, Li F, Xia W and Lu S: Reciprocal regulatory mechanism
between miR-214-3p and FGFR1 in FGFR1-amplified lung cancer.
Oncogenesis. 8:502019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zeng W: Bisphenol A triggers the
malignancy of nasopharyngeal carcinoma cells via activation of
Wnt/β-catenin pathway. Toxicol In Vitro. 66:1048812020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang J, Li X, Duan C and Jia Y: CircFNDC3B
knockdown restrains the progression of oesophageal squamous cell
carcinoma through miR-214-3p/CDC25A axis. Clin Exp Pharmacol
Physiol. 49:1209–1220. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Phatak P, Burrows WM, Creed TM, Youssef M,
Lee G and Donahue JM: MiR-214-3p targets Ras-related protein 14
(RAB14) to inhibit cellular migration and invasion in esophageal
Cancer cells. BMC Cancer. 22:12652022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu L, Xiao W, Yang Z, Wang Q and Yi J:
Human umbilical cord mesenchymal stem cell-derived exosomal
miR-214-3p regulates the progression of gallbladder cancer by
regulating ACLY/GLUT1. Adv Clin Exp Med. 33:499–510. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang X, Liu Y, Zhou M, Yu L and Si Z: m6A
modified BACE1-AS contributes to liver metastasis and stemness-like
properties in colorectal cancer through TUFT1 dependent activation
of Wnt signaling. J Exp Clin Cancer Res. 42:3062023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yun ZY, Wu D, Wang X, Huang P and Li N:
MiR-214-3p overexpression-triggered chondroitin polymerizing factor
(CHPF) inhibition modulates the ferroptosis and metabolism in colon
cancer. Kaohsiung J Med Sci. 40:244–254. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhou Y, Wang Y, Lin M, Wu D and Zhao M:
LncRNA HOTAIR promotes proliferation and inhibits apoptosis by
sponging miR-214-3p in HPV16 positive cervical cancer cells. Cancer
Cell Int. 21:4002021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fang YY, Tan MR, Zhou J, Liang L, Liu XY,
Zhao K and Bao EC: miR-214-3p inhibits epithelial-to-mesenchymal
transition and metastasis of endometrial cancer cells by targeting
TWIST1. Onco Targets Ther. 12:9449–9458. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yang Z, Chen JQ, Liu TJ, Chen YL, Ma ZK,
Fan YZ, Wang ZX, Xu S, Wang K, Wang XY, et al: Knocking down AR
promotes osteoblasts to recruit prostate cancer cells by altering
exosomal circ-DHPS/miR-214-3p/CCL5 pathway. Asian J Androl.
26:195–204. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cagle P, Smith N, Adekoya TO, Li Y, Kim S,
Rios-Colon L, Deep G, Niture S, Albanese C, Suy S, et al: Knockdown
of microRNA-214-3p promotes tumor growth and epithelial-mesenchymal
transition in prostate cancer. Cancers (Basel). 13:58752021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li Y, Yuan S, Wu W, Zhou J, Zhang P, Li D,
Zhang Y and Lou S: The hsa-miR-214-3p/ATGL axis regulates aberrant
lipolysis to promote acute myeloid leukemia progression via PPARα
in vitro. Biochem Biophys Res Commun. 608:73–81. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lv X, Yang H, Zhong H, He L and Wang L:
Osthole exhibits an antitumor effect in retinoblastoma through
inhibiting the PI3K/AKT/mTOR pathway via regulating the
hsa_circ_0007534/miR-214-3p axis. Pharm Biol. 60:417–426. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
De Feo A, Pazzaglia L, Ciuffarin L,
Mangiagli F, Pasello M, Simonetti E, Pellegrini E, Ferrari C,
Bianchi G, Spazzoli B and Scotlandi K: miR-214-3p is commonly
downregulated by EWS-FLI1 and by CD99 and its restoration limits
ewing sarcoma aggressiveness. Cancers (Basel). 14:17622022.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tian Q, Yan X, Yang L, Liu Z, Yuan Z and
Zhang Y: Long non-coding RNA BACE1-AS plays an oncogenic role in
hepatocellular carcinoma cells through miR-214-3p/APLN axis. Acta
Biochim Biophys Sin (Shanghai). 53:1538–1546. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
He GN, Bao NR, Wang S, Xi M, Zhang TH and
Chen FS: Ketamine induces ferroptosis of liver cancer cells by
targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther.
15:3965–3978. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang S, Liu D, Wei H, Hua Y, Shi G and
Qiao J: The hsa_circRNA_102049 mediates the sorafenib sensitivity
of hepatocellular carcinoma cells by regulating Reelin gene
expression. Bioengineered. 13:2272–2284. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang W, Wang T, Zhang Y, Deng T, Zhang H
and Ba YI: Gastric cancer secreted miR-214-3p inhibits the
anti-angiogenesis effect of apatinib by suppressing ferroptosis in
vascular endothelial cells. Oncol Res. 32:489–502. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jiang L, Zhang L, Chen Q, Qiao S, Zhou F
and Han M: LncRNA HEIH promotes cell proliferation, migration and
invasion by suppressing miR-214-3p in gastric carcinoma. J Biochem.
169:535–542. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu B, Gong Y, Jiang Q, Wu S, Han B, Chen
F, Lin Q, Wang P and Yang D: Hsa_circ_0014784-induced YAP1 promoted
the progression of pancreatic cancer by sponging miR-214-3p. Cell
Cycle. 22:1583–1596. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu Y, Wang J, Dong L, Xia L, Zhu H, Li Z
and Yu X: Long noncoding RNA HCP5 regulates pancreatic cancer
gemcitabine (GEM) resistance by sponging Hsa-miR-214-3p to target
HDGF. Onco Targets Ther. 12:8207–8216. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kuninty PR, Bojmar L, Tjomsland V, Larsson
M, Storm G, Östman A, Sandström P and Prakash J: MicroRNA-199a and
−214 as potential therapeutic targets in pancreatic stellate cells
in pancreatic tumor. Oncotarget. 7:16396–16408. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lu Y, Wang K, Peng Y, Chen M, Zhong L,
Huang L, Cheng FU, Sheng X, Yang X, Ouyang M, et al: Hsa-miR-214-3p
inhibits breast cancer cell growth and improves the tumor immune
microenvironment by downregulating B7H3. Oncol Res. 33:103–121.
2024.PubMed/NCBI
|
|
43
|
Tao Y, Zhao Z, Ma J, Dong L, Liang Y, Li
S, Mao Y, Li Y and Zhang Y: MiR-214-3p regulates the viability,
invasion, migration and EMT of TNBC cells by targeting ST6GAL1.
Cytotechnology. 71:1155–1165. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pan X, Guo Z, Chen Y, Zheng S, Peng M,
Yang Y and Wang Z: STAT3-Induced lncRNA SNHG17 exerts oncogenic
effects on ovarian cancer through regulating CDK6. Mol Ther Nucleic
Acids. 22:38–49. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yang C, Kim HS, Park SJ, Lee EJ, Kim SI,
Song G and Lim W: Inhibition of miR-214-3p aids in preventing
epithelial ovarian cancer malignancy by increasing the expression
of LHX6. Cancers (Basel). 11:19172019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yan JS, Chen Q, Li YL and Gao YQ:
Hsa_circ_0065217 promotes growth and metastasis of renal cancer
through regulating the miR-214-3p-ALPK2 axis. Cell Cycle.
20:2519–2530. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li M, Yin B, Chen M, Peng J, Mu X, Deng Z,
Xiao J, Li W and Fan J: Downregulation of the lncRNA ASB16-AS1
Decreases LARP1 expression and promotes clear cell renal cell
carcinoma progression via miR-185-5p/miR-214-3p. Front Oncol.
10:6171052021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Xu C, He T, Li Z, Liu H and Ding B:
Regulation of HOXA11-AS/miR-214-3p/EZH2 axis on the growth,
migration and invasion of glioma cells. Biomed Pharmacother.
95:1504–1513. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Peng Q, Wang L, Wang S, Wang C and Xue Z:
MicoRNA-214-3p: a key player in CPLX2-mediated inhibition on
temozolomide resistance in glioma. Neurol Res. 44:879–887. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hu S, Chang J, Ruan H, Zhi W, Wang X, Zhao
F, Ma X, Sun X, Liang Q, Xu H, et al: Cantharidin inhibits
osteosarcoma proliferation and metastasis by directly targeting
miR-214-3p/DKK3 axis to inactivate β-catenin nuclear translocation
and LEF1 translation. Int J Biol Sci. 17:2504–2522. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yao X, Wu L, Gu Z and Li J: LINC01535
promotes the development of osteosarcoma through modulating
miR-214-3p/KCNC4 Axis. Cancer Manag Res. 12:5575–5585. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cheng S, Li C, Liu L, Liu X, Li M, Zhuo J,
Wang J, Zheng W and Wang Z: Dysregulation and antimetastatic
function of circLRIG1 modulated by miR-214-3p/LRIG1 axis in bladder
carcinoma. Biol Direct. 19:202024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Clement MS, Gammelgaard KR, Nielsen AL and
Sorensen BS: Epithelial-to-mesenchymal transition is a resistance
mechanism to sequential MET-TKI treatment of MET-amplified EGFR-TKI
resistant non-small cell lung cancer cells. Transl Lung Cancer Res.
9:1904–1914. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang K, Yu H, Guo S, Sun G, Cao H, Xing D,
Li D and Yan A: CAPRIN1/TYMS/MTHFD2 axis promotes EMT process in
nasopharyngeal carcinoma development. Int J Biochem Cell Biol.
185:1067842025. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Jin Y, Wang Z, Liang Y, Jiang Y, Yuan F
and Zhang T: miRNA-22-3p inhibits cell viability and metastasis of
nasopharyngeal carcinoma by targeting FOXP1. Oncol Lett. 29:962024.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Petrick JL, Florio AA, Znaor A, Ruggieri
D, Laversanne M, Alvarez CS, Ferlay J, Valery PC, Bray F and
McGlynn KA: International trends in hepatocellular carcinoma
incidence, 1978–2012. Int J Cancer. 147:317–330. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ji Y, Chen X, Liu X, Huang J and Liu P:
lncRNA POLR2J4 plays a biomarker role in Hepatitis B virus-related
hepatocellular carcinoma through regulating miR-214-3p. Turk J
Gastroenterol. 35:787–794. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chen K, Feng X, Shi Y, Li XL, Shi ZR and
Lan X: Complete response of gallbladder cancer treated with
gemcitabine and cisplatin chemotherapy combined with durvalumab: A
case report and review of literature. World J Gastrointest Oncol.
17:984332025. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Park W, Chawla A and O'Reilly EM:
Pancreatic cancer: A review. JAMA. 326:851–862. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Grobbelaar C, Steenkamp V and Mabeta P:
Vascular endothelial growth factor receptors in the vascularization
of pancreatic tumors: Implications for prognosis and therapy. Curr
Issues Mol Biol. 47:1792025. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sigirli S and Karakas D: Fibrotic
fortresses and therapeutic frontiers: Pancreatic stellate cells and
the extracellular matrix in pancreatic cancer. Cancer Med.
14:e707882025. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu Y and Xue R: Pancreatic stellate cell:
Update on molecular investigations and clinical translation in
pancreatic cancer. Int J Cancer. 156:1672–1685. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rodger EJ, Gimenez G, Ajithkumar P,
Stockwell PA, Almomani S, Bowden SA, Leichter AL, Ahn A, Pattison
S, McCall JL, et al: An epigenetic signature of advanced colorectal
cancer metastasis. iScience. 26:1069862023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu J and Zhang X, Yang M and Zhang X:
CircCOL1A1 promotes proliferation, migration, and invasion of
colorectal cancer (CRC) cells and glutamine metabolism through GLS1
up-regulation by sponging miR-214-3p. J Cancer Res Clin Oncol.
150:2112024. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao J, Tang X and Zhu H: Chondroitin
polymerizing factor (CHPF) promotes the progression of colorectal
cancer through ASB2-mediated ubiquitylation of SMAD9. Histol
Histopathol. 39:1493–1503. 2024.PubMed/NCBI
|
|
66
|
Yuan M, Zhu Y, Ren Y, Chen L, Dai X, Wang
Y, Huang Y and Wang H: Global burden and attributable risk factors
of breast cancer in young women: Historical trends from 1990 to
2019 and forecasts to 2030 by sociodemographic index regions and
countries. J Glob Health. 14:041422024. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhu C, Li J, Hua Y, Wang J, Wang K and Sun
J: Berberine inhibits the expression of SCT through miR-214-3p
stimulation in breast cancer cells. Evid Based Complement Alternat
Med. 2020:28171472020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li Z, Liu P, Yin A, Zhang B, Xu J, Chen Z,
Zhang Z, Zhang Y, Wang S, Tang L, et al: Global landscapeof
cervical cancer incidence and mortality in 2022 andpredictions to
2030: The urgent need to address inequalities incervical cancer.
Int J Cancer. 157:288–297. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI
|
|
70
|
Wang N, Yin J, You N, Zhu W, Guo N, Liu X,
Zhang P, Huang W, Xie Y, Ren Q and Ma X: Twist family BHLH
transcription factor 1 is required for the maintenance of leukemia
stem cell in MLL-AF9+ acute myeloid leukemia. Haematologica.
109:84–97. 2024.PubMed/NCBI
|
|
71
|
Wang J, Zhao X, Guo Z, Ma X, Song Y and
Guo Y: Regulation of NEAT1/miR-214-3p on the growth, migration and
invasion of endometrial carcinoma cells. Arch Gynecol Obstet.
295:1469–1475. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Huang W, Meng H, Xu Y, Huang L and Lou G:
Olaparib promotes FABP4 expression and reduces antitumor effect in
ovarian cancer cells with a BRCA1 mutation. Oncol Lett. 29:672024.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu Y, Li Y, Wu Y, Zhao Y, Hu X and Sun C:
The long non-coding RNA NEAT1 promotes the progression of human
ovarian cancer through targeting miR-214-3p and regulating
angiogenesis. J Ovarian Res. 16:2192023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang C, Qi S, Xie C, Li C, Wang P and Liu
D: Upregulation of long non-coding RNA XIST has anticancer effects
on epithelial ovarian cancer cells through inverse downregulation
of hsa-miR-214-3p. J Gynecol Oncol. 29:e992018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Padala SA and Barsouk A, Thandra KC,
Saginala K, Mohammed A, Vakiti A, Rawla P and Barsouk A:
Epidemiology of renal cell carcinoma. World J Oncol. 11:79–87.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liang H, Zhou B, Li P, Zhang X, Zhang S,
Zhang Y, Yao S, Qu S and Chen J: Stemness regulation in prostate
cancer: Prostate cancer stem cells and targeted therapy. Ann Med.
57:24420672025. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J,
Liao J, Zhang Z, Hu Y, Zhong X and Bao Y: High expression of small
nucleolar RNA host gene 3 predicts poor prognosis and promotes bone
metastasis in prostate cancer by activating transforming growth
factor-beta signaling. Bioengineered. 13:1895–1907. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chen Y, Yin Z, Westover KD, Zhou Z and Shu
L: Advances and challenges in RAS signaling targeted therapy in
leukemia. Mol Cancer Ther. 24:33–46. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
He Z, Liao Z, Chen S, Li B, Yu Z, Luo G,
Yang L, Zeng C and Li Y: Downregulated miR-17, miR-29c, miR-92a and
miR-214 may be related to BCL11B overexpression in T cell acute
lymphoblastic leukemia. Asia Pac J Clin Oncol. 14:e259–e265. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Xiao S, Xu N, Ding Q, Huang S, Zha Y and
Zhu H: LncRNA VPS9D1-AS1 promotes cell proliferation in acute
lymphoblastic leukemia through modulating GPX1 expression by
miR-491-5p and miR-214-3p evasion. Biosci Rep. 40:BSR201934612020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Elguindy MM, Young JS, Ho WS and Lu RO:
Co-evolution of glioma and immune microenvironment. J Immunother
Cancer. 12:e0091752024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Benjamin AS and Nayak S: Iron oxide
nanoparticles coated with bioactive materials: a viable
theragnostic strategy to improve osteosarcoma treatment. Discov
Nano. 20:182025. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li K, Shen H, Lu M, Chen J, Yin Q and Li
P: Formononetin inhibits osteosarcoma cell proliferation and
promotes apoptosis by regulating the miR-214-3p/phosphatase and
tensin homolog pathway. Transl Cancer Res. 9:4914–4921. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xiong X, Dang W, Luo R, Long Y, Tong C,
Yuan L and Liu B: A graphene-based fluorescent nanoprobe for
simultaneous imaging of dual miRNAs in living cells. Talanta.
225:1219472021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Xing AY, Wang B, Li YH, Chen X, Wang YW,
Liu HT and Gao P: Identification of miRNA signature in breast
cancer to predict neoadjuvant chemotherapy response. Pathol Oncol
Res. 27:16097532021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jin Y, Wong YS, Goh BKP, Chan CY, Cheow
PC, Chow PKH, Lim TKH, Goh GBB, Krishnamoorthy TL, Kumar R, et al:
Circulating microRNAs as potential diagnostic and prognostic
biomarkers in hepatocellular carcinoma. Sci Rep. 9:104642019.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhou Z, Wu L, Liu Z, Zhang X, Han S, Zhao
N, Bao H, Yuan W, Chen J, Ji J and Shu X: MicroRNA-214-3p targets
the PLAGL2-MYH9 axis to suppress tumor proliferation and metastasis
in human colorectal cancer. Aging (Albany NY). 12:9633–9657. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Li Y, Li Y, Chen Y, Xie Q, Dong N, Gao Y,
Deng H, Lu C and Wang S: MicroRNA-214-3p inhibits proliferation and
cell cycle progression by targeting MELK in hepatocellular
carcinoma and correlates cancer prognosis. Cancer Cell Int.
17:1022017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang J, Xu Y, Wang J and Ying H:
Circulating miR-214-3p predicts nasopharyngeal carcinoma recurrence
or metastasis. Clin Chim Acta. 503:54–60. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ecke TH, Stier K, Weickmann S, Zhao Z,
Buckendahl L, Stephan C, Kilic E and Jung K: miR-199a-3p and
miR-214-3p improve the overall survival prediction of
muscle-invasive bladder cancer patients after radical cystectomy.
Cancer Med. 6:2252–2262. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kuang L, Wang P, Zhou L and Li Y:
Transformation of lung adenocarcinoma to small cell lung cancer
following osimertinib treatment: A case report and literature
review. Anticancer Drugs. 36:253–259. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Maurya N, Meena A and Luqman S: Role of
microRNAs in lung oncogenesis: Diagnostic implications, resistance
mechanisms, and therapeutic strategies. Int J Biol Macromol 318 (Pt
1). 1442612025. View Article : Google Scholar
|
|
93
|
Wang X, Li H and Shi J: LncRNA HOXA11-AS
promotes proliferation and cisplatin resistance of oral squamous
cell carcinoma by suppression of miR-214-3p expression. Biomed Res
Int. 2019:86451532019.PubMed/NCBI
|
|
94
|
Phatak P, Byrnes KA, Mansour D, Liu L, Cao
S, Li R, Rao JN, Turner DJ, Wang JY and Donahue JM: Overexpression
of miR-214-3p in esophageal squamous cancer cells enhances
sensitivity to cisplatin by targeting survivin directly and
indirectly through CUG-BP1. Oncogene. 35:2087–2097. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lan T, Quan W, Yu DH, Chen X, Wang ZF and
Li ZQ: High expression of LncRNA HOTAIR is a risk factor for
temozolomide resistance in glioblastoma via activation of the
miR-214/β-catenin/MGMT pathway. Sci Rep. 14:262242024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yang L, Zhang L, Lu L and Wang Y:
miR-214-3p regulates multi-drug resistance and apoptosis in
retinoblastoma cells by targeting ABCB1 and XIAP. Onco Targets
Ther. 13:803–811. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chen J, Kobayashi M, Darmanin S, Qiao Y,
Gully C, Zhao R, Yeung SC and Lee MH: Pim-1 plays a pivotal role in
hypoxia-induced chemoresistance. Oncogene. 28:2581–2592. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chaudhary B, Arya P, Sharma V, Kumar P,
Singla D and Grewal AS: Targeting anti-apoptotic mechanisms in
tumour cells: Strategies for enhancing Cancer therapy. Bioorg Chem.
159:1083882025. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lei X, He N, Zhu L, Zhou M, Zhang K, Wang
C, Huang H, Chen S, Li Y, Liu Q, et al: Mesenchymal stem
cell-derived extracellular vesicles attenuate radiation-induced
lung injury via miRNA-214-3p. Antioxid Redox Signal. 35:849–862.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shen G, Liu Z, Wang M, Zhao Y, Liu X, Hou
Y, Ma W, Han J, Zhou X, Ren D, et al: Neoadjuvant apatinib addition
to sintilimab and carboplatin-taxane based chemotherapy in patients
with early triple-negative breast cancer: The phase 2 NeoSAC trial.
Signal Transduct Target Ther. 10:412025. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tian Z, Cen L, Wei F, Dong J, Huang Y, Han
Y, Wang Z, Deng J and Jiang Y: EGFR mutations in non-small cell
lung cancer: Classification, characteristics and resistance to
third-generation EGFR-tyrosine kinase inhibitors (Review). Oncol
Lett. 30:3752025. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hu S, Zhou Q, Lu Q, Guo X, Wang Y and Duan
YX: miR-199a/214 cluster enhances prostate cancer sensitiveness to
nimotuzumab via targeting TBL1XR1. Kaohsiung J Med Sci.
39:1178–1189. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Seo Y, Rhim J and Kim JH: RNA-binding
proteins and exoribonucleases modulating miRNA in cancer: The enemy
within. Exp Mol Med. 56:1080–1106. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Kang E and Kortylewski M: Lipid
nanoparticle-mediated delivery of miRNA mimics to myeloid cells.
Methods Mol Biol. 2691:337–350. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Qian Y, Zhu D, Xu Q, Wang Y, Chen X, Hua
W, Xi J and Lu F: PAMAM/miR-144 nanocarrier system inhibits the
migration of gastric cancer by targeting mTOR signal transduction
pathway. Colloids Surf B Biointerfaces. 249:1144922025. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tanno T, Zhang P, Bailey C, Wang Y,
Ittiprasert W, Devenport M, Zheng P and Liu Y: A novel
aptamer-based small RNA delivery platform and its application to
cancer therapy. Genes Dis. 10:1075–1089. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zeng H, Guo S, Ren X, Wu Z, Liu S and Yao
X: Current strategies for exosome cargo loading and targeting
delivery. Cells. 12:14162023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
He L, Chen Q and Wu X: Tumour-derived
exosomal miR-205 promotes ovarian cancer cell progression through
M2 macrophage polarization via the PI3K/Akt/mTOR pathway. J Ovarian
Res. 18:282025. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lundstrom K: Are viral vectors any good
for RNAi antiviral therapy? Viruses. 12:11892020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Arduini A, Katiyar H and Liang C: Progress
in pseudotyping lentiviral vectors towards cell-specific gene
delivery in vivo. Viruses. 17:8022025. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Gutierrez-Guerrero A, Cosset FL and
Verhoeyen E: Lentiviral vector pseudotypes: Precious tools to
improve gene modification of hematopoietic cells for research and
gene therapy. Viruses. 12:10162020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Miletic H, Fischer YH, Neumann H, Hans V,
Stenzel W, Giroglou T, Hermann M, Deckert M and Von Laer D:
Selective transduction of malignant glioma by lentiviral vectors
pseudotyped with lymphocytic choriomeningitis virus glycoproteins.
Hum Gene Ther. 15:1091–1100. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Roszkowski S and Durczynska Z: Advantages
and limitations of nanostructures for biomedical applications. Adv
Clin Exp Med. 34:447–456. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kim B, Shin J, Wu J, Omstead DT, Kiziltepe
T, Littlepage LE and Bilgicer B: Engineering peptide-targeted
liposomal nanoparticles optimized for improved selectivity for
HER2-positive breast cancer cells to achieve enhanced in vivo
efficacy. J Control Release. 322:530–541. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Dinakar YH, Karole A, Parvez S, Jain V and
Mudavath SL: Folate receptor targeted NIR cleavable liposomal
delivery system augment penetration and therapeutic efficacy in
breast cancer. Biochim Biophys Acta Gen Subj. 1867:1303962023.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Rong J, Liu T, Yin X, Shao M, Zhu K, Li B,
Wang S, Zhu Y, Zhang S, Yin L, et al: Co-delivery of camptothecin
and MiR-145 by lipid nanoparticles for MRI-visible targeted therapy
of hepatocellular carcinoma. J Exp Clin Cancer Res. 43:2472024.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Fan Q, Sun B and Chao J: Advancements in
engineering tetrahedral framework nucleic acids for biomedical
innovations. Small Methods. 9:e24013602025. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Siragusa G, Tomasello L, Giordano C and
Pizzolanti G: Survivin (BIRC5): Implications in cancer therapy.
Life Sci. 350:1227882024. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Li S, Sun Y, Tian T, Qin X, Lin S, Zhang
T, Zhang Q, Zhou M, Zhang X, Zhou Y, et al: MicroRNA-214-3p
modified tetrahedral framework nucleic acids target survivin to
induce tumour cell apoptosis. Cell Prolif. 53:e127082020.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Hassan AAA, Ramadan E, Kristó K, Regdon G
Jr and Sovány T: Lipid-polymer hybrid nanoparticles as a smart drug
delivery system for peptide/protein delivery. Pharmaceutics.
17:7972025. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sonkar C, Ranjan R and Mukhopadhyay S:
Inorganic nanoparticle-based nanogels and their biomedical
applications. Dalton Trans. 54:6346–6360. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Howe SJ, Mansour MR, Schwarzwaelder K,
Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K,
Chatters SJ, de Ridder D, et al: Insertional mutagenesis combined
with acquired somatic mutations causes leukemogenesis following
gene therapy of SCID-X1 patients. J Clin Invest. 118:3143–3150.
2008. View Article : Google Scholar : PubMed/NCBI
|