|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
2
|
Li N and Sohal D: Current state of the
art: Immunotherapy in esophageal cancer and gastroesophageal
junction cancer. Cancer Immunol Immunother. 72:3939–3952. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lu S, Li K, Wang K, Liu G, Han Y, Peng L,
Chen L and Leng X: Global trends of esophageal cancer among
individuals over 60 years: An epidemiological analysis from 1990 to
2050 based on the global burden of disease study 1990–2021. Oncol
Rev. 19:16160802025. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cancer Genome Atlas Research Network;
Analysis Working Group; Asan University; BC Cancer Agency; Brigham
and Women's Hospital; Broad Institute; Brown University; Case
Western Reserve University; Dana-Farber Cancer Institute; Duke
University; Greater Poland Cancer Centre, et al, . Integrated
genomic characterization of oesophageal carcinoma. Nature.
541:1692017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cao Z, Wang H, Li Y, Ye S, Lin J, Li T,
Leng J, Jiang Y, Bie M and Li L: The global burden and trends of
esophageal cancer caused by smoking among men from 1990 to 2021 and
projections to 2040: An analysis of the Global Burden of Disease
2021. Eur J Med Res. 30:10432025. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Li J, Xu J, Zheng Y, Gao Y, He S, Li H,
Zou K, Li N, Tian J, Chen W and He J: Esophageal cancer:
Epidemiology, risk factors and screening. Chin J Cancer Res.
33:535–547. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Havel JJ, Chowell D and Chan TA: The
evolving landscape of biomarkers for checkpoint inhibitor
immunotherapy. Nat Rev Cancer. 19:133–150. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liu W, Huo G and Chen P: Efficacy of
PD-1/PD-L1 inhibitors in advanced gastroesophageal cancer based on
characteristics: A meta-analysis. Immunotherapy. 15:751–771. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Beshr MS, Shembesh RH, Salama AH, Chenfouh
I, Alfaqaih SM, Khashan A, Kara AO, Abuajamieh M, Basheer E, Ansaf
ZA, et al: PD-1/PD-L1 inhibitors in advanced, unresectable
esophageal squamous-cell carcinoma: A meta-analysis of their
effects across patient subgroups. Crit Rev Oncol Hematol.
215:1048762025. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jiao R, Luo H, Xu W and Ge H: Immune
checkpoint inhibitors in esophageal squamous cell carcinoma:
Progress and opportunities. Onco Targets Ther. 12:6023–6032. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Thommen DS and Schumacher TN: T cell
dysfunction in cancer. Cancer Cell. 33:547–562. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang X, He J, Ding G, Tang Y and Wang Q:
Overcoming resistance to PD-1 and CTLA-4 blockade mechanisms and
therapeutic strategies. Front Immunol. 16:16886992025. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mandal K, Barik GK and Santra MK:
Overcoming resistance to anti-PD-L1 immunotherapy: Mechanisms,
combination strategies, and future directions. Molecular Cancer.
24:2462025. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yin Z, Zhang H, Zhang K, Yue J, Tang R,
Wang Y, Deng Q and Yu Q: Impacts of combining PD-L1 inhibitor and
radiotherapy on the tumour immune microenvironment in a mouse model
of esophageal squamous cell carcinoma. BMC Cancer. 25:4742025.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Oh DY, Fong L, Newell EW, Turk MJ, Chi H,
Chang HY, Satpathy AT, Fairfax B, Silva-Santos B and Lantz O:
Toward a better understanding of T cells in cancer. Cancer Cell.
39:1549–1552. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kaushik I, Ramachandran S, Zabel C,
Gaikwad S and Srivastava SK: The evolutionary legacy of immune
checkpoint inhibitors. Semin Cancer Biol. 86:491–498. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jiang X, Wang J, Deng X, Xiong F, Ge J,
Xiang B, Wu X, Ma J, Zhou M, Li X, et al: Role of the tumor
microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol
Cancer. 18:102019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bagchi S, Yuan R and Engleman EG: Immune
checkpoint inhibitors for the treatment of cancer: Clinical impact
and mechanisms of response and resistance. Annu Rev Pathol Mech
Dis. 16:223–249. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang X, Yang Y, Zhao H, Tian Z, Cao Q, Li
Y, Gu Y, Song Q, Hu X, Jin M and Jiang X: Correlation of PD-L1
expression with CD8+ T cells and oxidative stress-related molecules
NRF2 and NQO1 in esophageal squamous cell carcinoma. J Pathol Clin
Res. 10:e123902024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mei Z, Huang J, Qiao B and Lam AK: Immune
checkpoint pathways in immunotherapy for head and neck squamous
cell carcinoma. Int J Oral Sci. 12:162020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jiang Y, Chen M, Nie H and Yuan Y: PD-1
and PD-L1 in cancer immunotherapy: Clinical implications and future
considerations. Hum Vaccin Immunother. 15:11112019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liu J, Chen Z, Li Y, Zhao W, Wu J and
Zhang Z: PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy.
Front Pharmacol. 12:7317982021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang X, Teng F, Kong L and Yu J: PD-L1
expression in human cancers and its association with clinical
outcomes. Onco Targets Ther. 9:5023–5039. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Saller JJ, Mora LB, Nasir A, Mayer Z,
Shahid M and Coppola D: Expression of DNA Mismatch repair proteins,
PD1 and PDL1 in Barrett's neoplasia. Cancer Genomics Proteomics.
19:145–150. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Karstens KF, Kempski J, Giannou AD,
Pelczar P, Steglich B, Steurer S, Freiwald E, Woestemeier A,
Konczalla L, Tachezy M, et al: Anti-inflammatory microenvironment
of esophageal adenocarcinomas negatively impacts survival. Cancer
Immunol Immunother. 69:1043–1056. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mimura K, Teh JL, Okayama H, Shiraishi K,
Kua LF, Koh V, Smoot DT, Ashktorab H, Oike T, Suzuki Y, et al:
PD-L1 expression is mainly regulated by interferon gamma associated
with JAK-STAT pathway in gastric cancer. Cancer Sci. 109:43–53.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xu J, Yin Z, Yang L, Wu F, Fan J, Huang Q,
Jin Y and Yang G: Evidence that dysplasia related microRNAs in
Barrett's esophagus target PD-L1 expression and contribute to the
development of esophageal adenocarcinoma. Aging (Albany NY).
12:17062–17078. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Baba Y, Nomoto D, Okadome K, Ishimoto T,
Iwatsuki M, Miyamoto Y, Yoshida N and Baba H: Tumor immune
microenvironment and immune checkpoint inhibitors in esophageal
squamous cell carcinoma. Cancer Sci. 111:3132–3141. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kornepati AVR, Vadlamudi RK and Curiel TJ:
Programmed death ligand 1 signals in cancer cells. Nat Rev Cancer.
22:174–189. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ohaegbulam KC, Assal A, Lazar-Molnar E,
Yao Y and Zang X: Human cancer immunotherapy with antibodies to the
PD-1 and PD-L1 pathway. Trends Mol Med. 21:24–33. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Buchbinder EI and Desai A: CTLA-4 and PD-1
pathways: Similarities, differences, and implications of their
inhibition. Am J Clin Oncol. 39:98–106. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang Z, Zhang RY, Xu YF, Yue BT, Zhang JY
and Wang F: Unmasking immune checkpoint resistance in esophageal
squamous cell carcinoma: Insights into the tumor microenvironment
and biomarker landscape. World J Gastrointest Oncol. 17:1094892025.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chen QY, Li YN, Wang XY, Zhang X, Hu Y, Li
L, Suo DQ, Ni K, Li Z, Zhan JR, et al: Tumor Fibroblast-Derived
FGF2 regulates expression of SPRY1 in esophageal Tumor-infiltrating
T cells and plays a role in T-cell exhaustion. Cancer Res.
80:5583–5596. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shen GY, Zhang Y, Huang RZ, Huang ZY, Yang
LY, Chen DZ and Yang SB: FOXP4-AS1 promotes CD8+ T cell exhaustion
and esophageal cancer immune escape through USP10-stabilized PD-L1.
Immunol Res. 72:766–775. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang C, Ju C, Du D, Zhu P, Yin J, Jia J,
Wang X, Xu X, Zhao L, Wan J, et al: CircNF1 modulates the
progression and immune evasion of esophageal squamous cell
carcinoma through dual regulation of PD-L1. Cell Mol Biol Lett.
30:372025. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Luo J, Zhang X, Liang Z, Zhuang W, Jiang
M, Ma M, Peng S, Huang S, Qiao G, Chen Q, et al: ISCU-p53 axis
orchestrates macrophage polarization to dictate immunotherapy
response in esophageal squamous cell carcinoma. Cell Death Dis.
16:4622025. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wu Q, Zhang W, Wang Y, Min Q, Zhang H,
Dong D and Zhan Q: MAGE-C3 promotes cancer metastasis by inducing
epithelial-mesenchymal transition and immunosuppression in
esophageal squamous cell carcinoma. Cancer Commun (Lond).
41:1354–1372. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li J, Ozawa Y, Mozumi T, Jiang K, Taniyama
Y, Sato C, Okamoto H, Ishida H, Ujiie N, Ohnuma S, et al:
Expression of cluster of differentiation 47 (CD47) and signal
regulatory protein alpha (SIRPα) as prognostic biomarkers and
potentially therapeutic targets in esophageal squamous cell
carcinoma. Esophagus. Sep 10–2025.doi: 10.1007/s10388-025-01152-5
(Epub ahead of print). View Article : Google Scholar
|
|
39
|
Koga N, Hu Q, Sakai A, Takada K, Nakanishi
R, Hisamatsu Y, Ando K, Kimura Y, Oki E, Oda Y and Mori M: Clinical
significance of signal regulatory protein alpha (SIRPα) expression
in esophageal squamous cell carcinoma. Cancer Sci. 112:3018–3028.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhao CL, Yu S, Wang SH, Li SG, Wang ZJ and
Han SN: Characterization of cluster of differentiation 47
expression and its potential as a therapeutic target in esophageal
squamous cell cancer. Oncol Lett. 15:2017–2023. 2018.PubMed/NCBI
|
|
41
|
Yuan H, Qing T, Zhu S, Yang X, Wu W, Xu K,
Chen H, Jiang Y, Zhu C, Yuan Z, et al: The effects of altered DNA
damage repair genes on mutational processes and immune cell
infiltration in esophageal squamous cell carcinoma. Cancer Med.
12:10077–10090. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wei Z, Zhao N, Kuang L, Cong J, Zheng S,
Li Y and Liu Z: DNA/RNA-binding protein KIN17 supports esophageal
cancer progression via resolving noncanonical STING activation
induced by R-loop. Signal Transduct Target Ther. 10:2562025.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang H, Lu G, Hu Y, Yang Q, Jiang J and
Xu M: Wild-type p53 overexpression inhibits DNA damage pathways and
reduces PD-L1 expression in prostate cancer. J Immunother. Aug
12–2025.doi: 10.1097/CJI.0000000000000573 (Epub ahead of print).
View Article : Google Scholar
|
|
44
|
Jiang M, Jia K, Wang L, Li W, Chen B, Liu
Y, Wang H, Zhao S, He Y and Zhou C: Alterations of DNA damage
response pathway: Biomarker and therapeutic strategy for cancer
immunotherapy. Acta Pharm Sin B. 11:2983–2994. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sato H, Niimi A, Yasuhara T, Permata TBM,
Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, et al:
DNA double-strand break repair pathway regulates PD-L1 expression
in cancer cells. Nat Commun. 8:17512017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Le DT, Durham JN, Smith KN, Wang H,
Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et
al: Mismatch-repair deficiency predicts response of solid tumors to
PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen G, Zhu YJ, Chen J, Miao F, Wu N, Song
Y, Mao BB, Wang SZ, Xu F and Chen ZM: Mutational landscape of DNA
damage response deficiency-related genes and its association with
immune biomarkers in esophageal squamous cell carcinoma. Neoplasma.
69:1314–1321. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Genova C, Dellepiane C, Carrega P,
Sommariva S, Ferlazzo G, Pronzato P, Gangemi R, Filaci G, Coco S
and Croce M: Therapeutic implications of tumor microenvironment in
lung cancer: Focus on immune checkpoint blockade. Front Immunol.
12:7994552022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Astaneh M, Rezazadeh H, Hossein-Nataj H,
Shekarriz R, Zaboli E, Shabani M and Asgarian-Omran H: Tim-3 and
PD-1 blocking cannot restore the functional properties of natural
killer cells in early clinical stages of chronic lymphocytic
leukemia: An in vitro study. J Cancer Res Ther. 18:704–711. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C,
Peng J, Gao L, Liang X and Ma C: Increased expression of programmed
cell death protein 1 on NK cells inhibits NK-cell-mediated
anti-tumor function and indicates poor prognosis in digestive
cancers. Oncogene. 36:6143–6153. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hsu J, Hodgins JJ, Marathe M, Nicolai CJ,
Bourgeois-Daigneault MC, Trevino TN, Azimi CS, Scheer AK, Randolph
HE, Thompson TW, et al: Contribution of NK cells to immunotherapy
mediated by PD-1/PD-L1 blockade. J Clin Invest. 128:4654–4668.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Beldi-Ferchiou A, Lambert M, Dogniaux S,
Vély F, Vivier E, Olive D, Dupuy S, Levasseur F, Zucman D, Lebbé C,
et al: PD-1 mediates functional exhaustion of activated NK cells in
patients with Kaposi sarcoma. Oncotarget. 7:72961–72977. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chuang CH, Guo JC, Kato K and Hsu CH:
Exploring novel immunotherapy in advanced esophageal squamous cell
carcinoma: Is targeting TIGIT an answer? Esophagus. 22:139–147.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chu X, Tian W, Wang Z, Zhang J and Zhou R:
Co-inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy:
Mechanisms and Clinical Trials. Mol Cancer. 22:932023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sivori S, Pende D, Quatrini L, Pietra G,
Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli
F and Moretta L: NK cells and ILCs in tumor immunotherapy. Mol
Aspects Med. 80:1008702021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yan C, Ma X, Guo Z, Wei X, Han D, Zhang T,
Chen X, Cao F, Dong J, Zhao G, et al: Time-spatial analysis of T
cell receptor repertoire in esophageal squamous cell carcinoma
patients treated with combined radiotherapy and PD-1 blockade.
Oncoimmunology. 11:20256682022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Portale F and Di Mitri D: NK Cells in
cancer: Mechanisms of dysfunction and therapeutic potential. Int J
Mol Sci. 24:95212023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zheng Y, Li Y, Lian J, Yang H, Li F, Zhao
S, Qi Y, Zhang Y and Huang L: TNF-α-induced Tim-3 expression marks
the dysfunction of infiltrating natural killer cells in human
esophageal cancer. J Transl Med. 17:1652019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yan Z, Wang C, Wu J, Wang J and Ma T:
TIM-3 teams up with PD-1 in cancer immunotherapy: Mechanisms and
perspectives. Mol Biomed. 6:272025. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sivori S, Vacca P, Del Zotto G, Munari E,
Mingari MC and Moretta L: Human NK cells: Surface receptors,
inhibitory checkpoints, and translational applications. Cell Mol
Immunol. 16:430–441. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gemelli M, Noonan DM, Carlini V, Pelosi G,
Barberis M, Ricotta R and Albini A: Overcoming resistance to
checkpoint inhibitors: Natural killer cells in Non-small cell lung
cancer. Front Oncol. 12:8864402022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang L, Chen Z, Liu G and Pan Y:
Functional crosstalk and regulation of natural killer cells in
tumor microenvironment: Significance and potential therapeutic
strategies. Genes Dis. 10:990–1004. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang H, Wang J and Li F: Modulation of
natural killer cell exhaustion in the lungs: The key components
from lung microenvironment and lung tumor microenvironment. Front
Immunol. 14:12869862023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hu W, Wang G, Huang D, Sui M and Xu Y:
Cancer immunotherapy based on natural killer cells: Current
progress and new opportunities. Front Immunol. 10:12052019.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Shimasaki N, Coustan-Smith E, Kamiya T and
Campana D: Expanded and armed natural killer cells for cancer
treatment. Cytotherapy. 18:1422–1434. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Marofi F, Abdul-Rasheed OF, Rahman HS,
Budi HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M,
Motavalli R, Chartrand MS, et al: CAR-NK cell in cancer
immunotherapy; A promising frontier. Cancer Sci. 112:3427–3436.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Thangaraj JL, Coffey M, Lopez E and
Kaufman DS: Disruption of TGF-β signaling pathway is required to
mediate effective killing of hepatocellular carcinoma by human
iPSC-derived NK cells. Cell Stem Cell. 31:1327–1343.e5. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li T, Wang X, Niu M, Wang M, Zhou J, Wu K
and Yi M: Bispecific antibody targeting TGF-β and PD-L1 for
synergistic cancer immunotherapy. Front Immunol. 14:11969702023.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Karami Z, Mortezaee K and Majidpoor J:
Dual anti-PD-(L)1/TGF-β inhibitors in cancer immunotherapy-Updated.
Int Immunopharmacol. 122:1106482023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lucarini V, Melaiu O, D'Amico S, Pastorino
F, Tempora P, Scarsella M, Pezzullo M, De Ninno A, D'Oria V, Cilli
M, et al: Combined mitoxantrone and anti-TGFβ treatment with PD-1
blockade enhances antitumor immunity by remodelling the tumor
immune landscape in neuroblastoma. J Exp Clin Cancer Res.
41:3262022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Viel S, Marçais A, Guimaraes FS, Loftus R,
Rabilloud J, Grau M, Degouve S, Djebali S, Sanlaville A, Charrier
E, et al: TGF-β inhibits the activation and functions of NK cells
by repressing the mTOR pathway. Sci Signal. 9:ra192016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jia H, Yang H, Xiong H and Luo KQ: NK cell
exhaustion in the tumor microenvironment. Front Immunol.
14:13036052023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wu Q, You L, Nepovimova E, Heger Z, Wu W,
Kuca K and Adam V: Hypoxia-inducible factors: Master regulators of
hypoxic tumor immune escape. J Hematol Oncol. 15:772022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Semenza GL: Intratumoral hypoxia and
mechanisms of immune evasion mediated by Hypoxia-inducible factors.
Physiology (Bethesda). 36:73–83. 2021.PubMed/NCBI
|
|
75
|
Zhao X, Tang YP, Wang CY, Wu JX and Ye F:
Prognostic values of STAT3 and HIF-1α in esophageal squamous cell
carcinoma. Eur Rev Med Pharmacol Sci. 23:3351–3357. 2019.PubMed/NCBI
|
|
76
|
Bai R and Cui J: Burgeoning exploration of
the role of natural killer cells in Anti-PD-1/PD-L1 therapy. Front
Immunol. 13:8869312022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ding X, Wang L, Zhang XD, Xu JL, Li PF,
Liang H, Zhang XB, Xie L, Zhou ZH, Yang J, et al: The relationship
between expression of PD-L1 and HIF-1α in glioma cells under
hypoxia. J Hematol Oncol. 14:922021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shurin MR and Umansky V: Cross-talk
between HIF and PD-1/PD-L1 pathways in carcinogenesis and therapy.
J Clin Invest. 132:e1594732022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jiang W, He Y, He W, Wu G, Zhou X, Sheng
Q, Zhong W, Lu Y, Ding Y, Lu Q, et al: Exhausted CD8+T cells in the
tumor immune microenvironment: New pathways to therapy. Front
Immunol. 11:6225092021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Su X, Zhang M, Zhu H, Cai J, Wang Z, Xu Y,
Wang L, Shen C and Cai M: Mechanisms of T-cell depletion in tumors
and advances in clinical research. Biol Proced Online. 27:52025.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Xin Z, Wenyu F and Shenhua X:
Clinicopathologic significance of cytokine levels in esophageal
squamous cell carcinoma. Hepatogastroenterology. 57:1416–1422.
2010.PubMed/NCBI
|
|
82
|
Liu Y, Zhou N, Zhou L, Wang J, Zhou Y,
Zhang T, Fang Y, Deng J, Gao Y, Liang X, et al: IL-2 regulates
tumor-reactive CD8+ T cell exhaustion by activating the aryl
hydrocarbon receptor. Nat Immunol. 22:358–369. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kwon B: The two faces of IL-2: A key
driver of CD8+ T-cell exhaustion. Cell Mol Immunol. 18:1641–1643.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hashimoto M, Araki K, Cardenas MA, Li P,
Jadhav RR, Kissick HT, Hudson WH, McGuire DJ, Obeng RC, Wieland A,
et al: PD-1 combination therapy with IL-2 modifies CD8+ T cell
exhaustion program. Nature. 610:173–181. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Fusi I, Serger C, Herzig P, Germann M,
Sandholzer MT, Oelgarth N, Schwalie PC, Don L, Vetter VK, Koelzer
VH, et al: PD-1-targeted cis-delivery of an IL-2 variant induces a
multifaceted antitumoral T cell response in human lung cancer. Sci
Transl Med. 17:eadr37182025. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hutchinson LG, Lewin TD, Lauener L,
Martin-Facklam M, Muecke M, Teichgraeber V and Codarri Deak L:
PD-1-Cis IL-2R agonism determines the predicted pharmacological
dose range for the immunocytokine eciskafusp alfa (PD1-IL2v). CPT
Pharmacometrics Syst Pharmacol. Sep 27–2025.doi: 10.1002/psp4.70112
(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Murer P, Petersen L, Egli N, Salazar U,
Neubert P, Zurbach A, Rau A, Stocker C, Reichenstein D, Katopodis A
and Huber C: ANV600 is a novel PD-1 targeted IL-2Rβγ agonist that
selectively expands tumor antigen-specific T cells and potentiates
PD-1 checkpoint inhibitor therapy. J Immunother Cancer.
13:e0119052025. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ye F, Huang J, Cheng X, Chen SC, Huang F,
Huang WC, Hua B, Li E, Jiang J, Lin H, et al: AWT020: A novel
fusion protein harnessing PD-1 blockade and selective IL-2
Cis-activation for enhanced anti-tumor immunity and diminished
toxicity. Front Immunol. 16:15374662025. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gadwa J, Amann M, Bickett TE, Knitz MW,
Darragh LB, Piper M, Van Court B, Bukkapatnam S, Pham TT, Wang XJ,
et al: Selective targeting of IL2Rβγ combined with radiotherapy
triggers CD8- and NK-mediated immunity, abrogating metastasis in
HNSCC. Cell Rep Med. 4:1011502023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Piper M, Hoen M, Darragh LB, Knitz MW,
Nguyen D, Gadwa J, Durini G, Karakoc I, Grier A, Neupert B, et al:
Simultaneous targeting of PD-1 and IL-2Rβγ with radiation therapy
to inhibit pancreatic cancer growth and metastasis. Cancer Cell.
41:950–969.e6. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu Y, Wang T, Ma W, Jia Z, Wang Q, Zhang
M, Luo Y and Sun H: Metabolic reprogramming in the tumor
microenvironment: Unleashing T cell stemness for enhanced cancer
immunotherapy. Front Pharmacol. 14:13277172023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong
W, Li G, Yi M, Li X, Wang H and Xiang B: T cell exhaustion in human
cancers. Biochim Biophys Acta Rev Cancer. 1879:1891622024.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhu Y, Tan H, Wang J, Zhuang H, Zhao H and
Lu X: Molecular insight into T cell exhaustion in hepatocellular
carcinoma. Pharmacol Res. 203:1071612024. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hu Y, Zhang Y, Shi F, Yang R, Yan J, Han T
and Guan L: Reversal of T-cell exhaustion: Mechanisms and
synergistic approaches. Int Immunopharmacol. 138:1125712024.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ma F, Li Y, Xiang C, Wang B, Lv J, Wei J,
Qin Z, Pu Y, Li K, Teng H, et al: Proteomic characterization of
esophageal squamous cell carcinoma response to immunotherapy
reveals potential therapeutic strategy and predictive biomarkers. J
Hematol Oncol. 17:112024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chen N, Li Z, Liu H, Jiang A, Zhang L, Yan
S, He W, Yang J and Liu T: Enhancing PD-1 blockade in NSCLC:
Reprogramming tumor immune microenvironment with albumin-bound
statins targeting lipid rafts and mitochondrial respiration. Bioact
Mater. 49:140–153. 2025.PubMed/NCBI
|
|
97
|
Chen N, Yang Y, Fan L, Cai Y, Yin W, Yang
Z, Zhao Y, Chen S, Zhi H, Xue L, et al: The STING-activating
nanofactory relieves T cell exhaustion in Mn-based tumor
immunotherapy by regulating mitochondrial dysfunction. J
Nanobiotechnology. 23:4032025. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yu YR, Imrichova H, Wang H, Chao T, Xiao
Z, Gao M, Rincon-Restrepo M, Franco F, Genolet R, Cheng WC, et al:
Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell
exhaustion. Nat Immunol. 21:1540–1551. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ren L, Wan J, Li X, Yao J, Ma Y, Meng F,
Zheng S, Han W and Wang H: Mitochondrial rewiring with
small-molecule drug-free nanoassemblies unleashes anticancer
immunity. Nat Commun. 15:76642024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhong N, Zu Z, Lu Y, Sha X, Li Y, Liu Y,
Lu S, Luo X, Zhou Y, Tao J, et al: Mitochondria-targeted
manganese-based mesoporous silica nanoplatforms trigger cGAS-STING
activation and sensitize anti PD-L1 therapy in triple-negative
breast cancer. Acta Biomaterialia. 199:374–386. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X
and Zhuang A: Amino acid metabolism reprogramming: Shedding new
light on T cell anti-tumor immunity. J Exp Clin Cancer Res.
42:2912023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Guo ZX, Ma JL, Zhang JQ, Yan LL, Zhou Y,
Mao XL, Li SW and Zhou XB: Metabolic reprogramming and
immunological changes in the microenvironment of esophageal cancer:
Future directions and prospects. Front Immunol. 16:15248012025.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wu Z, Liu Z, Wang Y, Teng G, Li X, Lu T,
Hu F, Wu S, Ma G and Zhang H: A comprehensive analysis of the
tryptophan metabolism-related gene signature to predict the
prognosis of esophageal squamous cell carcinoma based on
multi-omics. Front Mol Biosci. 12:16135392025. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Saha S, Ghosh M, Li J, Wen A, Galluzzi L,
Martinez LA and Montrose DC: Serine depletion promotes antitumor
immunity by activating mitochondrial DNA-mediated cGAS-STING
signaling. Cancer Res. 84:2645–2659. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ho T and Msallam R: Tissues and tumor
microenvironment (TME) in 3D: Models to shed light on
immunosuppression in cancer. Cells. 10:8312021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhang P, Dong S, Sun W, Zhong W, Xiong J,
Gong X, Li J, Lin H and Zhuang Y: Deciphering Treg cell roles in
esophageal squamous cell carcinoma: A comprehensive prognostic and
immunotherapeutic analysis. Front Mol Biosci. 10:12775302023.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang WL, Chang WL, Yang HB, Chang IW, Lee
CT, Chang CY, Lin JT and Sheu BS: Quantification of tumor
infiltrating Foxp3+ regulatory T cells enables the identification
of high-risk patients for developing synchronous cancers over upper
aerodigestive tract. Oral Oncol. 51:698–703. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Cai J, Wang D, Zhang G and Guo X: The role
Of PD-1/PD-L1 axis in treg development and function: Implications
for cancer immunotherapy. Onco Targets Ther. 12:8437–8445. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Huang TX and Fu L: The immune landscape of
esophageal cancer. Cancer Commun (Lond). 39:792019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Gao Y, You M, Fu J, Tian M, Zhong X, Du C,
Hong Z, Zhu Z, Liu J, Markowitz GJ, et al: Intratumoral stem-like
CCR4+ regulatory T cells orchestrate the immunosuppressive
microenvironment in HCC associated with hepatitis B. J Hepatol.
76:148–159. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chen X, Wang L, Li P, Song M, Qin G, Gao
Q, Zhang Z, Yue D, Wang D, Nan S, et al: Dual TGF-β and PD-1
blockade synergistically enhances MAGE-A3-specific CD8+ T cell
response in esophageal squamous cell carcinoma. Int J Cancer.
143:2561–2574. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chen MF, Chen PT, Chen WC, Lu MS, Lin PY
and Lee KD: The role of PD-L1 in the radiation response and
prognosis for esophageal squamous cell carcinoma related to IL-6
and T-cell immunosuppression. Oncotarget. 7:7913–7924. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kitamura H, Ohno Y, Toyoshima Y, Ohtake J,
Homma S, Kawamura H, Takahashi N and Taketomi A:
Interleukin-6/STAT3 signaling as a promising target to improve the
efficacy of cancer immunotherapy. Cancer Sci. 108:1947–1952. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang B, Liu J, Mo Y, Zhang K, Huang B and
Shang D: CD8+ T cell exhaustion and its regulatory mechanisms in
the tumor microenvironment: Key to the success of immunotherapy.
Front Immunol. 15:14769042024. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tong Y, Yang L, Yu C, Zhu W, Zhou X, Xiong
Y, Wang W, Ji F, He D and Cao X: Tumor-secreted exosomal lncRNA
POU3F3 promotes cisplatin resistance in ESCC by inducing fibroblast
differentiation into CAFs. Mol Ther Oncolytics. 18:1–13. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Jiang J, Xu C, Han D, Lu Y, Yang F, Wang
J, Yan X, Mu X, Zhang J, Jia C, et al: Functional heterogeneity of
cancer-associated fibroblasts with distinct neoadjuvant
immunotherapy plus chemotherapy response in esophageal squamous
cell carcinoma. Biomark Res. 12:1132024. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lu Y, Xin D, Guan L, Xu M, Yang Y, Chen Y,
Yang Y, Wang-Gillam A, Wang L, Zong S and Wang F: Metformin
downregulates PD-L1 expression in esophageal squamous cell
carcinoma by inhibiting IL-6 signaling pathway. Front Oncol.
11:7625232021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Zhou YC, Zhu HL, Pang XZ, He Y, Shen Y and
Ma DY: The IL-6/STAT3 signaling pathway is involved in
Radiotherapy-mediated upregulation of PD-L1 in esophageal cancer.
Ann Clin Lab Sci. 55:28–38. 2025.PubMed/NCBI
|
|
119
|
Huseni MA, Wang L, Klementowicz JE, Yuen
K, Breart B, Orr C, Liu LF, Li Y, Gupta V, Li C, et al: CD8+ T
cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1
immunotherapy. Cell Rep Med. 4:1008782023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Vilgelm AE: Illuminating the mechanism of
IL-6-mediated immunotherapy resistance. Cell Rep Med. 4:1009012023.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Huang P, Zhao M, Xia J, Li H, Sun J, Li X,
Yang C, Gao G, Zhou W, Zhong M and Yong H: IL-6 is a prognostic
biomarker in patients with advanced esophageal squamous cell
carcinoma received with PD-1 inhibitors. Front Immunol.
16:15690422025. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ma H, Zhang S, Jiao P, Ding H, Wang F,
Zhao Y, Wu J and Guo Z: Serum IL-6 predicts immunotherapy-related
adverse and outcome in advanced gastric and esophageal cancer
patients with Anti-PD-1 treatment. Front Immunol. 16:15538822025.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Li CH, Sun XJ, Niu SS, Yang CY, Hao YP,
Kou JT, Li XZ and Wang XX: Overexpression of IQGAP1 promotes the
angiogenesis of esophageal squamous cell carcinoma through the AKT
and ERK-mediated VEGF-VEGFR2 signaling pathway. Oncol Rep.
40:1795–1802. 2018.PubMed/NCBI
|
|
124
|
Liu Y, Ge Q, Xu S, Li K and Liu Y:
Efficacy and safety of anlotinib plus programmed death-1 blockade
versus anlotinib monotherapy as second or further-line treatment in
advanced esophageal squamous cell carcinoma: A retrospective study.
Front Oncol. 12:9426782022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tamura R, Tanaka T, Akasaki Y, Murayama Y,
Yoshida K and Sasaki H: The role of vascular endothelial growth
factor in the hypoxic and immunosuppressive tumor microenvironment:
Perspectives for therapeutic implications. Med Oncol. 37:22019.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Geindreau M, Ghiringhelli F and Bruchard
M: Vascular endothelial growth factor, a key modulator of the
Anti-tumor immune response. Int J Mol Sci. 22:48712021. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Apte RS, Chen DS and Ferrara N: VEGF in
signaling and disease: Beyond discovery and development. Cell.
176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhao Y and Adjei AA: Targeting
angiogenesis in cancer therapy: Moving beyond vascular endothelial
growth factor. Oncologist. 20:660–673. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Yang YM, Hong P, Xu WW, He QY and Li B:
Advances in targeted therapy for esophageal cancer. Signal
Transduct Target Ther. 5:2292020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Zhang Y, Huang H, Coleman M, Ziemys A,
Gopal P, Kazmi SM and Brekken RA: VEGFR2 activity on myeloid cells
mediates immune suppression in the tumor microenvironment. JCI
Insight. 6:e1507352021. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Bourhis M, Palle J, Galy-Fauroux I and
Terme M: Direct and indirect modulation of T cells by VEGF-A
counteracted by Anti-angiogenic treatment. Front Immunol.
12:6168372021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Chi Y, Wang F, Zhang Y, Shan Z, Tao W,
Lian Y, Xin D, Fan Q and Sun Y: Apatinib inhibits tumour
progression and promotes antitumour efficacy of cytotoxic drugs in
oesophageal squamous cell carcinoma. J Cell Mol Med. 26:1905–1917.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Shaw P, Dwivedi SKD, Bhattacharya R,
Mukherjee P and Rao G: VEGF signaling: Role in angiogenesis and
beyond. Biochim Biophys Acta Rev Cancer. 1879:1890792024.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Rahma OE and Hodi FS: The intersection
between tumor angiogenesis and immune suppression. Clin Cancer Res.
25:5449–5457. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Mayoux M, Roller A, Pulko V, Sammicheli S,
Chen S, Sum E, Jost C, Fransen MF, Buser RB, Kowanetz M, et al:
Dendritic cells dictate responses to PD-L1 blockade cancer
immunotherapy. Sci Transl Med. 12:eaav74312020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Kim CG, Jang M, Kim Y, Leem G, Kim KH, Lee
H, Kim TS, Choi SJ, Kim HD, Han JW, et al: VEGF-A drives
TOX-dependent T cell exhaustion in anti-PD-1-resistant
microsatellite stable colorectal cancers. Sci Immunol.
4:eaay05552019. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Hou Z, Lai L, Wu H, Zou B, Xu N, Zhu D,
Wang X and Zhang H: Administering immunotherapy after anti-vascular
targeted therapy improves overall survival of patients with
metastatic clear cell renal cell carcinoma. J Cancer. 15:4527–4533.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Lochrin SE, Cugliari MK, Yeh R and
Shoushtari AN: Efficacy of axitinib in a US cohort of patients with
programmed cell death protein 1-resistant mucosal melanoma.
Melanoma Res. 34:450–456. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Gu L, Peng C, Liang Q, Huang Q, Lv D, Zhao
H, Zhang Q, Zhang Y, Zhang P, Li S, et al: Neoadjuvant toripalimab
plus axitinib for clear cell renal cell carcinoma with inferior
vena cava tumor thrombus: NEOTAX, a phase 2 study. Signal Transduct
Target Ther. 9:2642024. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Atkins MB, Plimack ER, Puzanov I, Fishman
MN, McDermott DF, Cho DC, Vaishampayan U, George S, Olencki TE,
Tarazi JC, et al: Axitinib in combination with pembrolizumab in
patients with advanced renal cell cancer: A non-randomised,
open-label, dose-finding, and dose-expansion phase 1b trial. Lancet
Oncol. 19:405–415. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Yan Z, Yao ZH, Yao SN, Wang HY, Chu JF,
Song M, Zhao S and Liu YY: Camrelizumab plus apatinib successfully
treated a patient with advanced esophageal squamous cell carcinoma.
Immunotherapy. 12:1161–1166. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Zhou Y, Liu Z, Yu A, Zhao G and Chen B:
Immune checkpoint inhibitor combined with antiangiogenic agent
synergistically improving the treatment efficacy for solid tumors.
Immunotargets Ther. 13:813–829. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Trüb M and Zippelius A: Tertiary lymphoid
structures as a predictive biomarker of response to cancer
immunotherapies. Front Immunol. 12:6745652021. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Deguchi S, Tanaka H, Suzuki S, Natsuki S,
Mori T, Miki Y, Yoshii M, Tamura T, Toyokawa T, Lee S, et al:
Clinical relevance of tertiary lymphoid structures in esophageal
squamous cell carcinoma. BMC Cancer. 22:6992022. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Wang H, Li J, Wang Y, Chen Y, Zhang W, Pan
X, Su C, Li Z, Wang L and Gu J: IgG4-mediated M2 macrophage
polarization in tertiary lymphoid structures of esophageal cancer:
Implications for immunosuppression. Front Immunol. 15:14977832025.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Huang H, Zhao G, Wang T, You Y, Zhang T,
Chen X, Dong J, Gong L, Shang X, Cao F, et al: Survival benefit and
spatial properties of tertiary lymphoid structures in esophageal
squamous cell carcinoma with neoadjuvant therapies. Cancer Lett.
601:2171782024. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Mori T, Tanaka H, Suzuki S, Deguchi S,
Yamakoshi Y, Yoshii M, Miki Y, Tamura T, Toyokawa T, Lee S, et al:
Tertiary lymphoid structures show infiltration of effective
tumor-resident T cells in gastric cancer. Cancer Sci.
112:1746–1757. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Hu C, You W, Kong D, Huang Y, Lu J, Zhao
M, Jin Y, Peng R, Hua D, Kuang DM and Chen Y: Tertiary lymphoid
Structure-associated B cells enhance CXCL13+CD103+CD8+
Tissue-resident memory T-Cell response to programmed cell death
protein 1 blockade in cancer immunotherapy. Gastroenterology.
166:1069–1084. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Zhang D, Jiang D, Jiang L, Ma J, Wang X,
Xu X, Chen Z, Jiang M, Ye W, Wang J, et al: HLA-A+ tertiary
lymphoid structures with reactivated tumor infiltrating lymphocytes
are associated with a positive immunotherapy response in esophageal
squamous cell carcinoma. Br J Cancer. 131:184–195. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Yarchoan M, Hopkins A and Jaffee EM: Tumor
mutational burden and response rate to PD-1 inhibition. N Engl J
Med. 377:2500–2501. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Zhang W, Wang P and Pang Q: Immune
checkpoint inhibitors for esophageal squamous cell carcinoma: A
narrative review. Ann Transl Med. 8:11932020. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Zhou X, Bao W, Zhu X, Wang D, Zeng P, Xia
G, Xing M, Zhan Y, Yan J, Yuan M and Zhao Q: Molecular
characteristics and multivariate survival analysis of 43 patients
with locally advanced or metastatic esophageal squamous cell
carcinoma. J Thorac Dis. 16:1843–1853. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Indini A, Massi D, Pirro M, Roila F,
Grossi F, Sahebkar A, Glodde N, Bald T and Mandalà M: Targeting
inflamed and non-inflamed melanomas: Biological background and
clinical challenges. Semin Cancer Biol. 86:477–490. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Zheng M: Tumor mutation burden for
predicting immune checkpoint blockade response: The more, the
better. J Immunother Cancer. 10:e0030872022. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
McGrail DJ, Pilié PG, Rashid NU, Voorwerk
L, Slagter M, Kok M, Jonasch E, Khasraw M, Heimberger AB, Lim B, et
al: High tumor mutation burden fails to predict immune checkpoint
blockade response across all cancer types. Ann Oncol. 32:661–672.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Yan C, Huang H, Zheng Z, Ma X, Zhao G,
Zhang T, Chen X, Cao F, Wei H, Dong J, et al: Spatial distribution
of tumor-infiltrating T cells indicated immune response status
under chemoradiotherapy plus PD-1 blockade in esophageal cancer.
Front Immunol. 14:11380542023. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Ti W, Wei T, Wang J and Cheng Y:
Comparative analysis of mutation status and immune landscape for
squamous cell carcinomas at different anatomical sites. Front
Immunol. 13:9477122022. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Chan TA, Yarchoan M, Jaffee E, Swanton C,
Quezada SA, Stenzinger A and Peters S: Development of tumor
mutation burden as an immunotherapy biomarker: Utility for the
oncology clinic. Ann Oncol. 30:44–56. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Wang L, Jia YM, Zuo J, Wang YD, Fan ZS,
Feng L, Zhang X, Han J, Lyu WJ and Ni ZY: Gene mutations of
esophageal squamous cell carcinoma based on next-generation
sequencing. Chin Med J (Engl). 134:708–715. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Zhang N, Shi J, Shi X, Chen W and Liu J:
Mutational characterization and potential prognostic biomarkers of
chinese patients with esophageal squamous cell carcinoma. Onco
Targets Ther. 13:12797–12809. 2020. View Article : Google Scholar : PubMed/NCBI
|