Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November-2025 Volume 54 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 54 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Lactylation modification in lung cancer: A review of current research and future directions (Review)

  • Authors:
    • Qingguo Lv
    • Jianan Xu
    • Na Hu
    • Yujun Zhao
    • Xin Wang
    • Tan Wang
    • Lin Tian
  • View Affiliations / Copyright

    Affiliations: College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China, Department of Lung Oncology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China, Department of Rheumatology and Immunology, The Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
    Copyright: © Lv et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 148
    |
    Published online on: September 1, 2025
       https://doi.org/10.3892/or.2025.8981
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Lung cancer is a common malignancy that poses risks to human health and quality of life. The primary treatment options currently available include surgery, chemotherapy and radiotherapy. However, the aggressive metastatic nature of the disease combined with the development of drug and radiation resistance results in suboptimal survival outcomes. Consequently, there is a need to explore novel therapeutic approaches and develop more effective drugs. Lactylation, an epigenetic modification induced by lactate, alters histone proteins to modify the chromatin structure, as well as non‑histone proteins. This post‑translational modification is associated with the initiation and progression of lung cancer. Lactylation carries out a considerable role in the onset, progression and resistance of the disease by influencing tumor metabolism and the surrounding microenvironment. Targeting lactylation could provide innovative strategies for the targeted therapy of lung cancer.
View Figures

Figure 1

Molecular pathways associated with
lung cancer initiation and progression. This diagram illustrates
various molecular pathways involved in the initiation and
progression of lung cancer. The pathways depicted include receptors
and signaling molecules, such as EGFR, HER2, ALK, MET and KRAS.
These signaling cascades, involving molecules such as RAS, PI3K,
JAK, RAF and STAT, regulate cellular processes such as growth,
proliferation and survival, ultimately contributing to the
development and progression of lung cancer. ALK, anaplastic
lymphoma kinase; MET, mesenchymal-epithelial transition factor;
HER2, human epidermal growth factor receptor 2; SRC, proto-oncogene
src; FAK, focal adhesion kinase; MEK, mitogen-activated protein
kinase; STA, signal transducer and activator of transcription; PDK,
pyruvate dehydrogenase kinase; RAL, ras-like GTPase; BALGDS,
basal-like gene-differentiated subtypes; PLC, phospholipase C.

Figure 2

Schematic illustrating glycolysis,
the TCA cycle and lactylation modifications. This diagram outlines
the key metabolic pathways of glycolysis and the TCA cycle, along
with the lactylation process. Glucose is transported into the cells
and undergoes glycolysis to produce ATP and lactate. Lactate can
subsequently be converted to lactyl-CoA, which is involved in the
lactylation of histone and non-histone proteins. The diagram also
shows the conversion of pyruvate into acetyl-CoA, which enters the
TCA cycle and contributes to cellular metabolism. This illustration
highlights the interconnectedness between metabolic processes and
the role of lactylation in cellular function and regulation. TCA,
tricarboxylic acid cycle; α-KG, α-ketoglutarate; CoA, co-enzyme
A.
View References

1 

Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025.PubMed/NCBI

2 

Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Li Y, Yan B and He S: Advances and challenges in the treatment of lung cancer. Biomed Pharmacother. 169:1158912023. View Article : Google Scholar : PubMed/NCBI

4 

Nooreldeen R and Bach H: Current and future development in lung cancer diagnosis. Int J Mol Sci. 22:86612021. View Article : Google Scholar : PubMed/NCBI

5 

Nasim F, Sabath BF and Eapen GA: Lung cancer. Med Clin North Am. 103:463–473. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Schabath MB and Cote ML: Cancer progress and priorities: Lung cancer. Cancer Epidemiol Biomarkers Prev. 28:1563–1579. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Bade BC and Dela Cruz CS: Lung cancer 2020: Epidemiology, etiology, and prevention. Clin Chest Med. 41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Qi C, Sun SW and Xiong XZ: From COPD to lung cancer: Mechanisms linking, diagnosis, treatment, and prognosis. Int J Chron Obstruct Pulmon Dis. 17:2603–2621. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Jonna S and Subramaniam DS: Molecular diagnostics and targeted therapies in non-small cell lung cancer (NSCLC): An update. Discov Med. 27:167–170. 2019.PubMed/NCBI

10 

Alexander M, Kim SY and Cheng H: Update 2020: Management of non-small cell lung cancer. Lung. 198:897–907. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Detterbeck FC, Woodard GA, Bader AS, Dacic S, Grant MJ, Park HS and Tanoue LT: The proposed ninth edition TNM classification of lung cancer. Chest. 166:882–895. 2024. View Article : Google Scholar : PubMed/NCBI

12 

Lee JH, Saxena A and Giaccone G: Advancements in small cell lung cancer. Semin Cancer Biol. 93:123–128. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Oliver AL: Lung cancer: Epidemiology and screening. Surg Clin North Am. 102:335–344. 2022. View Article : Google Scholar : PubMed/NCBI

14 

de Sousa VML and Carvalho L: Heterogeneity in lung cancer. Pathobiology. 85:96–107. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Collins LG, Haines C, Perkel R and Enck RE: Lung cancer: Diagnosis and management. Am Fam Physician. 75:56–63. 2007.PubMed/NCBI

16 

Liang J, Guan X, Bao G, Yao Y and Zhong X: Molecular subtyping of small cell lung cancer. Semin Cancer Biol. 86:450–462. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Oduah EI and Grossman SR: Harnessing the vulnerabilities of p53 mutants in lung cancer-Focusing on the proteasome: A new trick for an old foe? Cancer Biol Ther. 21:293–302. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Fregni M, Ciribilli Y and Zawacka-Pankau JE: The therapeutic potential of the restoration of the p53 protein family members in the EGFR-mutated lung cancer. Int J Mol Sci. 23:72132022. View Article : Google Scholar : PubMed/NCBI

19 

Chen T, Ashwood LM, Kondrashova O, Strasser A, Kelly G and Sutherland KD: Breathing new insights into the role of mutant p53 in lung cancer. Oncogene. 44:115–129. 2025. View Article : Google Scholar : PubMed/NCBI

20 

Zhang H, Zhang G, Xiao M, Cui S, Jin C, Yang J, Wu S and Lu X: Two-polarized roles of transcription factor FOSB in lung cancer progression and prognosis: Dependent on p53 status. J Exp Clin Cancer Res. 43:2372024. View Article : Google Scholar : PubMed/NCBI

21 

Mao Y, Yang D, He J and Krasna MJ: Epidemiology of lung cancer. Surg Oncol Clin N Am. 25:439–445. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Alburquerque-Bejar JJ, Navajas-Chocarro P, Saigi M, Ferrero-Andres A, Morillas JM, Vilarrubi A, Gomez A, Mate JL, Munoz-Marmol AM, Romero OA, et al: MYC activation impairs cell-intrinsic IFNγ signaling and confers resistance to anti-PD1/PD-L1 therapy in lung cancer. Cell Rep Med. 4:1010062023. View Article : Google Scholar : PubMed/NCBI

23 

Hua Q, Jin M, Mi B, Xu F, Li T, Zhao L, Liu J and Huang G: LINC01123, a c-Myc-activated long non-coding RNA, promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis. J Hematol Oncol. 12:912019. View Article : Google Scholar : PubMed/NCBI

24 

Choudhuri SP, Girard L, Lim JYS, Wise JF, Freitas B, Yang D, Wong E, Hamilton S, Chien VD, Kim YJ, et al: Acquired cross-resistance in small cell lung cancer due to extrachromosomal DNA amplification of MYC paralogs. Cancer Discov. 14:804–827. 2024. View Article : Google Scholar : PubMed/NCBI

25 

Mollaoglu G, Guthrie MR, Böhm S, Brägelmann J, Can I, Ballieu PM, Marx A, George J, Heinen C, Chalishazar MD, et al: MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell. 31:270–285. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, Conley CC, Chen OS, Guthrie MR, Soltero D, et al: MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell. 38:60–78. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, Ma X, Cheng Z, Yu C, Wang S, et al: circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 12:2952021. View Article : Google Scholar : PubMed/NCBI

28 

Zhang Q, Abdo R, Iosef C, Kaneko T, Cecchini M, Han VK and Li SS: The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis. Nat Commun. 13:59832022. View Article : Google Scholar : PubMed/NCBI

29 

Tian Y, Li Q, Yang Z, Zhang S, Xu J, Wang Z, Bai H, Duan J, Zheng B, Li W, et al: Single-cell transcriptomic profiling reveals the tumor heterogeneity of small-cell lung cancer. Signal Transduct Target Ther. 7:3462022. View Article : Google Scholar : PubMed/NCBI

30 

Chanvorachote P, Sriratanasak N and Nonpanya N: C-myc contributes to malignancy of lung cancer: A potential anticancer drug target. Anticancer Res. 40:609–618. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Massó-Vallés D, Beaulieu ME and Soucek L: MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opin Ther Targets. 24:101–114. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Fournel L, Wu Z, Stadler N, Damotte D, Lococo F, Boulle G, Ségal-Bendirdjian E, Bobbio A, Icard P, Trédaniel J, et al: Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett. 464:5–14. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Huang C, Ren S, Chen Y, Liu A, Wu Q, Jiang T, Lv P, Song D, Hu F, Lan J, et al: PD-L1 methylation restricts PD-L1/PD-1 interactions to control cancer immune surveillance. Sci Adv. 9:eade41862023. View Article : Google Scholar : PubMed/NCBI

34 

Reda M, Ngamcherdtrakul W, Nelson MA, Siriwon N, Wang R, Zaidan HY, Bejan DS, Reda S, Hoang NH, Crumrine NA, et al: Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment. Nat Commun. 13:42612022. View Article : Google Scholar : PubMed/NCBI

35 

Reck M, Remon J and Hellmann MD: First-Line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 40:586–597. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Noor ZS, Cummings AL, Johnson M, Spiegel ML and Goldman JW: Targeted therapy for non-small cell lung cancer. Semin Respir Crit Care Med. 41:409–434. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Vinod SK and Hau E: Radiotherapy treatment for lung cancer: Current status and future directions. Respirology. 25 (Suppl 2):S61–S71. 2020. View Article : Google Scholar

38 

Yang S, Zhang Z and Wang Q: Emerging therapies for small cell lung cancer. J Hematol Oncol. 12:472019. View Article : Google Scholar : PubMed/NCBI

39 

Zugazagoitia J and Paz-Ares L: Extensive-Stage small-cell lung cancer: First-line and second-line treatment options. J Clin Oncol. 40:671–680. 2022. View Article : Google Scholar : PubMed/NCBI

40 

Grant C, Hagopian G and Nagasaka M: Neoadjuvant therapy in non-small cell lung cancer. Crit Rev Oncol Hematol. 190:1040802023. View Article : Google Scholar : PubMed/NCBI

41 

Wang M, Herbst RS and Boshoff C: Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 27:1345–1356. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Chaft JE, Rimner A, Weder W, Azzoli CG, Kris MG and Cascone T: Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol. 18:547–557. 2021. View Article : Google Scholar : PubMed/NCBI

43 

Miller M and Hanna N: Advances in systemic therapy for non-small cell lung cancer. BMJ. 375:n23632021. View Article : Google Scholar : PubMed/NCBI

44 

Passaro A, Brahmer J, Antonia S, Mok T and Peters S: Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies. J Clin Oncol. 40:598–610. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Jachowski A, Marcinkowski M, Szydłowski J, Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP and Słowikowski BK: Modern therapies of nonsmall cell lung cancer. J Appl Genet. 64:695–711. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Kumar S, Malviya R and Uniyal P: Vaccine for targeted therapy of lung cancer: Advances and developments. Curr Drug Targets. 25:526–529. 2024. View Article : Google Scholar : PubMed/NCBI

47 

Guo H, Zhang J, Qin C, Yan H, Liu T, Hu H, Tang S, Tang S and Zhou H: Biomarker-targeted therapies in non-small cell lung cancer: Current status and perspectives. Cells. 11:32002022. View Article : Google Scholar : PubMed/NCBI

48 

Meyer ML, Fitzgerald BG, Paz-Ares L, Cappuzzo F, Jänne PA, Peters S and Hirsch FR: New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet. 404:803–822. 2024. View Article : Google Scholar : PubMed/NCBI

49 

Yu L, Lai Q, Gou L, Feng J and Yang J: Opportunities and obstacles of targeted therapy and immunotherapy in small cell lung cancer. J Drug Target. 29:1–11. 2021. View Article : Google Scholar : PubMed/NCBI

50 

Desai A and Peters S: Immunotherapy-based combinations in metastatic NSCLC. Cancer Treat Rev. 116:1025452023. View Article : Google Scholar : PubMed/NCBI

51 

Higgins KA, Puri S and Gray JE: Systemic and radiation therapy approaches for locally advanced non-small-cell lung cancer. J Clin Oncol. 40:576–585. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Meliambro K, He JC and Campbell KN: Podocyte-targeted therapies-progress and future directions. Nat Rev Nephrol. 20:643–658. 2024. View Article : Google Scholar : PubMed/NCBI

53 

Li Y, Tuerxun H and Zhao Y, Liu X, Li X, Wen S and Zhao Y: The new era of lung cancer therapy: Combining immunotherapy with ferroptosis. Crit Rev Oncol Hematol. 198:1043592024. View Article : Google Scholar : PubMed/NCBI

54 

Muthusamy B, Patil PD and Pennell NA: Perioperative systemic therapy for resectable non-small cell lung cancer. J Natl Compr Canc Netw. 20:953–961. 2022. View Article : Google Scholar : PubMed/NCBI

55 

Lin J, Rao D, Zhang M and Gao Q: Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol. 17:62024. View Article : Google Scholar : PubMed/NCBI

56 

Wu A, Lee D and Xiong WC: Lactate metabolism, signaling, and function in brain development, synaptic plasticity, angiogenesis, and neurodegenerative diseases. Int J Mol Sci. 24:133982023. View Article : Google Scholar : PubMed/NCBI

57 

Wang A, Zou Y, Liu S, Zhang X, Li T, Zhang L, Wang R, Xia Y, Li X, Zhang Z, et al: Comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo using highly responsive biosensors. Nat Protoc. 19:1311–1347. 2024. View Article : Google Scholar : PubMed/NCBI

58 

Rabinowitz JD and Enerbäck S: Lactate: The ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Li M, Yu J, Ju L, Wang Y, Jin W, Zhang R, Xiang W, Ji M, Du W, Wang G, et al: USP43 stabilizes c-Myc to promote glycolysis and metastasis in bladder cancer. Cell Death Dis. 15:442024. View Article : Google Scholar : PubMed/NCBI

60 

Philp A, Macdonald AL and Watt PW: Lactate-a signal coordinating cell and systemic function. J Exp Biol. 208:4561–4575. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Hollyer TR, Bordoni L, Kousholt BS, van Luijk J, Ritskes-Hoitinga M and Østergaard L: The evidence for the physiological effects of lactate on the cerebral microcirculation: A systematic review. J Neurochem. 148:712–730. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Payen VL, Mina E, Van Hée VF, Porporato PE and Sonveaux P: Monocarboxylate transporters in cancer. Mol Metab. 33:48–66. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Pouysségur J, Marchiq I, Parks SK, Durivault J, Ždralević M and Vucetic M: ‘Warburg effect’ controls tumor growth, bacterial, viral infections and immunity-Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol. 86:334–346. 2022. View Article : Google Scholar : PubMed/NCBI

64 

DiGirolamo M, Newby FD and Lovejoy J: Lactate production in adipose tissue: A regulated function with extra-adipose implications. FASEB J. 6:2405–2412. 1992. View Article : Google Scholar : PubMed/NCBI

65 

Gou Y, Wang H, Wang T, Wang H, Wang B, Jiao N, Yu Y, Cao Y, Wang H and Zhang Z: Ectopic endometriotic stromal cells-derived lactate induces M2 macrophage polarization via Mettl3/Trib1/ERK/STAT3 signalling pathway in endometriosis. Immunology. 168:389–402. 2023. View Article : Google Scholar : PubMed/NCBI

66 

Ma R, Zhou X, Zhang G, Wu H, Lu Y, Liu F, Chang Y and Ding Y: Association between composite dietary antioxidant index and coronary heart disease among US adults: A cross-sectional analysis. BMC Public Health. 23:24262023. View Article : Google Scholar : PubMed/NCBI

67 

Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, Zhu Q, Zhang WB, Pan YB, Jin J, et al: Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics. 11:3839–3852. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Guo M, Gou Y, Dong X, Zhong J, Li A, Hao A, He TC and Fan J: Syrosingopine, an anti-hypertensive drug and lactate transporter (MCT1/4) inhibitor, activates hepatic stellate cells and exacerbates liver fibrosis in a mouse model. Genes Dis. 11:1011692024. View Article : Google Scholar : PubMed/NCBI

69 

Jedlička M, Feglarová T, Janstová L, Hortová-Kohoutková M and Frič J: Lactate from the tumor microenvironment-A key obstacle in NK cell-based immunotherapies. Front Immunol. 13:9320552022. View Article : Google Scholar : PubMed/NCBI

70 

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et al: LDHA-Associated lactic acid production blunts tumor immunosurveillance by T and NK Cells. Cell Metab. 24:657–671. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B, Yang J, Pan J, Hu S, Zhang C, et al: Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle. 17:428–438. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Vavřička J, Brož P, Follprecht D, Novák J and Kroužecký A: Modern perspective of lactate metabolism. Physiol Res. 73:499–514. 2024. View Article : Google Scholar : PubMed/NCBI

73 

Ge W, Meng L, Cao S, Hou C, Zhu X, Huang D, Li Q, Peng Y and Jiang K: The SIX1/LDHA axis promotes lactate accumulation and leads to NK cell dysfunction in pancreatic cancer. J Immunol Res. 2023:68916362023. View Article : Google Scholar : PubMed/NCBI

74 

Luo Y, Li L, Chen X, Gou H, Yan K and Xu Y: Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol. 41:19–29. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Lundø K, Dmytriyeva O, Spøhr L, Goncalves-Alves E, Yao J, Blasco LP, Trauelsen M, Ponniah M, Severin M, Sandelin A, et al: Lactate receptor GPR81 drives breast cancer growth and invasiveness through regulation of ECM properties and Notch ligand DLL4. BMC Cancer. 23:11362023. View Article : Google Scholar : PubMed/NCBI

76 

Ishihara S, Hata K, Hirose K, Okui T, Toyosawa S, Uzawa N, Nishimura R and Yoneda T: The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Sci Rep. 12:62612022. View Article : Google Scholar : PubMed/NCBI

77 

Guo X, Wan P, Shen W, Sun M, Peng Z, Liao Y, Huang Y and Liu R: Fusobacterium periodonticum BCT protein targeting glucose metabolism to promote the epithelial-mesenchymal transition of esophageal cancer cells by lactic acid. J Transl Med. 22:4012024. View Article : Google Scholar : PubMed/NCBI

78 

Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI

79 

Fan H, Yang F, Xiao Z, Luo H, Chen H, Chen Z, Liu Q and Xiao Y: Lactylation: Novel epigenetic regulatory and therapeutic opportunities. Am J Physiol Endocrinol Metab. 324:E330–E338. 2023. View Article : Google Scholar : PubMed/NCBI

80 

Chen L, Huang L, Gu Y, Cang W, Sun P and Xiang Y: Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 23:119432022. View Article : Google Scholar : PubMed/NCBI

81 

Li J, Zhang Y, Zuo Z, Zhang Z, Wang Y, Chang S, Huang J, Dai Y and Ge J: Salvianolate injection ameliorates cardiomyopathy by regulating autophagic flux through miR-30a/becn1 axis in zebrafish. Chin Med J (Engl). 5:0.1097/CM9.0000000000003322. 2024.

82 

Yang H, Zou X, Yang S, Zhang A, Li N and Ma Z: Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer. Front Immunol. 14:11499892023. View Article : Google Scholar : PubMed/NCBI

83 

Qu J, Li P and Sun Z: Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front Immunol. 14:12843442023. View Article : Google Scholar : PubMed/NCBI

84 

Xin Q, Wang H, Li Q, Liu S, Qu K, Liu C and Zhang J: Lactylation: A passing fad or the future of posttranslational modification. Inflammation. 45:1419–1429. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Xie B, Zhang M, Li J, Cui J, Zhang P, Liu F, Wu Y, Deng W, Ma J, Li X, et al: KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc Natl Acad Sci USA. 121:e23141281212024. View Article : Google Scholar : PubMed/NCBI

86 

Jia M, Yue X, Sun W, Zhou Q, Chang C, Gong W, Feng J, Li X, Zhan R, Mo K, et al: ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci Adv. 9:eadg49932023. View Article : Google Scholar : PubMed/NCBI

87 

Wang X, Fan W, Li N, Ma Y, Yao M, Wang G, He S, Li W, Tan J, Lu Q and Hou S: YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 24:872023. View Article : Google Scholar : PubMed/NCBI

88 

Ju J, Zhang H, Lin M, Yan Z, An L, Cao Z, Geng D, Yue J, Tang Y, Tian L, et al: The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Invest. 134:e1745872024. View Article : Google Scholar : PubMed/NCBI

89 

Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F, Gill PS, Ha T, Liu L, Williams DL and Li C: Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 29:133–146. 2022. View Article : Google Scholar : PubMed/NCBI

90 

Dong M, Zhang Y, Chen M, Tan Y, Min J, He X, Liu F, Gu J, Jiang H, Zheng L, et al: ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT. Acta Pharm Sin B. 14:3027–3048. 2024. View Article : Google Scholar : PubMed/NCBI

91 

Wang J, Wang Z, Wang Q, Li X and Guo Y: Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett. 29:232024. View Article : Google Scholar : PubMed/NCBI

92 

He X, Li Y, Li J, Li Y, Chen S, Yan X, Xie Z, Du J, Chen G, Song J and Mei Q: HDAC2-Mediated METTL3 delactylation promotes DNA damage repair and chemotherapy resistance in triple-negative breast cancer. Adv Sci (Weinh). 12:e24131212025. View Article : Google Scholar : PubMed/NCBI

93 

Yang Z, Su W, Zhang Q, Niu L, Feng B, Zhang Y, Huang F, He J, Zhou Q, Zhou X, et al: Lactylation of HDAC1 confers resistance to ferroptosis in colorectal cancer. Adv Sci (Weinh). 12:e24088452025. View Article : Google Scholar : PubMed/NCBI

94 

Sun S, Xu Z, He L, Shen Y, Yan Y, Lv X, Zhu X, Li W, Tian WY, Zheng Y, et al: Metabolic regulation of cytoskeleton functions by HDAC6-catalyzed α-tubulin lactylation. Nat Commun. 15:83772024. View Article : Google Scholar : PubMed/NCBI

95 

Minami E, Sasa K, Yamada A, Kawai R, Yoshida H, Nakano H, Maki K and Kamijo R: Lactate-induced histone lactylation by p300 promotes osteoblast differentiation. PLoS One. 18:e02936762023. View Article : Google Scholar : PubMed/NCBI

96 

Brooks GA: Lactate as a fulcrum of metabolism. Redox Biol. 35:1014542020. View Article : Google Scholar : PubMed/NCBI

97 

Xie Y, Hu H, Liu M, Zhou T, Cheng X, Huang W and Cao L: The role and mechanism of histone lactylation in health and diseases. Front Genet. 13:9492522022. View Article : Google Scholar : PubMed/NCBI

98 

Liu X, Zhang Y, Li W and Zhou X: Lactylation, an emerging hallmark of metabolic reprogramming: Current progress and open challenges. Front Cell Dev Biol. 10:9720202022. View Article : Google Scholar : PubMed/NCBI

99 

Yang Z, Zheng Y and Gao Q: Lysine lactylation in the regulation of tumor biology. Trends Endocrinol Metab. 35:720–731. 2024. View Article : Google Scholar : PubMed/NCBI

100 

Koeffler HP: NBS1 lactylation and damaged DNA repair. Cancer Lett. 604:2171282024. View Article : Google Scholar : PubMed/NCBI

101 

Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature. 631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI

102 

Wang L, Zeng T, Wang Y, Wang G, Yu W, Zhang J, Shi Y, Li J and Ding J: K90 lactylation orchestrates YAP nuclear sequestration by impairing binding with exportin CRM1 and enhances HCC malignancy. Cancer Lett. 611:2173862025. View Article : Google Scholar : PubMed/NCBI

103 

Merkuri F, Rothstein M and Simoes-Costa M: Histone lactylation couples cellular metabolism with developmental gene regulatory networks. Nat Commun. 15:902024. View Article : Google Scholar : PubMed/NCBI

104 

Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan M, Xiang J, He N, Hu Z and Wang F: CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer. 22:1512023. View Article : Google Scholar : PubMed/NCBI

105 

Huang H, Chen K, Zhu Y, Hu Z, Wang Y, Chen J, Li Y, Li D and Wei P: A multi-dimensional approach to unravel the intricacies of lactylation-related signature for prognostic and therapeutic insight in colorectal cancer. J Transl Med. 22:2112024. View Article : Google Scholar : PubMed/NCBI

106 

Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130. 2024. View Article : Google Scholar : PubMed/NCBI

107 

Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16 promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric cancer. Nat Commun. 14:65232023. View Article : Google Scholar : PubMed/NCBI

108 

Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Wang S, Cheng Z, Cui Y, Xu S, Luan Q, Jing S, Du B, Li X and Li Y: PTPRH promotes the progression of non-small cell lung cancer via glycolysis mediated by the PI3K/AKT/mTOR signaling pathway. J Transl Med. 21:8192023. View Article : Google Scholar : PubMed/NCBI

110 

Liu X, Qin H, Zhang L, Jia C, Chao Z, Qin X, Zhang H and Chen C: Hyperoxia induces glucose metabolism reprogramming and intracellular acidification by suppressing MYC/MCT1 axis in lung cancer. Redox Biol. 61:1026472023. View Article : Google Scholar : PubMed/NCBI

111 

Yang J, Dong C, Wu J, Liu D, Luo Q and Jin X: Fructose utilization enhanced by GLUT5 promotes lung cancer cell migration via activating glycolysis/AKT pathway. Clin Transl Oncol. 25:1080–1090. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Song G, Fang J, Shang C, Li Y, Zhu Y, Xiu Z, Sun L, Jin N and Li X: Ad-apoptin inhibits glycolysis, migration and invasion in lung cancer cells targeting AMPK/mTOR signaling pathway. Exp Cell Res. 409:1129262021. View Article : Google Scholar : PubMed/NCBI

113 

Chen Z, Hu Z, Sui Q, Huang Y, Zhao M, Li M, Liang J, Lu T, Zhan C, Lin Z, et al: LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/glycolysis axis in lung adenocarcinoma. Int J Biol Sci. 18:522–535. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Zhang K, Hu H, Xu J, Qiu L, Chen H, Jiang X and Jiang Y: Circ_0001421 facilitates glycolysis and lung cancer development by regulating miR-4677-3p/CDCA3. Diagn Pathol. 15:1332020. View Article : Google Scholar : PubMed/NCBI

115 

Yan F, Teng Y, Li X, Zhong Y, Li C, Yan F and He X: Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9. Cancer Biol Ther. 25:23041612024. View Article : Google Scholar : PubMed/NCBI

116 

He Y, Jiang S, Zhong Y, Wang X, Cui Y, Liang J, Sun Y, Zhu Z, Huang Z and Mao X: USP7 promotes non-small-cell lung cancer cell glycolysis and survival by stabilizing and activating c-Abl. Clin Transl Med. 13:e15092023. View Article : Google Scholar : PubMed/NCBI

117 

Lin S, Li Y, Wang D, Huang C, Marino D, Bollt O, Wu C, Taylor MD, Li W, DeNicola GM, et al: Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer Lett. 518:230–242. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Cong J, Wang X, Zheng X, Wang D, Fu B, Sun R, Tian Z and Wei H: Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab. 28:243–255. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Zhao F, Wang Z, Li Z, Liu S and Li S: Identifying a lactic acid metabolism-related gene signature contributes to predicting prognosis, immunotherapy efficacy, and tumor microenvironment of lung adenocarcinoma. Front Immunol. 13:9805082022. View Article : Google Scholar : PubMed/NCBI

120 

Zhang H, Zhang K, Qiu L, Yue J, Jiang H, Deng Q, Zhou R, Yin Z, Ma S and Ke Y: Cancer-associated fibroblasts facilitate DNA damage repair by promoting the glycolysis in non-small cell lung cancer. Biochim Biophys Acta Mol Basis Dis. 1869:1666702023. View Article : Google Scholar : PubMed/NCBI

121 

Jiang J, Huang D, Jiang Y, Hou J, Tian M, Li J, Sun L, Zhang Y, Zhang T, Li Z, et al: Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer. Front Oncol. 11:6475592021. View Article : Google Scholar : PubMed/NCBI

122 

Yang Y, Wang QC, Kong J, Yang JT and Liu JF: Global profiling of lysine lactylation in human lungs. Proteomics. 23:e22004372023. View Article : Google Scholar : PubMed/NCBI

123 

Gao M, Wang M, Zhou S, Hou J, He W, Shu Y and Wang X: Machine learning-based prognostic model of lactylation-related genes for predicting prognosis and immune infiltration in patients with lung adenocarcinoma. Cancer Cell Int. 24:4002024. View Article : Google Scholar : PubMed/NCBI

124 

Hua M and Li T: Multiomic machine learning on lactylation for molecular typing and prognosis of lung adenocarcinoma. Sci Rep. 15:30752025. View Article : Google Scholar : PubMed/NCBI

125 

Chen J, Zhao D, Wang Y, Liu M, Zhang Y, Feng T, Xiao C, Song H, Miao R, Xu L, et al: Lactylated apolipoprotein C-II induces immunotherapy resistance by promoting extracellular lipolysis. Adv Sci (Weinh). 11:e24063332024. View Article : Google Scholar : PubMed/NCBI

126 

Wang M, He T, Meng D, Lv W, Ye J, Cheng L and Hu J: BZW2 modulates lung adenocarcinoma progression through glycolysis-mediated IDH3G lactylation modification. J Proteome Res. 22:3854–3865. 2023. View Article : Google Scholar : PubMed/NCBI

127 

Zhang R, Li L and Yu J: Lactate-induced IGF1R protein lactylation promotes proliferation and metabolic reprogramming of lung cancer cells. Open Life Sci. 19:202208742024. View Article : Google Scholar : PubMed/NCBI

128 

Luan S: The role of histone lactylation genes in hepatocellular carcinoma prognostic models and their immune cell infiltration features: A comprehensive analysis of single-cell, spatial transcriptome, Mendelian randomization and experiment. Discov Oncol. 16:292025. View Article : Google Scholar : PubMed/NCBI

129 

Sun Y, Yang X, Kong F, Dong FY, Li N and Wang S: The mechanisms and effects of lactylation modification in different kinds of cancers. Discov Oncol. 16:5602025. View Article : Google Scholar : PubMed/NCBI

130 

Hu X, Ouyang W, Chen H, Liu Z, Lai Z and Yao H: Claudin-9 (CLDN9) promotes gastric cancer progression by enhancing the glycolysis pathway and facilitating PD-L1 lactylation to suppress CD8(+) T cell anti-tumor immunity. Cancer Pathog Ther. 3:253–266. 2025. View Article : Google Scholar : PubMed/NCBI

131 

Guo Z, Tang Y, Wang S, Huang Y, Chi Q, Xu K and Xue L: Natural product fargesin interferes with H3 histone lactylation via targeting PKM2 to inhibit non-small cell lung cancer tumorigenesis. Biofactors. 50:592–607. 2024. View Article : Google Scholar : PubMed/NCBI

132 

Li J, Xu S, Zhan Y, Lv X, Sun Z, Man L, Yang D, Sun Y and Ding S: CircRUNX1 enhances the Warburg effect and immune evasion in non-small cell lung cancer through the miR-145/HK2 pathway. Cancer Lett. 620:2176392025. View Article : Google Scholar : PubMed/NCBI

133 

Yang GJ, Tao F, Zhong HJ, Yang C and Chen J: Targeting PGAM1 in cancer: An emerging therapeutic opportunity. Eur J Med Chem. 244:1147982022. View Article : Google Scholar : PubMed/NCBI

134 

Scatena R, Bottoni P, Pontoglio A, Mastrototaro L and Giardina B: Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs. 17:1533–1545. 2008. View Article : Google Scholar : PubMed/NCBI

135 

Zhao JY, Feng KR, Wang F, Zhang JW, Cheng JF, Lin GQ, Gao D and Tian P: A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. Eur J Med Chem. 217:1133792021. View Article : Google Scholar : PubMed/NCBI

136 

Rani R and Kumar V: Recent update on human lactate dehydrogenase enzyme 5 (hLDH5) inhibitors: A promising approach for cancer chemotherapy. J Med Chem. 59:487–496. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Sun T, Liu B, Li Y, Wu J, Cao Y, Yang S, Tan H, Cai L, Zhang S, Qi X, et al: Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J Exp Clin Cancer Res. 42:2532023. View Article : Google Scholar : PubMed/NCBI

138 

Park W, Han JH, Wei S, Yang ES, Cheon SY, Bae SJ, Ryu D, Chung HS and Ha KT: Natural product-based glycolysis inhibitors as a therapeutic strategy for epidermal growth factor receptor-tyrosine kinase inhibitor-resistant non-small cell lung cancer. Int J Mol Sci. 25:8072024. View Article : Google Scholar : PubMed/NCBI

139 

Bhardwaj V, Rizvi N, Lai MB, Lai JC and Bhushan A: Glycolytic enzyme inhibitors affect pancreatic cancer survival by modulating its signaling and energetics. Anticancer Res. 30:743–749. 2010.PubMed/NCBI

140 

Wang N, Chai T, Wang XR, Zheng YD, Sang CY and Yang JL: Pin1: Advances in pancreatic cancer therapeutic potential and inhibitors research. Bioorg Chem. 153:1078692024. View Article : Google Scholar : PubMed/NCBI

141 

Granchi C: ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem. 157:1276–1291. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Guan X, Rodriguez-Cruz V and Morris ME: Cellular uptake of MCT1 inhibitors AR-C155858 and AZD3965 and their effects on MCT-mediated transport of L-Lactate in murine 4T1 breast tumor cancer cells. AAPS J. 21:132019. View Article : Google Scholar : PubMed/NCBI

143 

Halford S, Veal GJ, Wedge SR, Payne GS, Bacon CM, Sloan P, Dragoni I, Heinzmann K, Potter S, Salisbury BM, et al: A phase I dose-escalation Study of AZD3965, an oral monocarboxylate transporter 1 inhibitor, in patients with advanced cancer. Clin Cancer Res. 29:1429–1439. 2023. View Article : Google Scholar : PubMed/NCBI

144 

Polański R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, Trapani F, Bishop PW, White A, Critchlow SE, et al: Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res. 20:926–937. 2014. View Article : Google Scholar : PubMed/NCBI

145 

Singh M, Afonso J, Sharma D, Gupta R and Kumar V, Rani R, Baltazar F and Kumar V: Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin Cancer Biol. 90:1–14. 2023. View Article : Google Scholar : PubMed/NCBI

146 

Sepponen K, Ruusunen M, Pakkanen JA and Pösö AR: Expression of CD147 and monocarboxylate transporters MCT1, MCT2 and MCT4 in porcine small intestine and colon. Vet J. 174:122–128. 2007. View Article : Google Scholar : PubMed/NCBI

147 

Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN and Halestrap AP: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19:3896–3904. 2000. View Article : Google Scholar : PubMed/NCBI

148 

Mykkänen AK, Koho NM, Reeben M, McGowan CM and Pösö AR: MCT1, MCT4 and CD147 gene polymorphisms in healthy horses and horses with myopathy. Res Vet Sci. 91:473–477. 2011. View Article : Google Scholar : PubMed/NCBI

149 

Zhang C, Zhou W, Xu H, Xu J, Li J, Liu X, Lu X, Dai J, Jiang Y, Wang W, et al: Cancer-associated fibroblasts promote EGFR-TKI resistance via the CTHRC1/glycolysis/H3K18la positive feedback loop. Oncogene. 44:1400–1414. 2025. View Article : Google Scholar : PubMed/NCBI

150 

Zhou J, Gu J, Qian Q, Zhang Y, Huang T, Li X, Liu Z, Shao Q, Liang Y, Qiao L, et al: Lactate supports Treg function and immune balance via MGAT1 effects on N-glycosylation in the mitochondria. J Clin Invest. 134:e1758972024. View Article : Google Scholar : PubMed/NCBI

151 

Wu S, Liu M, Wang X and Wang S: The histone lactylation of AIM2 influences the suppression of ferroptosis by ACSL4 through STAT5B and promotes the progression of lung cancer. FASEB J. 39:e703082025. View Article : Google Scholar : PubMed/NCBI

152 

He Y, Ji Z, Gong Y, Fan L, Xu P, Chen X, Miao J, Zhang K, Zhang W, Ma P, et al: Numb/Parkin-directed mitochondrial fitness governs cancer cell fate via metabolic regulation of histone lactylation. Cell Rep. 42:1120332023. View Article : Google Scholar : PubMed/NCBI

153 

Liu M, Gu L, Zhang Y, Li Y, Zhang L, Xin Y, Wang Y and Xu ZX: LKB1 inhibits telomerase activity resulting in cellular senescence through histone lactylation in lung adenocarcinoma. Cancer Lett. 595:2170252024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lv Q, Xu J, Hu N, Zhao Y, Wang X, Wang T and Tian L: Lactylation modification in lung cancer: A review of current research and future directions (Review). Oncol Rep 54: 148, 2025.
APA
Lv, Q., Xu, J., Hu, N., Zhao, Y., Wang, X., Wang, T., & Tian, L. (2025). Lactylation modification in lung cancer: A review of current research and future directions (Review). Oncology Reports, 54, 148. https://doi.org/10.3892/or.2025.8981
MLA
Lv, Q., Xu, J., Hu, N., Zhao, Y., Wang, X., Wang, T., Tian, L."Lactylation modification in lung cancer: A review of current research and future directions (Review)". Oncology Reports 54.5 (2025): 148.
Chicago
Lv, Q., Xu, J., Hu, N., Zhao, Y., Wang, X., Wang, T., Tian, L."Lactylation modification in lung cancer: A review of current research and future directions (Review)". Oncology Reports 54, no. 5 (2025): 148. https://doi.org/10.3892/or.2025.8981
Copy and paste a formatted citation
x
Spandidos Publications style
Lv Q, Xu J, Hu N, Zhao Y, Wang X, Wang T and Tian L: Lactylation modification in lung cancer: A review of current research and future directions (Review). Oncol Rep 54: 148, 2025.
APA
Lv, Q., Xu, J., Hu, N., Zhao, Y., Wang, X., Wang, T., & Tian, L. (2025). Lactylation modification in lung cancer: A review of current research and future directions (Review). Oncology Reports, 54, 148. https://doi.org/10.3892/or.2025.8981
MLA
Lv, Q., Xu, J., Hu, N., Zhao, Y., Wang, X., Wang, T., Tian, L."Lactylation modification in lung cancer: A review of current research and future directions (Review)". Oncology Reports 54.5 (2025): 148.
Chicago
Lv, Q., Xu, J., Hu, N., Zhao, Y., Wang, X., Wang, T., Tian, L."Lactylation modification in lung cancer: A review of current research and future directions (Review)". Oncology Reports 54, no. 5 (2025): 148. https://doi.org/10.3892/or.2025.8981
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team