Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2025 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2025 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of miRNA‑214‑3p in cancer (Review)

  • Authors:
    • Zeshan Chen
    • Xin Deng
    • Yuanhong Lu
    • Ling Lu
    • Yijue Qin
    • Haishun Qu
    • Shaohang Lan
  • View Affiliations / Copyright

    Affiliations: Department of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi 530016, P.R. China, School of Basic Medical Sciences, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530200, P.R. China, Department of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi 530016, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 123
    |
    Published online on: July 25, 2025
       https://doi.org/10.3892/or.2025.8957
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

microRNA‑214‑3p (miRNA‑214‑3p) can be mapped to the human chromosome 1q24.3 and is ~22 nucleotides in length. It has been garnering considerable attention due to its aberrant expression profile in various different types of cancer and its apparent role in regulating tumor progression. In malignant tumors, miRNA‑214‑3p can serve as a tumor suppressor or oncogene. This can be mediated by mainly inhibiting the expression of target genes by binding to the 3'‑untranslated region of target mRNAs, thereby regulating multiple downstream cellular processes, such as cell proliferation, metastasis, invasion and apoptosis. However, the role of miRNA‑214‑3p in cancer remains unclear. Therefore, in the present review, the role of miRNA‑214‑3p in cancer was summarized, whilst analyzing its potential as a biomarker for cancer diagnosis, prognosis and response to treatment. In addition, the present review evaluates its effects on sensitivity to chemotherapy, targeted therapy and radiotherapy. The current proposed strategies for the systemic delivery of miRNA‑214‑3p in cancer were also discussed.
View Figures

Figure 1

miRNA-214-3p regulates tumor
progression by targeting downstream target genes. miRNA, microRNA;
FGFR1, fibroblast growth factor receptor 1; RAB14, Ras-related
protein 14; CHPF, Chondroitin polymerizing factor; ST6GAL1,
β-galactoside α-2,6-sialyltransferase 1; LHX6, LIM homeobox domain
6; PTK6, Protein Tyrosine Kinase 6; ATGL, Adipose triglyceride
lipase; HMGA1, high mobility group AT-hook 1.

Figure 2

miRNA-214-3p is regulated by a
variety of lncRNA and circRNA that affect miRNA-214-3p or
downstream target gene expression, which in turn regulates cancer
progression. miRNA, microRNA; circRNA, circular RNA; lncRNA, long
non-coding RNA; circRNA NFIX, circRNA nuclear factor IX; TRIAP1,
TP53 regulation of apoptosis inhibitor 1; circFNDC3B, Circ RNA
Fibronectin Type III Domain Containing 3B; CDC25A, cell division
cycle 25 homologue A; lncRNA POLR2J4, lncRNA RNA polymerase II
subunit J4 (pseudogene); lncRNA BACE1-AS, lncRNA β-secretase
1 antisense RNA; lncRNA PVT1, lncRNA plasmacytoma variant
translocation 1; GPX4, glutathione peroxidase 4; lncRNA HEIH,
hepatocellular carcinoma upregulated EZH2-associated lncRNA; YAP1,
yes-associated protein 1; HDGF, hepatoma-derived growth factor;
circ COL1A1, circ collagen, type I, α1; GLS1, glutaminase 1; lncRNA
HOTAIR, lncRNA HOX transcript antisense intergenic RNA; lncRNA
SNHG17, Small nucleolar RNA host gene 17; CDK6, cyclin-dependent
kinase 6; ALPK2, α-Protein Kinase 2; lncRNA ASB16-AS1, lncRNA
ankyrin repeat And SOCS Box-Containing 16 antisense RNA1; LARP1,
La-related protein 1; circLRIG1, circ Leucine-rich repeats and
immunoglobulin-like domains 1; lncRNA SNHG3, lncRNA small nucleolar
RNA host gene 3; TGFBR1, transforming growth factor β receptor 1;
circ-DHPS, circular RNA-deoxyhypusine synthase; CCL5, C-C motif
chemokine ligand 5; lncRNA VPS9D1-AS1, lncRNA VPS9D1 antisense RNA
1; GPX1, glutathione peroxidase 1; lncRNA HOXA11-AS, lncRNA HOXA11
antisense RNA; EZH2, enhancer of zeste homolog 2; KCNC4, Potassium
Voltage-Gated Channel Subfamily C Member 4; LncRNA ZFAS1, LncRNA
zinc finger antisense 1; UCHL1, Ubiquitin carboxyterminal hydrolase
L1.
View References

1 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI

2 

Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025.PubMed/NCBI

3 

Jamal MH and Khan MN: Developments in pancreatic cancer emerging therapies, diagnostic methods, and epidemiology. Pathol Res Pract. 271:1560122025. View Article : Google Scholar : PubMed/NCBI

4 

Fu Z, Zhou Y, Zhang Y, Zhou Z, Yu Y, Yuan C, Dong J and Duan S: MicroRNA-325: A comprehensive exploration of its multifaceted roles in cancer pathogenesis and therapeutic implications (Review). Oncol Lett. 28:4592024. View Article : Google Scholar : PubMed/NCBI

5 

Ameya KP, Ashikha Shirin Usman PP and Sekar D: Navigating the tumor landscape: VEGF, MicroRNAs, and the future of cancer treatment. Biochim Biophys Acta Gene Regul Mech. 1868:1950912025. View Article : Google Scholar : PubMed/NCBI

6 

Barbagallo D, Ponti D, Bassani B, Bruno A, Pulze L, Akkihal SA, George-William JN, Gundamaraju R and Campomenosi P: MiR-223-3p in cancer development and cancer drug resistance: Same coin, different faces. Int J Mol Sci. 25:81912024. View Article : Google Scholar : PubMed/NCBI

7 

Choi JY, Seok HJ, Lee DH, Kwon J, Shin US, Shin I and Bae IH: miR-1226-5p is involved in radioresistance of colorectal cancer by activating M2 macrophages through suppressing IRF1. J Transl Med. 22:9802024. View Article : Google Scholar : PubMed/NCBI

8 

Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI

9 

Wang X, Xu J, Hua F, Wang Y, Fang G, Zhang H and Wu X: MiR-214-3p suppresses cervical cancer cell metastasis by downregulating THBS2. Cell Mol Biol (Noisy-le-grand). 69:195–200. 2023. View Article : Google Scholar : PubMed/NCBI

10 

Lu T, Yang Y, Li Z and Lu S: MicroRNA-214-3p inhibits the stem-like properties of lung squamous cell cancer by targeting YAP1. Cancer Cell Int. 20:4132020. View Article : Google Scholar : PubMed/NCBI

11 

Liu G, Shi H, Zheng H, Kong W, Cheng X and Deng L: Circular RNA NFIX functions as an oncogene in non-small cell lung cancer by modulating the miR-214-3p/TRIAP1 axis. Clin Respir J. 18:e138012024. View Article : Google Scholar : PubMed/NCBI

12 

Ren J, Chen W, Zhou Y, Sun J and Jiang G: The novel circRNA circ_0045881 inhibits cell proliferation and invasion by targeting mir-214-3p in triple-negative breast cancer. BMC Cancer. 24:2782024. View Article : Google Scholar : PubMed/NCBI

13 

Bhingardeve S, Sagvekar P, Desai S, Mangoli V, Jagtap R and Mukherjee S: The regulatory interplay between miRNA and DNA methylation orchestrates vital ovarian functions and associated traits in PCOS. Gene. 940:1491652025. View Article : Google Scholar : PubMed/NCBI

14 

Hsieh TH, Liu YR, Chang TY, Liang ML, Chen HH, Wang HW, Yen Y and Wong TT: Global DNA methylation analysis reveals miR-214-3p contributes to cisplatin resistance in pediatric intracranial nongerminomatous malignant germ cell tumors. Neuro Oncol. 20:519–530. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Mirjat D, Kashif M and Roberts CM: Shake it up baby now: The changing focus on TWIST1 and epithelial to mesenchymal transition in cancer and other diseases. Int J Mol Sci. 24:175392023. View Article : Google Scholar : PubMed/NCBI

16 

Yin G, Chen R, Alvero AB, Fu HH, Holmberg J, Glackin C, Rutherford T and Mor G: TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene. 29:3545–3553. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Chen W, Wang S, Wei D, Zhai L, Liu L, Pan C, Han Z, Liu H, Zhong W and Jiang X: LncRNA ZFAS1 promotes invasion of medullary thyroid carcinoma by enhancing EPAS1 expression via miR-214-3p/UCHL1 axis. J Cell Commun Signal. 18:e120212024. View Article : Google Scholar : PubMed/NCBI

18 

Tap WD, Eilber FC, Ginther C, Dry SM, Reese N, Barzan-Smith K, Chen HW, Wu H, Eilber FR, Slamon DJ and Anderson L: Evaluation of well-differentiated/de-differentiated liposarcomas by high-resolution oligonucleotide array-based comparative genomic hybridization. Genes Chromosomes Cancer. 50:95–112. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Hou D, Wu Q, Wang S, Pang S, Liang H, Lyu H, Zhou L, Wang Q and Hao L: Knockdown of miR-214 alleviates renal interstitial fibrosis by targeting the regulation of the PTEN/PI3K/AKT Knockdown of miR-214 alleviates renal interstitial fibrosis by targeting the regulation of the PTEN/PI3K/AKT signalling pathway. Oxid Med Cell Longev. 2022:75539282022. View Article : Google Scholar : PubMed/NCBI

20 

Yang Y, Li Z, Yuan H, Ji W, Wang K, Lu T, Yu Y, Zeng Q, Li F, Xia W and Lu S: Reciprocal regulatory mechanism between miR-214-3p and FGFR1 in FGFR1-amplified lung cancer. Oncogenesis. 8:502019. View Article : Google Scholar : PubMed/NCBI

21 

Zeng W: Bisphenol A triggers the malignancy of nasopharyngeal carcinoma cells via activation of Wnt/β-catenin pathway. Toxicol In Vitro. 66:1048812020. View Article : Google Scholar : PubMed/NCBI

22 

Wang J, Li X, Duan C and Jia Y: CircFNDC3B knockdown restrains the progression of oesophageal squamous cell carcinoma through miR-214-3p/CDC25A axis. Clin Exp Pharmacol Physiol. 49:1209–1220. 2022. View Article : Google Scholar : PubMed/NCBI

23 

Phatak P, Burrows WM, Creed TM, Youssef M, Lee G and Donahue JM: MiR-214-3p targets Ras-related protein 14 (RAB14) to inhibit cellular migration and invasion in esophageal Cancer cells. BMC Cancer. 22:12652022. View Article : Google Scholar : PubMed/NCBI

24 

Liu L, Xiao W, Yang Z, Wang Q and Yi J: Human umbilical cord mesenchymal stem cell-derived exosomal miR-214-3p regulates the progression of gallbladder cancer by regulating ACLY/GLUT1. Adv Clin Exp Med. 33:499–510. 2024. View Article : Google Scholar : PubMed/NCBI

25 

Wang X, Liu Y, Zhou M, Yu L and Si Z: m6A modified BACE1-AS contributes to liver metastasis and stemness-like properties in colorectal cancer through TUFT1 dependent activation of Wnt signaling. J Exp Clin Cancer Res. 42:3062023. View Article : Google Scholar : PubMed/NCBI

26 

Yun ZY, Wu D, Wang X, Huang P and Li N: MiR-214-3p overexpression-triggered chondroitin polymerizing factor (CHPF) inhibition modulates the ferroptosis and metabolism in colon cancer. Kaohsiung J Med Sci. 40:244–254. 2024. View Article : Google Scholar : PubMed/NCBI

27 

Zhou Y, Wang Y, Lin M, Wu D and Zhao M: LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells. Cancer Cell Int. 21:4002021. View Article : Google Scholar : PubMed/NCBI

28 

Fang YY, Tan MR, Zhou J, Liang L, Liu XY, Zhao K and Bao EC: miR-214-3p inhibits epithelial-to-mesenchymal transition and metastasis of endometrial cancer cells by targeting TWIST1. Onco Targets Ther. 12:9449–9458. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Yang Z, Chen JQ, Liu TJ, Chen YL, Ma ZK, Fan YZ, Wang ZX, Xu S, Wang K, Wang XY, et al: Knocking down AR promotes osteoblasts to recruit prostate cancer cells by altering exosomal circ-DHPS/miR-214-3p/CCL5 pathway. Asian J Androl. 26:195–204. 2024. View Article : Google Scholar : PubMed/NCBI

30 

Cagle P, Smith N, Adekoya TO, Li Y, Kim S, Rios-Colon L, Deep G, Niture S, Albanese C, Suy S, et al: Knockdown of microRNA-214-3p promotes tumor growth and epithelial-mesenchymal transition in prostate cancer. Cancers (Basel). 13:58752021. View Article : Google Scholar : PubMed/NCBI

31 

Li Y, Yuan S, Wu W, Zhou J, Zhang P, Li D, Zhang Y and Lou S: The hsa-miR-214-3p/ATGL axis regulates aberrant lipolysis to promote acute myeloid leukemia progression via PPARα in vitro. Biochem Biophys Res Commun. 608:73–81. 2022. View Article : Google Scholar : PubMed/NCBI

32 

Lv X, Yang H, Zhong H, He L and Wang L: Osthole exhibits an antitumor effect in retinoblastoma through inhibiting the PI3K/AKT/mTOR pathway via regulating the hsa_circ_0007534/miR-214-3p axis. Pharm Biol. 60:417–426. 2022. View Article : Google Scholar : PubMed/NCBI

33 

De Feo A, Pazzaglia L, Ciuffarin L, Mangiagli F, Pasello M, Simonetti E, Pellegrini E, Ferrari C, Bianchi G, Spazzoli B and Scotlandi K: miR-214-3p is commonly downregulated by EWS-FLI1 and by CD99 and its restoration limits ewing sarcoma aggressiveness. Cancers (Basel). 14:17622022. View Article : Google Scholar : PubMed/NCBI

34 

Tian Q, Yan X, Yang L, Liu Z, Yuan Z and Zhang Y: Long non-coding RNA BACE1-AS plays an oncogenic role in hepatocellular carcinoma cells through miR-214-3p/APLN axis. Acta Biochim Biophys Sin (Shanghai). 53:1538–1546. 2021. View Article : Google Scholar : PubMed/NCBI

35 

He GN, Bao NR, Wang S, Xi M, Zhang TH and Chen FS: Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther. 15:3965–3978. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Wang S, Liu D, Wei H, Hua Y, Shi G and Qiao J: The hsa_circRNA_102049 mediates the sorafenib sensitivity of hepatocellular carcinoma cells by regulating Reelin gene expression. Bioengineered. 13:2272–2284. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Wang W, Wang T, Zhang Y, Deng T, Zhang H and Ba YI: Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells. Oncol Res. 32:489–502. 2024. View Article : Google Scholar : PubMed/NCBI

38 

Jiang L, Zhang L, Chen Q, Qiao S, Zhou F and Han M: LncRNA HEIH promotes cell proliferation, migration and invasion by suppressing miR-214-3p in gastric carcinoma. J Biochem. 169:535–542. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Liu B, Gong Y, Jiang Q, Wu S, Han B, Chen F, Lin Q, Wang P and Yang D: Hsa_circ_0014784-induced YAP1 promoted the progression of pancreatic cancer by sponging miR-214-3p. Cell Cycle. 22:1583–1596. 2023. View Article : Google Scholar : PubMed/NCBI

40 

Liu Y, Wang J, Dong L, Xia L, Zhu H, Li Z and Yu X: Long noncoding RNA HCP5 regulates pancreatic cancer gemcitabine (GEM) resistance by sponging Hsa-miR-214-3p to target HDGF. Onco Targets Ther. 12:8207–8216. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Kuninty PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P and Prakash J: MicroRNA-199a and −214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget. 7:16396–16408. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Lu Y, Wang K, Peng Y, Chen M, Zhong L, Huang L, Cheng FU, Sheng X, Yang X, Ouyang M, et al: Hsa-miR-214-3p inhibits breast cancer cell growth and improves the tumor immune microenvironment by downregulating B7H3. Oncol Res. 33:103–121. 2024.PubMed/NCBI

43 

Tao Y, Zhao Z, Ma J, Dong L, Liang Y, Li S, Mao Y, Li Y and Zhang Y: MiR-214-3p regulates the viability, invasion, migration and EMT of TNBC cells by targeting ST6GAL1. Cytotechnology. 71:1155–1165. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Pan X, Guo Z, Chen Y, Zheng S, Peng M, Yang Y and Wang Z: STAT3-Induced lncRNA SNHG17 exerts oncogenic effects on ovarian cancer through regulating CDK6. Mol Ther Nucleic Acids. 22:38–49. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Yang C, Kim HS, Park SJ, Lee EJ, Kim SI, Song G and Lim W: Inhibition of miR-214-3p aids in preventing epithelial ovarian cancer malignancy by increasing the expression of LHX6. Cancers (Basel). 11:19172019. View Article : Google Scholar : PubMed/NCBI

46 

Yan JS, Chen Q, Li YL and Gao YQ: Hsa_circ_0065217 promotes growth and metastasis of renal cancer through regulating the miR-214-3p-ALPK2 axis. Cell Cycle. 20:2519–2530. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Li M, Yin B, Chen M, Peng J, Mu X, Deng Z, Xiao J, Li W and Fan J: Downregulation of the lncRNA ASB16-AS1 Decreases LARP1 expression and promotes clear cell renal cell carcinoma progression via miR-185-5p/miR-214-3p. Front Oncol. 10:6171052021. View Article : Google Scholar : PubMed/NCBI

48 

Xu C, He T, Li Z, Liu H and Ding B: Regulation of HOXA11-AS/miR-214-3p/EZH2 axis on the growth, migration and invasion of glioma cells. Biomed Pharmacother. 95:1504–1513. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Peng Q, Wang L, Wang S, Wang C and Xue Z: MicoRNA-214-3p: a key player in CPLX2-mediated inhibition on temozolomide resistance in glioma. Neurol Res. 44:879–887. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Hu S, Chang J, Ruan H, Zhi W, Wang X, Zhao F, Ma X, Sun X, Liang Q, Xu H, et al: Cantharidin inhibits osteosarcoma proliferation and metastasis by directly targeting miR-214-3p/DKK3 axis to inactivate β-catenin nuclear translocation and LEF1 translation. Int J Biol Sci. 17:2504–2522. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Yao X, Wu L, Gu Z and Li J: LINC01535 promotes the development of osteosarcoma through modulating miR-214-3p/KCNC4 Axis. Cancer Manag Res. 12:5575–5585. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Cheng S, Li C, Liu L, Liu X, Li M, Zhuo J, Wang J, Zheng W and Wang Z: Dysregulation and antimetastatic function of circLRIG1 modulated by miR-214-3p/LRIG1 axis in bladder carcinoma. Biol Direct. 19:202024. View Article : Google Scholar : PubMed/NCBI

53 

Clement MS, Gammelgaard KR, Nielsen AL and Sorensen BS: Epithelial-to-mesenchymal transition is a resistance mechanism to sequential MET-TKI treatment of MET-amplified EGFR-TKI resistant non-small cell lung cancer cells. Transl Lung Cancer Res. 9:1904–1914. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Wang K, Yu H, Guo S, Sun G, Cao H, Xing D, Li D and Yan A: CAPRIN1/TYMS/MTHFD2 axis promotes EMT process in nasopharyngeal carcinoma development. Int J Biochem Cell Biol. 185:1067842025. View Article : Google Scholar : PubMed/NCBI

55 

Jin Y, Wang Z, Liang Y, Jiang Y, Yuan F and Zhang T: miRNA-22-3p inhibits cell viability and metastasis of nasopharyngeal carcinoma by targeting FOXP1. Oncol Lett. 29:962024. View Article : Google Scholar : PubMed/NCBI

56 

Petrick JL, Florio AA, Znaor A, Ruggieri D, Laversanne M, Alvarez CS, Ferlay J, Valery PC, Bray F and McGlynn KA: International trends in hepatocellular carcinoma incidence, 1978–2012. Int J Cancer. 147:317–330. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Ji Y, Chen X, Liu X, Huang J and Liu P: lncRNA POLR2J4 plays a biomarker role in Hepatitis B virus-related hepatocellular carcinoma through regulating miR-214-3p. Turk J Gastroenterol. 35:787–794. 2024. View Article : Google Scholar : PubMed/NCBI

58 

Chen K, Feng X, Shi Y, Li XL, Shi ZR and Lan X: Complete response of gallbladder cancer treated with gemcitabine and cisplatin chemotherapy combined with durvalumab: A case report and review of literature. World J Gastrointest Oncol. 17:984332025. View Article : Google Scholar : PubMed/NCBI

59 

Park W, Chawla A and O'Reilly EM: Pancreatic cancer: A review. JAMA. 326:851–862. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Grobbelaar C, Steenkamp V and Mabeta P: Vascular endothelial growth factor receptors in the vascularization of pancreatic tumors: Implications for prognosis and therapy. Curr Issues Mol Biol. 47:1792025. View Article : Google Scholar : PubMed/NCBI

61 

Sigirli S and Karakas D: Fibrotic fortresses and therapeutic frontiers: Pancreatic stellate cells and the extracellular matrix in pancreatic cancer. Cancer Med. 14:e707882025. View Article : Google Scholar : PubMed/NCBI

62 

Liu Y and Xue R: Pancreatic stellate cell: Update on molecular investigations and clinical translation in pancreatic cancer. Int J Cancer. 156:1672–1685. 2025. View Article : Google Scholar : PubMed/NCBI

63 

Rodger EJ, Gimenez G, Ajithkumar P, Stockwell PA, Almomani S, Bowden SA, Leichter AL, Ahn A, Pattison S, McCall JL, et al: An epigenetic signature of advanced colorectal cancer metastasis. iScience. 26:1069862023. View Article : Google Scholar : PubMed/NCBI

64 

Liu J and Zhang X, Yang M and Zhang X: CircCOL1A1 promotes proliferation, migration, and invasion of colorectal cancer (CRC) cells and glutamine metabolism through GLS1 up-regulation by sponging miR-214-3p. J Cancer Res Clin Oncol. 150:2112024. View Article : Google Scholar : PubMed/NCBI

65 

Zhao J, Tang X and Zhu H: Chondroitin polymerizing factor (CHPF) promotes the progression of colorectal cancer through ASB2-mediated ubiquitylation of SMAD9. Histol Histopathol. 39:1493–1503. 2024.PubMed/NCBI

66 

Yuan M, Zhu Y, Ren Y, Chen L, Dai X, Wang Y, Huang Y and Wang H: Global burden and attributable risk factors of breast cancer in young women: Historical trends from 1990 to 2019 and forecasts to 2030 by sociodemographic index regions and countries. J Glob Health. 14:041422024. View Article : Google Scholar : PubMed/NCBI

67 

Zhu C, Li J, Hua Y, Wang J, Wang K and Sun J: Berberine inhibits the expression of SCT through miR-214-3p stimulation in breast cancer cells. Evid Based Complement Alternat Med. 2020:28171472020. View Article : Google Scholar : PubMed/NCBI

68 

Li Z, Liu P, Yin A, Zhang B, Xu J, Chen Z, Zhang Z, Zhang Y, Wang S, Tang L, et al: Global landscapeof cervical cancer incidence and mortality in 2022 andpredictions to 2030: The urgent need to address inequalities incervical cancer. Int J Cancer. 157:288–297. 2025. View Article : Google Scholar : PubMed/NCBI

69 

Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.PubMed/NCBI

70 

Wang N, Yin J, You N, Zhu W, Guo N, Liu X, Zhang P, Huang W, Xie Y, Ren Q and Ma X: Twist family BHLH transcription factor 1 is required for the maintenance of leukemia stem cell in MLL-AF9+ acute myeloid leukemia. Haematologica. 109:84–97. 2024.PubMed/NCBI

71 

Wang J, Zhao X, Guo Z, Ma X, Song Y and Guo Y: Regulation of NEAT1/miR-214-3p on the growth, migration and invasion of endometrial carcinoma cells. Arch Gynecol Obstet. 295:1469–1475. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Huang W, Meng H, Xu Y, Huang L and Lou G: Olaparib promotes FABP4 expression and reduces antitumor effect in ovarian cancer cells with a BRCA1 mutation. Oncol Lett. 29:672024. View Article : Google Scholar : PubMed/NCBI

73 

Liu Y, Li Y, Wu Y, Zhao Y, Hu X and Sun C: The long non-coding RNA NEAT1 promotes the progression of human ovarian cancer through targeting miR-214-3p and regulating angiogenesis. J Ovarian Res. 16:2192023. View Article : Google Scholar : PubMed/NCBI

74 

Wang C, Qi S, Xie C, Li C, Wang P and Liu D: Upregulation of long non-coding RNA XIST has anticancer effects on epithelial ovarian cancer cells through inverse downregulation of hsa-miR-214-3p. J Gynecol Oncol. 29:e992018. View Article : Google Scholar : PubMed/NCBI

75 

Padala SA and Barsouk A, Thandra KC, Saginala K, Mohammed A, Vakiti A, Rawla P and Barsouk A: Epidemiology of renal cell carcinoma. World J Oncol. 11:79–87. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Liang H, Zhou B, Li P, Zhang X, Zhang S, Zhang Y, Yao S, Qu S and Chen J: Stemness regulation in prostate cancer: Prostate cancer stem cells and targeted therapy. Ann Med. 57:24420672025. View Article : Google Scholar : PubMed/NCBI

77 

Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J, Liao J, Zhang Z, Hu Y, Zhong X and Bao Y: High expression of small nucleolar RNA host gene 3 predicts poor prognosis and promotes bone metastasis in prostate cancer by activating transforming growth factor-beta signaling. Bioengineered. 13:1895–1907. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Chen Y, Yin Z, Westover KD, Zhou Z and Shu L: Advances and challenges in RAS signaling targeted therapy in leukemia. Mol Cancer Ther. 24:33–46. 2025. View Article : Google Scholar : PubMed/NCBI

79 

He Z, Liao Z, Chen S, Li B, Yu Z, Luo G, Yang L, Zeng C and Li Y: Downregulated miR-17, miR-29c, miR-92a and miR-214 may be related to BCL11B overexpression in T cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol. 14:e259–e265. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Xiao S, Xu N, Ding Q, Huang S, Zha Y and Zhu H: LncRNA VPS9D1-AS1 promotes cell proliferation in acute lymphoblastic leukemia through modulating GPX1 expression by miR-491-5p and miR-214-3p evasion. Biosci Rep. 40:BSR201934612020. View Article : Google Scholar : PubMed/NCBI

81 

Elguindy MM, Young JS, Ho WS and Lu RO: Co-evolution of glioma and immune microenvironment. J Immunother Cancer. 12:e0091752024. View Article : Google Scholar : PubMed/NCBI

82 

Benjamin AS and Nayak S: Iron oxide nanoparticles coated with bioactive materials: a viable theragnostic strategy to improve osteosarcoma treatment. Discov Nano. 20:182025. View Article : Google Scholar : PubMed/NCBI

83 

Li K, Shen H, Lu M, Chen J, Yin Q and Li P: Formononetin inhibits osteosarcoma cell proliferation and promotes apoptosis by regulating the miR-214-3p/phosphatase and tensin homolog pathway. Transl Cancer Res. 9:4914–4921. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Xiong X, Dang W, Luo R, Long Y, Tong C, Yuan L and Liu B: A graphene-based fluorescent nanoprobe for simultaneous imaging of dual miRNAs in living cells. Talanta. 225:1219472021. View Article : Google Scholar : PubMed/NCBI

85 

Xing AY, Wang B, Li YH, Chen X, Wang YW, Liu HT and Gao P: Identification of miRNA signature in breast cancer to predict neoadjuvant chemotherapy response. Pathol Oncol Res. 27:16097532021. View Article : Google Scholar : PubMed/NCBI

86 

Jin Y, Wong YS, Goh BKP, Chan CY, Cheow PC, Chow PKH, Lim TKH, Goh GBB, Krishnamoorthy TL, Kumar R, et al: Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Sci Rep. 9:104642019. View Article : Google Scholar : PubMed/NCBI

87 

Zhou Z, Wu L, Liu Z, Zhang X, Han S, Zhao N, Bao H, Yuan W, Chen J, Ji J and Shu X: MicroRNA-214-3p targets the PLAGL2-MYH9 axis to suppress tumor proliferation and metastasis in human colorectal cancer. Aging (Albany NY). 12:9633–9657. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Li Y, Li Y, Chen Y, Xie Q, Dong N, Gao Y, Deng H, Lu C and Wang S: MicroRNA-214-3p inhibits proliferation and cell cycle progression by targeting MELK in hepatocellular carcinoma and correlates cancer prognosis. Cancer Cell Int. 17:1022017. View Article : Google Scholar : PubMed/NCBI

89 

Wang J, Xu Y, Wang J and Ying H: Circulating miR-214-3p predicts nasopharyngeal carcinoma recurrence or metastasis. Clin Chim Acta. 503:54–60. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Ecke TH, Stier K, Weickmann S, Zhao Z, Buckendahl L, Stephan C, Kilic E and Jung K: miR-199a-3p and miR-214-3p improve the overall survival prediction of muscle-invasive bladder cancer patients after radical cystectomy. Cancer Med. 6:2252–2262. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Kuang L, Wang P, Zhou L and Li Y: Transformation of lung adenocarcinoma to small cell lung cancer following osimertinib treatment: A case report and literature review. Anticancer Drugs. 36:253–259. 2025. View Article : Google Scholar : PubMed/NCBI

92 

Maurya N, Meena A and Luqman S: Role of microRNAs in lung oncogenesis: Diagnostic implications, resistance mechanisms, and therapeutic strategies. Int J Biol Macromol 318 (Pt 1). 1442612025. View Article : Google Scholar

93 

Wang X, Li H and Shi J: LncRNA HOXA11-AS promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by suppression of miR-214-3p expression. Biomed Res Int. 2019:86451532019.PubMed/NCBI

94 

Phatak P, Byrnes KA, Mansour D, Liu L, Cao S, Li R, Rao JN, Turner DJ, Wang JY and Donahue JM: Overexpression of miR-214-3p in esophageal squamous cancer cells enhances sensitivity to cisplatin by targeting survivin directly and indirectly through CUG-BP1. Oncogene. 35:2087–2097. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Lan T, Quan W, Yu DH, Chen X, Wang ZF and Li ZQ: High expression of LncRNA HOTAIR is a risk factor for temozolomide resistance in glioblastoma via activation of the miR-214/β-catenin/MGMT pathway. Sci Rep. 14:262242024. View Article : Google Scholar : PubMed/NCBI

96 

Yang L, Zhang L, Lu L and Wang Y: miR-214-3p regulates multi-drug resistance and apoptosis in retinoblastoma cells by targeting ABCB1 and XIAP. Onco Targets Ther. 13:803–811. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R, Yeung SC and Lee MH: Pim-1 plays a pivotal role in hypoxia-induced chemoresistance. Oncogene. 28:2581–2592. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Chaudhary B, Arya P, Sharma V, Kumar P, Singla D and Grewal AS: Targeting anti-apoptotic mechanisms in tumour cells: Strategies for enhancing Cancer therapy. Bioorg Chem. 159:1083882025. View Article : Google Scholar : PubMed/NCBI

99 

Lei X, He N, Zhu L, Zhou M, Zhang K, Wang C, Huang H, Chen S, Li Y, Liu Q, et al: Mesenchymal stem cell-derived extracellular vesicles attenuate radiation-induced lung injury via miRNA-214-3p. Antioxid Redox Signal. 35:849–862. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Shen G, Liu Z, Wang M, Zhao Y, Liu X, Hou Y, Ma W, Han J, Zhou X, Ren D, et al: Neoadjuvant apatinib addition to sintilimab and carboplatin-taxane based chemotherapy in patients with early triple-negative breast cancer: The phase 2 NeoSAC trial. Signal Transduct Target Ther. 10:412025. View Article : Google Scholar : PubMed/NCBI

101 

Tian Z, Cen L, Wei F, Dong J, Huang Y, Han Y, Wang Z, Deng J and Jiang Y: EGFR mutations in non-small cell lung cancer: Classification, characteristics and resistance to third-generation EGFR-tyrosine kinase inhibitors (Review). Oncol Lett. 30:3752025. View Article : Google Scholar : PubMed/NCBI

102 

Hu S, Zhou Q, Lu Q, Guo X, Wang Y and Duan YX: miR-199a/214 cluster enhances prostate cancer sensitiveness to nimotuzumab via targeting TBL1XR1. Kaohsiung J Med Sci. 39:1178–1189. 2023. View Article : Google Scholar : PubMed/NCBI

103 

Seo Y, Rhim J and Kim JH: RNA-binding proteins and exoribonucleases modulating miRNA in cancer: The enemy within. Exp Mol Med. 56:1080–1106. 2024. View Article : Google Scholar : PubMed/NCBI

104 

Kang E and Kortylewski M: Lipid nanoparticle-mediated delivery of miRNA mimics to myeloid cells. Methods Mol Biol. 2691:337–350. 2023. View Article : Google Scholar : PubMed/NCBI

105 

Qian Y, Zhu D, Xu Q, Wang Y, Chen X, Hua W, Xi J and Lu F: PAMAM/miR-144 nanocarrier system inhibits the migration of gastric cancer by targeting mTOR signal transduction pathway. Colloids Surf B Biointerfaces. 249:1144922025. View Article : Google Scholar : PubMed/NCBI

106 

Tanno T, Zhang P, Bailey C, Wang Y, Ittiprasert W, Devenport M, Zheng P and Liu Y: A novel aptamer-based small RNA delivery platform and its application to cancer therapy. Genes Dis. 10:1075–1089. 2022. View Article : Google Scholar : PubMed/NCBI

107 

Zeng H, Guo S, Ren X, Wu Z, Liu S and Yao X: Current strategies for exosome cargo loading and targeting delivery. Cells. 12:14162023. View Article : Google Scholar : PubMed/NCBI

108 

He L, Chen Q and Wu X: Tumour-derived exosomal miR-205 promotes ovarian cancer cell progression through M2 macrophage polarization via the PI3K/Akt/mTOR pathway. J Ovarian Res. 18:282025. View Article : Google Scholar : PubMed/NCBI

109 

Lundstrom K: Are viral vectors any good for RNAi antiviral therapy? Viruses. 12:11892020. View Article : Google Scholar : PubMed/NCBI

110 

Arduini A, Katiyar H and Liang C: Progress in pseudotyping lentiviral vectors towards cell-specific gene delivery in vivo. Viruses. 17:8022025. View Article : Google Scholar : PubMed/NCBI

111 

Gutierrez-Guerrero A, Cosset FL and Verhoeyen E: Lentiviral vector pseudotypes: Precious tools to improve gene modification of hematopoietic cells for research and gene therapy. Viruses. 12:10162020. View Article : Google Scholar : PubMed/NCBI

112 

Miletic H, Fischer YH, Neumann H, Hans V, Stenzel W, Giroglou T, Hermann M, Deckert M and Von Laer D: Selective transduction of malignant glioma by lentiviral vectors pseudotyped with lymphocytic choriomeningitis virus glycoproteins. Hum Gene Ther. 15:1091–1100. 2004. View Article : Google Scholar : PubMed/NCBI

113 

Roszkowski S and Durczynska Z: Advantages and limitations of nanostructures for biomedical applications. Adv Clin Exp Med. 34:447–456. 2025. View Article : Google Scholar : PubMed/NCBI

114 

Kim B, Shin J, Wu J, Omstead DT, Kiziltepe T, Littlepage LE and Bilgicer B: Engineering peptide-targeted liposomal nanoparticles optimized for improved selectivity for HER2-positive breast cancer cells to achieve enhanced in vivo efficacy. J Control Release. 322:530–541. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Dinakar YH, Karole A, Parvez S, Jain V and Mudavath SL: Folate receptor targeted NIR cleavable liposomal delivery system augment penetration and therapeutic efficacy in breast cancer. Biochim Biophys Acta Gen Subj. 1867:1303962023. View Article : Google Scholar : PubMed/NCBI

116 

Rong J, Liu T, Yin X, Shao M, Zhu K, Li B, Wang S, Zhu Y, Zhang S, Yin L, et al: Co-delivery of camptothecin and MiR-145 by lipid nanoparticles for MRI-visible targeted therapy of hepatocellular carcinoma. J Exp Clin Cancer Res. 43:2472024. View Article : Google Scholar : PubMed/NCBI

117 

Fan Q, Sun B and Chao J: Advancements in engineering tetrahedral framework nucleic acids for biomedical innovations. Small Methods. 9:e24013602025. View Article : Google Scholar : PubMed/NCBI

118 

Siragusa G, Tomasello L, Giordano C and Pizzolanti G: Survivin (BIRC5): Implications in cancer therapy. Life Sci. 350:1227882024. View Article : Google Scholar : PubMed/NCBI

119 

Li S, Sun Y, Tian T, Qin X, Lin S, Zhang T, Zhang Q, Zhou M, Zhang X, Zhou Y, et al: MicroRNA-214-3p modified tetrahedral framework nucleic acids target survivin to induce tumour cell apoptosis. Cell Prolif. 53:e127082020. View Article : Google Scholar : PubMed/NCBI

120 

Hassan AAA, Ramadan E, Kristó K, Regdon G Jr and Sovány T: Lipid-polymer hybrid nanoparticles as a smart drug delivery system for peptide/protein delivery. Pharmaceutics. 17:7972025. View Article : Google Scholar : PubMed/NCBI

121 

Sonkar C, Ranjan R and Mukhopadhyay S: Inorganic nanoparticle-based nanogels and their biomedical applications. Dalton Trans. 54:6346–6360. 2025. View Article : Google Scholar : PubMed/NCBI

122 

Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, et al: Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 118:3143–3150. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Z, Deng X, Lu Y, Lu L, Qin Y, Qu H and Lan S: Role of miRNA‑214‑3p in cancer (Review). Oncol Rep 54: 123, 2025.
APA
Chen, Z., Deng, X., Lu, Y., Lu, L., Qin, Y., Qu, H., & Lan, S. (2025). Role of miRNA‑214‑3p in cancer (Review). Oncology Reports, 54, 123. https://doi.org/10.3892/or.2025.8957
MLA
Chen, Z., Deng, X., Lu, Y., Lu, L., Qin, Y., Qu, H., Lan, S."Role of miRNA‑214‑3p in cancer (Review)". Oncology Reports 54.4 (2025): 123.
Chicago
Chen, Z., Deng, X., Lu, Y., Lu, L., Qin, Y., Qu, H., Lan, S."Role of miRNA‑214‑3p in cancer (Review)". Oncology Reports 54, no. 4 (2025): 123. https://doi.org/10.3892/or.2025.8957
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Z, Deng X, Lu Y, Lu L, Qin Y, Qu H and Lan S: Role of miRNA‑214‑3p in cancer (Review). Oncol Rep 54: 123, 2025.
APA
Chen, Z., Deng, X., Lu, Y., Lu, L., Qin, Y., Qu, H., & Lan, S. (2025). Role of miRNA‑214‑3p in cancer (Review). Oncology Reports, 54, 123. https://doi.org/10.3892/or.2025.8957
MLA
Chen, Z., Deng, X., Lu, Y., Lu, L., Qin, Y., Qu, H., Lan, S."Role of miRNA‑214‑3p in cancer (Review)". Oncology Reports 54.4 (2025): 123.
Chicago
Chen, Z., Deng, X., Lu, Y., Lu, L., Qin, Y., Qu, H., Lan, S."Role of miRNA‑214‑3p in cancer (Review)". Oncology Reports 54, no. 4 (2025): 123. https://doi.org/10.3892/or.2025.8957
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team