|
1
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung
H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45.
2025.PubMed/NCBI
|
|
2
|
Hirsch FR, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li Y, Yan B and He S: Advances and
challenges in the treatment of lung cancer. Biomed Pharmacother.
169:1158912023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nooreldeen R and Bach H: Current and
future development in lung cancer diagnosis. Int J Mol Sci.
22:86612021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nasim F, Sabath BF and Eapen GA: Lung
cancer. Med Clin North Am. 103:463–473. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Schabath MB and Cote ML: Cancer progress
and priorities: Lung cancer. Cancer Epidemiol Biomarkers Prev.
28:1563–1579. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bade BC and Dela Cruz CS: Lung cancer
2020: Epidemiology, etiology, and prevention. Clin Chest Med.
41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Qi C, Sun SW and Xiong XZ: From COPD to
lung cancer: Mechanisms linking, diagnosis, treatment, and
prognosis. Int J Chron Obstruct Pulmon Dis. 17:2603–2621. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jonna S and Subramaniam DS: Molecular
diagnostics and targeted therapies in non-small cell lung cancer
(NSCLC): An update. Discov Med. 27:167–170. 2019.PubMed/NCBI
|
|
10
|
Alexander M, Kim SY and Cheng H: Update
2020: Management of non-small cell lung cancer. Lung. 198:897–907.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Detterbeck FC, Woodard GA, Bader AS, Dacic
S, Grant MJ, Park HS and Tanoue LT: The proposed ninth edition TNM
classification of lung cancer. Chest. 166:882–895. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lee JH, Saxena A and Giaccone G:
Advancements in small cell lung cancer. Semin Cancer Biol.
93:123–128. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Oliver AL: Lung cancer: Epidemiology and
screening. Surg Clin North Am. 102:335–344. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
de Sousa VML and Carvalho L: Heterogeneity
in lung cancer. Pathobiology. 85:96–107. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Collins LG, Haines C, Perkel R and Enck
RE: Lung cancer: Diagnosis and management. Am Fam Physician.
75:56–63. 2007.PubMed/NCBI
|
|
16
|
Liang J, Guan X, Bao G, Yao Y and Zhong X:
Molecular subtyping of small cell lung cancer. Semin Cancer Biol.
86:450–462. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Oduah EI and Grossman SR: Harnessing the
vulnerabilities of p53 mutants in lung cancer-Focusing on the
proteasome: A new trick for an old foe? Cancer Biol Ther.
21:293–302. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fregni M, Ciribilli Y and Zawacka-Pankau
JE: The therapeutic potential of the restoration of the p53 protein
family members in the EGFR-mutated lung cancer. Int J Mol Sci.
23:72132022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen T, Ashwood LM, Kondrashova O,
Strasser A, Kelly G and Sutherland KD: Breathing new insights into
the role of mutant p53 in lung cancer. Oncogene. 44:115–129. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang H, Zhang G, Xiao M, Cui S, Jin C,
Yang J, Wu S and Lu X: Two-polarized roles of transcription factor
FOSB in lung cancer progression and prognosis: Dependent on p53
status. J Exp Clin Cancer Res. 43:2372024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mao Y, Yang D, He J and Krasna MJ:
Epidemiology of lung cancer. Surg Oncol Clin N Am. 25:439–445.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Alburquerque-Bejar JJ, Navajas-Chocarro P,
Saigi M, Ferrero-Andres A, Morillas JM, Vilarrubi A, Gomez A, Mate
JL, Munoz-Marmol AM, Romero OA, et al: MYC activation impairs
cell-intrinsic IFNγ signaling and confers resistance to
anti-PD1/PD-L1 therapy in lung cancer. Cell Rep Med. 4:1010062023.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hua Q, Jin M, Mi B, Xu F, Li T, Zhao L,
Liu J and Huang G: LINC01123, a c-Myc-activated long non-coding
RNA, promotes proliferation and aerobic glycolysis of non-small
cell lung cancer through miR-199a-5p/c-Myc axis. J Hematol Oncol.
12:912019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Choudhuri SP, Girard L, Lim JYS, Wise JF,
Freitas B, Yang D, Wong E, Hamilton S, Chien VD, Kim YJ, et al:
Acquired cross-resistance in small cell lung cancer due to
extrachromosomal DNA amplification of MYC paralogs. Cancer Discov.
14:804–827. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mollaoglu G, Guthrie MR, Böhm S,
Brägelmann J, Can I, Ballieu PM, Marx A, George J, Heinen C,
Chalishazar MD, et al: MYC drives progression of small cell lung
cancer to a variant neuroendocrine subtype with vulnerability to
aurora kinase inhibition. Cancer Cell. 31:270–285. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ireland AS, Micinski AM, Kastner DW, Guo
B, Wait SJ, Spainhower KB, Conley CC, Chen OS, Guthrie MR, Soltero
D, et al: MYC drives temporal evolution of small cell lung cancer
subtypes by reprogramming neuroendocrine fate. Cancer Cell.
38:60–78. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li B, Zhu L, Lu C, Wang C, Wang H, Jin H,
Ma X, Cheng Z, Yu C, Wang S, et al: circNDUFB2 inhibits non-small
cell lung cancer progression via destabilizing IGF2BPs and
activating anti-tumor immunity. Nat Commun. 12:2952021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang Q, Abdo R, Iosef C, Kaneko T,
Cecchini M, Han VK and Li SS: The spatial transcriptomic landscape
of non-small cell lung cancer brain metastasis. Nat Commun.
13:59832022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tian Y, Li Q, Yang Z, Zhang S, Xu J, Wang
Z, Bai H, Duan J, Zheng B, Li W, et al: Single-cell transcriptomic
profiling reveals the tumor heterogeneity of small-cell lung
cancer. Signal Transduct Target Ther. 7:3462022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chanvorachote P, Sriratanasak N and
Nonpanya N: C-myc contributes to malignancy of lung cancer: A
potential anticancer drug target. Anticancer Res. 40:609–618. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Massó-Vallés D, Beaulieu ME and Soucek L:
MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert
Opin Ther Targets. 24:101–114. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fournel L, Wu Z, Stadler N, Damotte D,
Lococo F, Boulle G, Ségal-Bendirdjian E, Bobbio A, Icard P,
Trédaniel J, et al: Cisplatin increases PD-L1 expression and
optimizes immune check-point blockade in non-small cell lung
cancer. Cancer Lett. 464:5–14. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Huang C, Ren S, Chen Y, Liu A, Wu Q, Jiang
T, Lv P, Song D, Hu F, Lan J, et al: PD-L1 methylation restricts
PD-L1/PD-1 interactions to control cancer immune surveillance. Sci
Adv. 9:eade41862023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Reda M, Ngamcherdtrakul W, Nelson MA,
Siriwon N, Wang R, Zaidan HY, Bejan DS, Reda S, Hoang NH, Crumrine
NA, et al: Development of a nanoparticle-based immunotherapy
targeting PD-L1 and PLK1 for lung cancer treatment. Nat Commun.
13:42612022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Reck M, Remon J and Hellmann MD:
First-Line immunotherapy for non-small-cell lung cancer. J Clin
Oncol. 40:586–597. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Noor ZS, Cummings AL, Johnson M, Spiegel
ML and Goldman JW: Targeted therapy for non-small cell lung cancer.
Semin Respir Crit Care Med. 41:409–434. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Vinod SK and Hau E: Radiotherapy treatment
for lung cancer: Current status and future directions. Respirology.
25 (Suppl 2):S61–S71. 2020. View Article : Google Scholar
|
|
38
|
Yang S, Zhang Z and Wang Q: Emerging
therapies for small cell lung cancer. J Hematol Oncol. 12:472019.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zugazagoitia J and Paz-Ares L:
Extensive-Stage small-cell lung cancer: First-line and second-line
treatment options. J Clin Oncol. 40:671–680. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Grant C, Hagopian G and Nagasaka M:
Neoadjuvant therapy in non-small cell lung cancer. Crit Rev Oncol
Hematol. 190:1040802023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang M, Herbst RS and Boshoff C: Toward
personalized treatment approaches for non-small-cell lung cancer.
Nat Med. 27:1345–1356. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chaft JE, Rimner A, Weder W, Azzoli CG,
Kris MG and Cascone T: Evolution of systemic therapy for stages
I–III non-metastatic non-small-cell lung cancer. Nat Rev Clin
Oncol. 18:547–557. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Miller M and Hanna N: Advances in systemic
therapy for non-small cell lung cancer. BMJ. 375:n23632021.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Passaro A, Brahmer J, Antonia S, Mok T and
Peters S: Managing resistance to immune checkpoint inhibitors in
lung cancer: Treatment and novel strategies. J Clin Oncol.
40:598–610. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jachowski A, Marcinkowski M, Szydłowski J,
Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP and
Słowikowski BK: Modern therapies of nonsmall cell lung cancer. J
Appl Genet. 64:695–711. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kumar S, Malviya R and Uniyal P: Vaccine
for targeted therapy of lung cancer: Advances and developments.
Curr Drug Targets. 25:526–529. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Guo H, Zhang J, Qin C, Yan H, Liu T, Hu H,
Tang S, Tang S and Zhou H: Biomarker-targeted therapies in
non-small cell lung cancer: Current status and perspectives. Cells.
11:32002022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Meyer ML, Fitzgerald BG, Paz-Ares L,
Cappuzzo F, Jänne PA, Peters S and Hirsch FR: New promises and
challenges in the treatment of advanced non-small-cell lung cancer.
Lancet. 404:803–822. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yu L, Lai Q, Gou L, Feng J and Yang J:
Opportunities and obstacles of targeted therapy and immunotherapy
in small cell lung cancer. J Drug Target. 29:1–11. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Desai A and Peters S: Immunotherapy-based
combinations in metastatic NSCLC. Cancer Treat Rev. 116:1025452023.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Higgins KA, Puri S and Gray JE: Systemic
and radiation therapy approaches for locally advanced
non-small-cell lung cancer. J Clin Oncol. 40:576–585. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Meliambro K, He JC and Campbell KN:
Podocyte-targeted therapies-progress and future directions. Nat Rev
Nephrol. 20:643–658. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li Y, Tuerxun H and Zhao Y, Liu X, Li X,
Wen S and Zhao Y: The new era of lung cancer therapy: Combining
immunotherapy with ferroptosis. Crit Rev Oncol Hematol.
198:1043592024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Muthusamy B, Patil PD and Pennell NA:
Perioperative systemic therapy for resectable non-small cell lung
cancer. J Natl Compr Canc Netw. 20:953–961. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lin J, Rao D, Zhang M and Gao Q: Metabolic
reprogramming in the tumor microenvironment of liver cancer. J
Hematol Oncol. 17:62024. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wu A, Lee D and Xiong WC: Lactate
metabolism, signaling, and function in brain development, synaptic
plasticity, angiogenesis, and neurodegenerative diseases. Int J Mol
Sci. 24:133982023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang A, Zou Y, Liu S, Zhang X, Li T, Zhang
L, Wang R, Xia Y, Li X, Zhang Z, et al: Comprehensive multiscale
analysis of lactate metabolic dynamics in vitro and in vivo using
highly responsive biosensors. Nat Protoc. 19:1311–1347. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rabinowitz JD and Enerbäck S: Lactate: The
ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li M, Yu J, Ju L, Wang Y, Jin W, Zhang R,
Xiang W, Ji M, Du W, Wang G, et al: USP43 stabilizes c-Myc to
promote glycolysis and metastasis in bladder cancer. Cell Death
Dis. 15:442024. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Philp A, Macdonald AL and Watt PW:
Lactate-a signal coordinating cell and systemic function. J Exp
Biol. 208:4561–4575. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hollyer TR, Bordoni L, Kousholt BS, van
Luijk J, Ritskes-Hoitinga M and Østergaard L: The evidence for the
physiological effects of lactate on the cerebral microcirculation:
A systematic review. J Neurochem. 148:712–730. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Payen VL, Mina E, Van Hée VF, Porporato PE
and Sonveaux P: Monocarboxylate transporters in cancer. Mol Metab.
33:48–66. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pouysségur J, Marchiq I, Parks SK,
Durivault J, Ždralević M and Vucetic M: ‘Warburg effect’ controls
tumor growth, bacterial, viral infections and immunity-Genetic
deconstruction and therapeutic perspectives. Semin Cancer Biol.
86:334–346. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
DiGirolamo M, Newby FD and Lovejoy J:
Lactate production in adipose tissue: A regulated function with
extra-adipose implications. FASEB J. 6:2405–2412. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gou Y, Wang H, Wang T, Wang H, Wang B,
Jiao N, Yu Y, Cao Y, Wang H and Zhang Z: Ectopic endometriotic
stromal cells-derived lactate induces M2 macrophage polarization
via Mettl3/Trib1/ERK/STAT3 signalling pathway in endometriosis.
Immunology. 168:389–402. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ma R, Zhou X, Zhang G, Wu H, Lu Y, Liu F,
Chang Y and Ding Y: Association between composite dietary
antioxidant index and coronary heart disease among US adults: A
cross-sectional analysis. BMC Public Health. 23:24262023.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y,
Zhu Q, Zhang WB, Pan YB, Jin J, et al: Lactate-induced M2
polarization of tumor-associated macrophages promotes the invasion
of pituitary adenoma by secreting CCL17. Theranostics.
11:3839–3852. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Guo M, Gou Y, Dong X, Zhong J, Li A, Hao
A, He TC and Fan J: Syrosingopine, an anti-hypertensive drug and
lactate transporter (MCT1/4) inhibitor, activates hepatic stellate
cells and exacerbates liver fibrosis in a mouse model. Genes Dis.
11:1011692024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jedlička M, Feglarová T, Janstová L,
Hortová-Kohoutková M and Frič J: Lactate from the tumor
microenvironment-A key obstacle in NK cell-based immunotherapies.
Front Immunol. 13:9320552022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Brand A, Singer K, Koehl GE, Kolitzus M,
Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et
al: LDHA-Associated lactic acid production blunts tumor
immunosurveillance by T and NK Cells. Cell Metab. 24:657–671. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B,
Yang J, Pan J, Hu S, Zhang C, et al: Tumor-derived lactate induces
M2 macrophage polarization via the activation of the ERK/STAT3
signaling pathway in breast cancer. Cell Cycle. 17:428–438. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vavřička J, Brož P, Follprecht D, Novák J
and Kroužecký A: Modern perspective of lactate metabolism. Physiol
Res. 73:499–514. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ge W, Meng L, Cao S, Hou C, Zhu X, Huang
D, Li Q, Peng Y and Jiang K: The SIX1/LDHA axis promotes lactate
accumulation and leads to NK cell dysfunction in pancreatic cancer.
J Immunol Res. 2023:68916362023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Luo Y, Li L, Chen X, Gou H, Yan K and Xu
Y: Effects of lactate in immunosuppression and inflammation:
Progress and prospects. Int Rev Immunol. 41:19–29. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lundø K, Dmytriyeva O, Spøhr L,
Goncalves-Alves E, Yao J, Blasco LP, Trauelsen M, Ponniah M,
Severin M, Sandelin A, et al: Lactate receptor GPR81 drives breast
cancer growth and invasiveness through regulation of ECM properties
and Notch ligand DLL4. BMC Cancer. 23:11362023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ishihara S, Hata K, Hirose K, Okui T,
Toyosawa S, Uzawa N, Nishimura R and Yoneda T: The lactate sensor
GPR81 regulates glycolysis and tumor growth of breast cancer. Sci
Rep. 12:62612022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Guo X, Wan P, Shen W, Sun M, Peng Z, Liao
Y, Huang Y and Liu R: Fusobacterium periodonticum BCT protein
targeting glucose metabolism to promote the epithelial-mesenchymal
transition of esophageal cancer cells by lactic acid. J Transl Med.
22:4012024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S,
Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests
lactylation-dependent mechanisms of metabolic adaptation in
hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fan H, Yang F, Xiao Z, Luo H, Chen H, Chen
Z, Liu Q and Xiao Y: Lactylation: Novel epigenetic regulatory and
therapeutic opportunities. Am J Physiol Endocrinol Metab.
324:E330–E338. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen L, Huang L, Gu Y, Cang W, Sun P and
Xiang Y: Lactate-lactylation hands between metabolic reprogramming
and immunosuppression. Int J Mol Sci. 23:119432022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li J, Zhang Y, Zuo Z, Zhang Z, Wang Y,
Chang S, Huang J, Dai Y and Ge J: Salvianolate injection
ameliorates cardiomyopathy by regulating autophagic flux through
miR-30a/becn1 axis in zebrafish. Chin Med J (Engl).
5:0.1097/CM9.0000000000003322. 2024.
|
|
82
|
Yang H, Zou X, Yang S, Zhang A, Li N and
Ma Z: Identification of lactylation related model to predict
prognostic, tumor infiltrating immunocytes and response of
immunotherapy in gastric cancer. Front Immunol. 14:11499892023.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Qu J, Li P and Sun Z: Histone lactylation
regulates cancer progression by reshaping the tumor
microenvironment. Front Immunol. 14:12843442023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xin Q, Wang H, Li Q, Liu S, Qu K, Liu C
and Zhang J: Lactylation: A passing fad or the future of
posttranslational modification. Inflammation. 45:1419–1429. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Xie B, Zhang M, Li J, Cui J, Zhang P, Liu
F, Wu Y, Deng W, Ma J, Li X, et al: KAT8-catalyzed lactylation
promotes eEF1A2-mediated protein synthesis and colorectal
carcinogenesis. Proc Natl Acad Sci USA. 121:e23141281212024.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jia M, Yue X, Sun W, Zhou Q, Chang C, Gong
W, Feng J, Li X, Zhan R, Mo K, et al: ULK1-mediated metabolic
reprogramming regulates Vps34 lipid kinase activity by its
lactylation. Sci Adv. 9:eadg49932023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang X, Fan W, Li N, Ma Y, Yao M, Wang G,
He S, Li W, Tan J, Lu Q and Hou S: YY1 lactylation in microglia
promotes angiogenesis through transcription activation-mediated
upregulation of FGF2. Genome Biol. 24:872023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ju J, Zhang H, Lin M, Yan Z, An L, Cao Z,
Geng D, Yue J, Tang Y, Tian L, et al: The alanyl-tRNA synthetase
AARS1 moonlights as a lactyltransferase to promote YAP signaling in
gastric cancer. J Clin Invest. 134:e1745872024. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F,
Gill PS, Ha T, Liu L, Williams DL and Li C: Lactate promotes
macrophage HMGB1 lactylation, acetylation, and exosomal release in
polymicrobial sepsis. Cell Death Differ. 29:133–146. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Dong M, Zhang Y, Chen M, Tan Y, Min J, He
X, Liu F, Gu J, Jiang H, Zheng L, et al: ASF1A-dependent
P300-mediated histone H3 lysine 18 lactylation promotes
atherosclerosis by regulating EndMT. Acta Pharm Sin B.
14:3027–3048. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wang J, Wang Z, Wang Q, Li X and Guo Y:
Ubiquitous protein lactylation in health and diseases. Cell Mol
Biol Lett. 29:232024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
He X, Li Y, Li J, Li Y, Chen S, Yan X, Xie
Z, Du J, Chen G, Song J and Mei Q: HDAC2-Mediated METTL3
delactylation promotes DNA damage repair and chemotherapy
resistance in triple-negative breast cancer. Adv Sci (Weinh).
12:e24131212025. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yang Z, Su W, Zhang Q, Niu L, Feng B,
Zhang Y, Huang F, He J, Zhou Q, Zhou X, et al: Lactylation of HDAC1
confers resistance to ferroptosis in colorectal cancer. Adv Sci
(Weinh). 12:e24088452025. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Sun S, Xu Z, He L, Shen Y, Yan Y, Lv X,
Zhu X, Li W, Tian WY, Zheng Y, et al: Metabolic regulation of
cytoskeleton functions by HDAC6-catalyzed α-tubulin lactylation.
Nat Commun. 15:83772024. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Minami E, Sasa K, Yamada A, Kawai R,
Yoshida H, Nakano H, Maki K and Kamijo R: Lactate-induced histone
lactylation by p300 promotes osteoblast differentiation. PLoS One.
18:e02936762023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Brooks GA: Lactate as a fulcrum of
metabolism. Redox Biol. 35:1014542020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Xie Y, Hu H, Liu M, Zhou T, Cheng X, Huang
W and Cao L: The role and mechanism of histone lactylation in
health and diseases. Front Genet. 13:9492522022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu X, Zhang Y, Li W and Zhou X:
Lactylation, an emerging hallmark of metabolic reprogramming:
Current progress and open challenges. Front Cell Dev Biol.
10:9720202022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yang Z, Zheng Y and Gao Q: Lysine
lactylation in the regulation of tumor biology. Trends Endocrinol
Metab. 35:720–731. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Koeffler HP: NBS1 lactylation and damaged
DNA repair. Cancer Lett. 604:2171282024. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Chen H, Li Y, Li H, Chen X, Fu H, Mao D,
Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required
for efficient DNA repair and chemotherapy resistance. Nature.
631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wang L, Zeng T, Wang Y, Wang G, Yu W,
Zhang J, Shi Y, Li J and Ding J: K90 lactylation orchestrates YAP
nuclear sequestration by impairing binding with exportin CRM1 and
enhances HCC malignancy. Cancer Lett. 611:2173862025. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Merkuri F, Rothstein M and Simoes-Costa M:
Histone lactylation couples cellular metabolism with developmental
gene regulatory networks. Nat Commun. 15:902024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan
M, Xiang J, He N, Hu Z and Wang F: CircXRN2 suppresses tumor
progression driven by histone lactylation through activating the
Hippo pathway in human bladder cancer. Mol Cancer. 22:1512023.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Huang H, Chen K, Zhu Y, Hu Z, Wang Y, Chen
J, Li Y, Li D and Wei P: A multi-dimensional approach to unravel
the intricacies of lactylation-related signature for prognostic and
therapeutic insight in colorectal cancer. J Transl Med. 22:2112024.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L,
Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes
resistance to bevacizumab treatment by facilitating autophagy
enhancer protein RUBCNL expression through histone H3 lysine 18
lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Sun L, Zhang Y, Yang B, Sun S, Zhang P,
Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16
promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric
cancer. Nat Commun. 14:65232023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Faubert B, Li KY, Cai L, Hensley CT, Kim
J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al:
Lactate metabolism in human lung tumors. Cell. 171:358–371. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang S, Cheng Z, Cui Y, Xu S, Luan Q, Jing
S, Du B, Li X and Li Y: PTPRH promotes the progression of non-small
cell lung cancer via glycolysis mediated by the PI3K/AKT/mTOR
signaling pathway. J Transl Med. 21:8192023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liu X, Qin H, Zhang L, Jia C, Chao Z, Qin
X, Zhang H and Chen C: Hyperoxia induces glucose metabolism
reprogramming and intracellular acidification by suppressing
MYC/MCT1 axis in lung cancer. Redox Biol. 61:1026472023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yang J, Dong C, Wu J, Liu D, Luo Q and Jin
X: Fructose utilization enhanced by GLUT5 promotes lung cancer cell
migration via activating glycolysis/AKT pathway. Clin Transl Oncol.
25:1080–1090. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Song G, Fang J, Shang C, Li Y, Zhu Y, Xiu
Z, Sun L, Jin N and Li X: Ad-apoptin inhibits glycolysis, migration
and invasion in lung cancer cells targeting AMPK/mTOR signaling
pathway. Exp Cell Res. 409:1129262021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Chen Z, Hu Z, Sui Q, Huang Y, Zhao M, Li
M, Liang J, Lu T, Zhan C, Lin Z, et al: LncRNA FAM83A-AS1
facilitates tumor proliferation and the migration via the
HIF-1α/glycolysis axis in lung adenocarcinoma. Int J Biol Sci.
18:522–535. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang K, Hu H, Xu J, Qiu L, Chen H, Jiang
X and Jiang Y: Circ_0001421 facilitates glycolysis and lung cancer
development by regulating miR-4677-3p/CDCA3. Diagn Pathol.
15:1332020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yan F, Teng Y, Li X, Zhong Y, Li C, Yan F
and He X: Hypoxia promotes non-small cell lung cancer cell
stemness, migration, and invasion via promoting glycolysis by
lactylation of SOX9. Cancer Biol Ther. 25:23041612024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
He Y, Jiang S, Zhong Y, Wang X, Cui Y,
Liang J, Sun Y, Zhu Z, Huang Z and Mao X: USP7 promotes
non-small-cell lung cancer cell glycolysis and survival by
stabilizing and activating c-Abl. Clin Transl Med. 13:e15092023.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lin S, Li Y, Wang D, Huang C, Marino D,
Bollt O, Wu C, Taylor MD, Li W, DeNicola GM, et al: Fascin promotes
lung cancer growth and metastasis by enhancing glycolysis and
PFKFB3 expression. Cancer Lett. 518:230–242. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Cong J, Wang X, Zheng X, Wang D, Fu B, Sun
R, Tian Z and Wei H: Dysfunction of natural killer cells by
FBP1-induced inhibition of glycolysis during lung cancer
progression. Cell Metab. 28:243–255. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zhao F, Wang Z, Li Z, Liu S and Li S:
Identifying a lactic acid metabolism-related gene signature
contributes to predicting prognosis, immunotherapy efficacy, and
tumor microenvironment of lung adenocarcinoma. Front Immunol.
13:9805082022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang H, Zhang K, Qiu L, Yue J, Jiang H,
Deng Q, Zhou R, Yin Z, Ma S and Ke Y: Cancer-associated fibroblasts
facilitate DNA damage repair by promoting the glycolysis in
non-small cell lung cancer. Biochim Biophys Acta Mol Basis Dis.
1869:1666702023. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Jiang J, Huang D, Jiang Y, Hou J, Tian M,
Li J, Sun L, Zhang Y, Zhang T, Li Z, et al: Lactate modulates
cellular metabolism through histone lactylation-mediated gene
expression in non-small cell lung cancer. Front Oncol.
11:6475592021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Yang Y, Wang QC, Kong J, Yang JT and Liu
JF: Global profiling of lysine lactylation in human lungs.
Proteomics. 23:e22004372023. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Gao M, Wang M, Zhou S, Hou J, He W, Shu Y
and Wang X: Machine learning-based prognostic model of
lactylation-related genes for predicting prognosis and immune
infiltration in patients with lung adenocarcinoma. Cancer Cell Int.
24:4002024. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hua M and Li T: Multiomic machine learning
on lactylation for molecular typing and prognosis of lung
adenocarcinoma. Sci Rep. 15:30752025. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Chen J, Zhao D, Wang Y, Liu M, Zhang Y,
Feng T, Xiao C, Song H, Miao R, Xu L, et al: Lactylated
apolipoprotein C-II induces immunotherapy resistance by promoting
extracellular lipolysis. Adv Sci (Weinh). 11:e24063332024.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Wang M, He T, Meng D, Lv W, Ye J, Cheng L
and Hu J: BZW2 modulates lung adenocarcinoma progression through
glycolysis-mediated IDH3G lactylation modification. J Proteome Res.
22:3854–3865. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhang R, Li L and Yu J: Lactate-induced
IGF1R protein lactylation promotes proliferation and metabolic
reprogramming of lung cancer cells. Open Life Sci. 19:202208742024.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Luan S: The role of histone lactylation
genes in hepatocellular carcinoma prognostic models and their
immune cell infiltration features: A comprehensive analysis of
single-cell, spatial transcriptome, Mendelian randomization and
experiment. Discov Oncol. 16:292025. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Sun Y, Yang X, Kong F, Dong FY, Li N and
Wang S: The mechanisms and effects of lactylation modification in
different kinds of cancers. Discov Oncol. 16:5602025. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Hu X, Ouyang W, Chen H, Liu Z, Lai Z and
Yao H: Claudin-9 (CLDN9) promotes gastric cancer progression by
enhancing the glycolysis pathway and facilitating PD-L1 lactylation
to suppress CD8(+) T cell anti-tumor immunity. Cancer Pathog Ther.
3:253–266. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Guo Z, Tang Y, Wang S, Huang Y, Chi Q, Xu
K and Xue L: Natural product fargesin interferes with H3 histone
lactylation via targeting PKM2 to inhibit non-small cell lung
cancer tumorigenesis. Biofactors. 50:592–607. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Li J, Xu S, Zhan Y, Lv X, Sun Z, Man L,
Yang D, Sun Y and Ding S: CircRUNX1 enhances the Warburg effect and
immune evasion in non-small cell lung cancer through the
miR-145/HK2 pathway. Cancer Lett. 620:2176392025. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Yang GJ, Tao F, Zhong HJ, Yang C and Chen
J: Targeting PGAM1 in cancer: An emerging therapeutic opportunity.
Eur J Med Chem. 244:1147982022. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Scatena R, Bottoni P, Pontoglio A,
Mastrototaro L and Giardina B: Glycolytic enzyme inhibitors in
cancer treatment. Expert Opin Investig Drugs. 17:1533–1545. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Zhao JY, Feng KR, Wang F, Zhang JW, Cheng
JF, Lin GQ, Gao D and Tian P: A retrospective overview of PHGDH and
its inhibitors for regulating cancer metabolism. Eur J Med Chem.
217:1133792021. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Rani R and Kumar V: Recent update on human
lactate dehydrogenase enzyme 5 (hLDH5) inhibitors: A promising
approach for cancer chemotherapy. J Med Chem. 59:487–496. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Sun T, Liu B, Li Y, Wu J, Cao Y, Yang S,
Tan H, Cai L, Zhang S, Qi X, et al: Oxamate enhances the efficacy
of CAR-T therapy against glioblastoma via suppressing
ectonucleotidases and CCR8 lactylation. J Exp Clin Cancer Res.
42:2532023. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Park W, Han JH, Wei S, Yang ES, Cheon SY,
Bae SJ, Ryu D, Chung HS and Ha KT: Natural product-based glycolysis
inhibitors as a therapeutic strategy for epidermal growth factor
receptor-tyrosine kinase inhibitor-resistant non-small cell lung
cancer. Int J Mol Sci. 25:8072024. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Bhardwaj V, Rizvi N, Lai MB, Lai JC and
Bhushan A: Glycolytic enzyme inhibitors affect pancreatic cancer
survival by modulating its signaling and energetics. Anticancer
Res. 30:743–749. 2010.PubMed/NCBI
|
|
140
|
Wang N, Chai T, Wang XR, Zheng YD, Sang CY
and Yang JL: Pin1: Advances in pancreatic cancer therapeutic
potential and inhibitors research. Bioorg Chem. 153:1078692024.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Granchi C: ATP citrate lyase (ACLY)
inhibitors: An anti-cancer strategy at the crossroads of glucose
and lipid metabolism. Eur J Med Chem. 157:1276–1291. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Guan X, Rodriguez-Cruz V and Morris ME:
Cellular uptake of MCT1 inhibitors AR-C155858 and AZD3965 and their
effects on MCT-mediated transport of L-Lactate in murine 4T1 breast
tumor cancer cells. AAPS J. 21:132019. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Halford S, Veal GJ, Wedge SR, Payne GS,
Bacon CM, Sloan P, Dragoni I, Heinzmann K, Potter S, Salisbury BM,
et al: A phase I dose-escalation Study of AZD3965, an oral
monocarboxylate transporter 1 inhibitor, in patients with advanced
cancer. Clin Cancer Res. 29:1429–1439. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Polański R, Hodgkinson CL, Fusi A, Nonaka
D, Priest L, Kelly P, Trapani F, Bishop PW, White A, Critchlow SE,
et al: Activity of the monocarboxylate transporter 1 inhibitor
AZD3965 in small cell lung cancer. Clin Cancer Res. 20:926–937.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Singh M, Afonso J, Sharma D, Gupta R and
Kumar V, Rani R, Baltazar F and Kumar V: Targeting monocarboxylate
transporters (MCTs) in cancer: How close are we to the clinics?
Semin Cancer Biol. 90:1–14. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Sepponen K, Ruusunen M, Pakkanen JA and
Pösö AR: Expression of CD147 and monocarboxylate transporters MCT1,
MCT2 and MCT4 in porcine small intestine and colon. Vet J.
174:122–128. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Kirk P, Wilson MC, Heddle C, Brown MH,
Barclay AN and Halestrap AP: CD147 is tightly associated with
lactate transporters MCT1 and MCT4 and facilitates their cell
surface expression. EMBO J. 19:3896–3904. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Mykkänen AK, Koho NM, Reeben M, McGowan CM
and Pösö AR: MCT1, MCT4 and CD147 gene polymorphisms in healthy
horses and horses with myopathy. Res Vet Sci. 91:473–477. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Zhang C, Zhou W, Xu H, Xu J, Li J, Liu X,
Lu X, Dai J, Jiang Y, Wang W, et al: Cancer-associated fibroblasts
promote EGFR-TKI resistance via the CTHRC1/glycolysis/H3K18la
positive feedback loop. Oncogene. 44:1400–1414. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Zhou J, Gu J, Qian Q, Zhang Y, Huang T, Li
X, Liu Z, Shao Q, Liang Y, Qiao L, et al: Lactate supports Treg
function and immune balance via MGAT1 effects on N-glycosylation in
the mitochondria. J Clin Invest. 134:e1758972024. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Wu S, Liu M, Wang X and Wang S: The
histone lactylation of AIM2 influences the suppression of
ferroptosis by ACSL4 through STAT5B and promotes the progression of
lung cancer. FASEB J. 39:e703082025. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
He Y, Ji Z, Gong Y, Fan L, Xu P, Chen X,
Miao J, Zhang K, Zhang W, Ma P, et al: Numb/Parkin-directed
mitochondrial fitness governs cancer cell fate via metabolic
regulation of histone lactylation. Cell Rep. 42:1120332023.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Liu M, Gu L, Zhang Y, Li Y, Zhang L, Xin
Y, Wang Y and Xu ZX: LKB1 inhibits telomerase activity resulting in
cellular senescence through histone lactylation in lung
adenocarcinoma. Cancer Lett. 595:2170252024. View Article : Google Scholar : PubMed/NCBI
|