Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
January-2026 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Harnessing ferroptosis for cancer therapy: Mechanisms and therapeutic strategies (Review)

  • Authors:
    • Nabil Mouawad
    • Nour El Jaafari
    • Mirvat El Sibai
    • Ralph J. Abi-Habib
  • View Affiliations / Copyright

    Affiliations: Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
    Copyright: © Mouawad et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 24
    |
    Published online on: November 24, 2025
       https://doi.org/10.3892/or.2025.9029
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ferroptosis is a type of programmed cell death characterized by accumulation of free iron, reactive oxygen species generation and lipid peroxidation and is distinct from other types of regulated cell deaths such as apoptosis, necrosis and autophagy. Ferroptosis is distinct from other programmed cell deaths for its iron dependence and its significant role in tumor suppression. Therefore, harnessing ferroptosis may offer promising avenues for cancer therapy. In the present review, the different pathways that lead to ferroptosis, the genes and transcription factors involved in both iron and lipid metabolism, as well as the impact of small‑molecule alterations on the regulation of ferroptotic cell death, were discussed. Furthermore, the emergence of combination therapies with ferroptosis‑inducing molecules that overcome resistance to conventional chemotherapy, particularly in solid tumors, were highlighted.
View Figures

Figure 1

Overview of key pathways and
molecular regulators involved in ferroptosis, an iron dependent
form of regulated cell death marked by the accumulation of ROS.
Iron metabolism increases the labile iron pool (Fe2+),
which drives LPO through Fenton reactions. The System
Xc− antiporter, composed of SLC7A11 and SLC3A2, imports
cystine in exchange for glutamate, enabling the synthesis of GSH, a
crucial antioxidant that supports GPX4 function. GPX4 protects
cells from ferroptosis by converting toxic lipid hydroperoxides
(Lipid-OOH) into non-toxic lipid-alcohols (Lipid-OH). Enzymes such
as ACSL4, LPCAT3 and LOXs facilitate phospholipid peroxidation,
enhancing ferroptosis. Ferritin degradation (ferritinophagy)
releases free iron, enhancing sensitivity to ferroptotic cell
death. In mitochondria, DHODH reduces CoQ to CoQH2, providing an
additional defense against lipid peroxidation, particularly when
GPX4 activity is impaired. In the cytosol, the GCH1/BH4 axis offers
a GPX4-independent antioxidant pathway, where BH4 synthesis helps
suppress lipid peroxidation and ferroptosis. Small molecules (for
example, erastin and RSL3) and regulatory proteins (for example,
FSP1, NRF2 and p53) modulate ferroptotic signaling through various
mechanisms, including GSH depletion and GPX4 inhibition. ROS,
reactive oxygen species; LPO, lipid peroxidation; GSH, reduced
glutathione; GPX4, glutathione peroxidase 4; LOX, lipoxygenase;
DHODH, dihydroorotate dehydrogenase; CoQ10, Coenzyme Q10; COX,
cyclooxygenase.

Figure 2

Key therapeutic approaches to induce
ferroptosis in cancer cells can be classified into two main
categories: monotherapies and combination therapies. Monotherapies
can be further categorized as: i) targeting metabolic pathways,
including modulation of iron metabolism and activation of LPO; ii)
using direct ferroptosis inducers, such as inhibitors of System
Xc− or GPX4; and iii) employing regulatory RNAs, such as
miRNAs, lncRNAs and circRNAs. Combination therapies include
strategies that synergize with chemotherapy, radiotherapy,
immunotherapy, or nanotechnology-based approaches. LPO, lipid
peroxidation; GPX4, glutathione peroxidase 4; miRNAs or miRs,
microRNAs; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs;
ROS, reactive oxygen species; GSH, reduced glutathione; NCOA4,
nuclear receptor coactivator 4; CoQ10, Coenzyme Q10; HMGCR,
3-hydroxy-3-methylglutaryl-CoA reductase; HSPA5, heat shock protein
family A (Hsp70) member 5.
View References

1 

Sharma A, Boise LH and Shanmugam M: Cancer metabolism and the evasion of apoptotic cell death. Cancers (Basel). 11:11442019. View Article : Google Scholar : PubMed/NCBI

2 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM and Yang WS: Ferroptosis: An Iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Čepelak I, Dodig S and Dodig DČ: Ferroptosis: Regulated cell death. Arh Hig Rada Toksikol. 71:99–109. 2020.PubMed/NCBI

5 

Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK and Manyazewal T: New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 9:205031212110343662021. View Article : Google Scholar : PubMed/NCBI

6 

Kishi Y, Hasegawa K, Sugawara Y and Kokudo N: Hepatocellular carcinoma: Current management and future development-improved outcomes with surgical resection. Int J Hepatol. 2011:7281032011. View Article : Google Scholar : PubMed/NCBI

7 

Yiannikourides A and Latunde-Dada GO: A short review of iron metabolism and pathophysiology of iron disorders. Medicines (Basel). 6:852019.PubMed/NCBI

8 

Camaschella C, Nai A and Silvestri L: Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 105:260–272. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Zhao Z: Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med (Milton). 2:82–87. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Kotla NK, Dutta P, Parimi S and Das NK: The role of ferritin in health and disease: Recent advances and understandings. Metabolites. 12:6092022. View Article : Google Scholar : PubMed/NCBI

11 

Knovich MA, Storey JA, Coffman LG, Torti SV and Torti FM: Ferritin for the clinician. Blood Rev. 23:95–104. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Abbaspour N, Hurrell R and Kelishadi R: Review on iron and its importance for human health. Iran J Pediatr. 19:164–174. 2014.

13 

Fillebeen C, Charlebois E, Wagner J, Katsarou A, Mui J, Vali H, Garcia-Santos D, Ponka P, Presley J and Pantopoulos K: Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood. 133:344–355. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Obeagu EI and Tanko MSM: Iron metabolism in breast cancer: Mechanisms and therapeutic implications: A narrative review. Ann Med Surg (Lond). 87:3403–3409. 2025. View Article : Google Scholar : PubMed/NCBI

15 

Singh B, Arora S, Agrawal P and Gupta S: Hepcidin: A novel peptide hormone regulating iron metabolism. Clin Chim Acta. 412:823–830. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Nemeth E and Ganz T: The role of hepcidin in iron metabolism. Acta Haematol. 122:78–86. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Shan Z, Wei Z and Shaikh ZA: Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in Triple-negative breast cancer cells. Toxicol Appl Pharmacol. 356:36–43. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Belvin BR and Lewis JP: Ferroportin depletes iron needed for cell cycle progression in head and neck squamous cell carcinoma. Front Oncol. 12:10254342023. View Article : Google Scholar : PubMed/NCBI

19 

Grillo AS, SantaMaria AM, Kafina MD, Cioffi AG, Huston NC, Han M, Seo YA, Yien YY, Nardone C, Menon AV, et al: Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science. 356:608–616. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Skjørringe T, Burkhart A, Johnsen K and Moos T: Divalent metal transporter 1 (DMT1) in the brain: Implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 8:192015.PubMed/NCBI

21 

Song Q, Peng S, Sun Z, Heng X and Zhu X: Temozolomide drives ferroptosis via a DMT1-dependent pathway in glioblastoma cells. Yonsei Med J. 62:8432021. View Article : Google Scholar : PubMed/NCBI

22 

Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Aquilano K, Baldelli S and Ciriolo MR: Glutathione: New roles in redox signaling for an old antioxidant. Front Pharmacol. 5:1962014. View Article : Google Scholar : PubMed/NCBI

24 

Lu SC: Glutathione synthesis. Biochim Biophys Acta. 1830:3143–3153. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Liu M, Zhu W and Pei D: System Xc-: A key regulatory target of ferroptosis in cancer. Invest New Drugs. 39:1123–1131. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Lewerenz J, Hewett SJ, Huang Y, Lambros MP, Gout PW, Kalivas PW, Massie A, Smolders IJ, Methner A, Pergande M, et al: The cystine/glutamate antiporter system x(c)(−) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 18:522–555. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Koppula P, Li Z and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Lee J and Roh J: SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxidants (Basel). 11:24442022. View Article : Google Scholar : PubMed/NCBI

29 

Ma Q: Role of NRF2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Kilberg MS, Shan J and Su N: ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab. 20:436–443. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY and Savaskan NE: ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 36:5593–5608. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Zhang Y, Shi J, Liu X, Li F, Gong Z, Koppula P, Sirohi K, Xu L, Wei Y, Lee H, et al: BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 20:1181–1192. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Wang Y, Lu Y, Zhang X, Cui W, Liu Y, Sun Q, He Q, Zhao S, Zhang G, Wang Y, et al: Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 20:e475632019. View Article : Google Scholar : PubMed/NCBI

34 

Wang Y, Zhao Y, Wang H, Zhang C, Wang M, Yang Y, Xu X and Hu Z: Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Bio. 10:637–643. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Tsuchihashi K, Okazaki S, Ohmura M, Ishikawa M, Sampetrean O, Onishi N, Wakimoto H, Yoshikawa M, Seishima R, Iwasaki Y, et al: The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(−). Cancer Res. 76:2954–2963. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Liu T, Jiang L, Tavana O and Gu W: The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res. 79:1913–1924. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS and Stockwell BR: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI

38 

Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Yang WS, Sriramaratnam R, Welsch M, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Yang Y, Lin J, Guo S, Xue X, Wang Y, Qiu S, Cui J, Ma L, Zhang X and Wang J: RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer. Cancer Cell Int. 20:162020. View Article : Google Scholar : PubMed/NCBI

41 

Cramer SL, Saha A, Liu J, Tadi S, Tiziani S, Yan W, Triplett K, Lamb C, Alters SE, Rowlinson SW, et al: Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 23:120–127. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Sbodio JI, Snyder SH and Paul BD: Regulators of the transsulfuration pathway. Br J Pharmacol. 176:583–593. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Hayano M, Yang W, Corn CK, Pagano NC and Stockwell BR: Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 23:270–278. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Weaver K and Skouta R: The selenoprotein glutathione peroxidase 4: From molecular mechanisms to novel therapeutic opportunities. Biomedicines. 10:8912022. View Article : Google Scholar : PubMed/NCBI

45 

Tuo Q, Masaldan S, Southon A, Mawal C, Ayton S, Bush AI, Lei P and Belaidi AA: Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury. Neurotherapeutics. 18:2682–2691. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Hao S, Liang B, Huang Q, Dong S, Wu Z, He W and Shi M: Metabolic networks in ferroptosis (Review). Oncol Lett. 16:5279–5287. 2018.

47 

Zheng J and Conrad M: The metabolic underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Shin D, Kim EH, Lee J and Roh J: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 129:454–462. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, SteMarie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279.e25. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Zhang Y, Swanda RV, Nie L, Liu X, Wang C, Lee H, Lei G, Mao C, Koppula P, Cheng W, et al: mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 12:15892021. View Article : Google Scholar : PubMed/NCBI

51 

Chaudhary N, Choudhary BS, Shah S, Khapare N, Dwivedi N, Gaikwad A, Joshi N, Raichanna J, Basu S, Gurjar M, et al: Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer. 149:1495–1511. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Li F, Long H, Zhou Z, Luo H, Xu S and Gao L: System Xc-/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 13:9102922022. View Article : Google Scholar : PubMed/NCBI

53 

Kerins M, Milligan JF, Wohlschlegel JA and Ooi A: Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction. Cancer Sci. 109:2757–2766. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Cui C, Yang F and Li Q: Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases. Front Mol Biosci. 9:9015652022. View Article : Google Scholar : PubMed/NCBI

55 

Grossman E, Ward CC, Spradlin JN, Bateman LA, Huffman TR, Miyamoto DK, Kleinman JI and Nomura DK: Covalent ligand discovery against druggable hotspots targeted by anticancer natural products. Cell Chem Biol. 24:1368–1376.e4. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Yang L, Chen X, Yang Q, Chen J, Huang Q, Yao L, Ding Y, Wu J, Zhang P, Tang D, et al: Broad spectrum deubiquitinase inhibition induces both apoptosis and ferroptosis in cancer cells. Front Oncol. 10:9492020. View Article : Google Scholar : PubMed/NCBI

57 

Zhu S, Zhang Q, Sun X, Zeh HJ, Lotze MT, Kang R and Tang D: HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 77:2064–2077. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Yang WS, Kim KJ, Gaschler MM, Patel MM, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Viswanathan VS, Ryan M, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, et al: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 547:453–457. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix C, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Dixon SJ, Winter GE, Musavi L, Lee ED, Snijder B, Rebsamen M, Superti-Furga G and Stockwell BR: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 10:1604–1609. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Doll S, Freitas FP, Shah R, Aldrovandi M, Da Silva MC, Ingold I, Grocin AG, Da Silva TNX, Panzilius E, Scheel C, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Snaebjornsson MT, Janaki-Raman S and Schulze A: Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer. Cell Metab. 31:62–76. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Sun Y, Xue Z, Huang T, Che X and Wu G: Lipid metabolism in ferroptosis and Ferroptosis-based cancer therapy. Front Oncol. 12:9416182022. View Article : Google Scholar : PubMed/NCBI

65 

Lee JY, Nam M, Son H, Hyun K, Jang SY, Kim JW, Kim MW, Jung Y, Jang E, Yoon S, et al: Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci USA. 117:32433–32442. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Kim JW, Lee J, Oh M and Lee EW: An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Exp Mol Med. 55:1620–1631. 2023. View Article : Google Scholar : PubMed/NCBI

67 

Lee J, Kim WK, Bae K, Lee SC and Lee EW: Lipid metabolism and ferroptosis. Biology (Basel). 10:1842021.PubMed/NCBI

68 

Song Z, Xiaoli AM and Yang F: Regulation and metabolic significance of de novo lipogenesis in adipose tissues. Nutrients. 10:13832018. View Article : Google Scholar : PubMed/NCBI

69 

Carracedo A, Cantley LC and Pandolfi PP: Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev Cancer. 13:227–232. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Roehrig F and Schulze A: The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Olzmann JA and Carvalho P: Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 20:137–155. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Cruz ALS, Barreto EA, Fazolini NPB, Viola JPB and Bozza PT: Lipid droplets: Platforms with multiple functions in cancer hallmarks. Cell Death Dis. 6:1052020. View Article : Google Scholar : PubMed/NCBI

73 

Guerrero-Rodriguez S, Mata-Cruz C, Pérez-Tapia SM and Velasco-Velázquez MA: Role of CD36 in cancer progression, stemness, and targeting. Front Cell Dev Biol. 10:10790762022. View Article : Google Scholar : PubMed/NCBI

74 

Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, et al: Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 541:41–45. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Veglia F, Tyurin VA, Di Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug ZT, Basu S, Wang F, et al: Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 569:73–78. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Zielinski ZAM and Pratt DA: Cholesterol autoxidation revisited: Debunking the dogma associated with the most vilified of lipids. J Am Chem Soc. 138:6932–6935. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Chushi L, Wu W, Xie K, Feng Y, Xie N and Chen X: HMGCR is up-regulated in gastric cancer and promotes the growth and migration of the cancer cells. Gene. 587:42–47. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Deng R, Fu L, Liang H, Ai X, Liu F, Li N, Wu L, Li S, Yang X, Lin Y, et al: Inhibition of mitochondrial complex I induces mitochondrial ferroptosis by regulating CoQH2 levels in cancer. Cell Death Dis. 16:2542025. View Article : Google Scholar : PubMed/NCBI

79 

Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Wu J, Wang Y, Jiang R, Xue R, Yin X, Wu M and Meng Q: Ferroptosis in liver disease: New insights into disease mechanisms. Cell Death Discov. 7:2762021. View Article : Google Scholar : PubMed/NCBI

81 

Zhan M, Ding Y, Huang S, Liu Y, Xiao J, Yu H, Lu L and Wang X: Lysyl oxidase-like 3 restrains mitochondrial ferroptosis to promote liver cancer chemoresistance by stabilizing dihydroorotate dehydrogenase. Nat Commun. 14:31232023. View Article : Google Scholar : PubMed/NCBI

82 

Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Hu Q, Wei W, Wu D, Huang F, Li M, Li W, Yin J, Peng Y, Lu Y, Zhao Q, et al: Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to Erastin-induced ferroptosis. Front Cell Dev Biol. 10:8103272022. View Article : Google Scholar : PubMed/NCBI

84 

Lim JKM, Stölting F, Levy T, Thewes L, Picard D, Tishina S, Zhang H, Lewandowska O, Reiff T, Remke M, et al: Oncogenic RAS signaling suppresses ferroptosis via transcriptional upregulation of GCH1. bioRxiv. Jan 29–2024.doi.org/10.1101/2024.01.27.577524.

85 

Cao J, Chen X, Chen L, Lu Y, Wu Y, Deng A, Pan F, Huang H, Liu Y, Li Y, et al: DHODH-mediated mitochondrial redox homeostasis: A novel ferroptosis regulator and promising therapeutic target. Redox Biol. 85:1037882025. View Article : Google Scholar : PubMed/NCBI

86 

Mazdak H, Yazdekhasti F, Movahedian A, Mirkheshti N and Shafieian M: The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group. Int Urol Nephrol. 42:89–93. 2010. View Article : Google Scholar : PubMed/NCBI

87 

An WX, Gupta R, Zhai K, Wang YR, Xu WH and Cui Y: Current and potential roles of ferroptosis in bladder cancer. Curr Med Sci. 44:51–63. 2024. View Article : Google Scholar : PubMed/NCBI

88 

Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, Chen P, Pan T, Yan L, Jin T, et al: Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B. 11:4045–4054. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ and Stockwell BR: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 12:497–503. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Stepanic V and Kucerova-Chlupacova M: Review and chemoinformatic analysis of ferroptosis modulators with a focus on natural plant products. Molecules. 28:4752023. View Article : Google Scholar : PubMed/NCBI

91 

Xiang Y, Chen X, Wang W, Zhai L, Sun X, Feng J, Duan T, Zhang M, Pan T, Yan L, et al: Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NRF2 inactivation. Front Pharmacol. 12:7755062021. View Article : Google Scholar : PubMed/NCBI

92 

Sun Y, Berleth N, Wu W, Schlutermann D, Deitersen J, Stuhldreier F, Berning L, Friedrich A, Akgun S, Mendiburo MJ, et al: Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis. 12:10282021. View Article : Google Scholar : PubMed/NCBI

93 

Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S and Zheng X: Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 235:3425–3437. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M, Chauffert B and Galmiche A: Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Int J Oncol. 34:6417–6422. 2014.

95 

Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Chiang S, Chen S and Chang L: A dual role of HEME oxygenase-1 in cancer cells. Int J Mol Sci. 20:392019. View Article : Google Scholar

97 

Sun X, Niu X, Chen R, He W, Chen D, Kang R and Tang D: Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. 64:488–500. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Bai T, Lei P, Zhou H, Liang R, Zhu R, Wang W, Zhou L and Sun Y: Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med. 23:7349–7359. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Yang F, Li J, Deng H, Wang Y, Lei C, Wang Q, Jin X, Liang L, Xia J, Pan X, et al: GSTZ1-1 deficiency activates NRF2/IGF1R axis in HCC via accumulation of oncometabolite succinylacetone. EMBO J. 38:e1019642019. View Article : Google Scholar : PubMed/NCBI

100 

Wang Q, Cheng B, Qin X, Gao Q, Huang A, Wang K and Tang N: GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death Dis. 12:4262021. View Article : Google Scholar : PubMed/NCBI

101 

Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, François C, Chatelain D, Debuysscher V, Barbare J, et al: The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 356:971–977. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Zhang Y, Li J, Dong X, Meng D, Zhi X, Liu Y and Yao L: PSAT1 regulated oxidation-reduction balance affects the growth and prognosis of epithelial ovarian cancer. Onco Targets Ther. 13:5443–5453. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Haga Y, Kanda T, Nakamura M, Nakamoto S, Sasaki R, Takahashi K, Wu S and Yokosuka O: Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines. PLoS One. 12:e01741532017. View Article : Google Scholar : PubMed/NCBI

104 

Chen Y, Zhu G, Liu Y, Wu Q, Zhang X, Bian Z, Zhang Y, Pan Q and Sun F: O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer. Cell Signal. 63:1093842019. View Article : Google Scholar : PubMed/NCBI

105 

Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Song S, Piscuoglio S, Dill MT, Camargo FD, Christofori G, et al: YAP/TAZ and ATF4 drive resistance to sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 13:e143512021. View Article : Google Scholar : PubMed/NCBI

106 

Wang K, Zhang Z, Tsai H, Liu Y, Gao J, Wang M, Liu S, Cao X, Xu Z, Chen H, et al: Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death Differ. 28:1222–1236. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Qiu Y, Li H, Xie J, Qiao X and Wu J: Identification of ABCC5 among ATP-binding cassette transporter family as a new biomarker for hepatocellular carcinoma based on bioinformatics analysis. Int J Gen Med. 14:7235–7246. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L, Huang W, He G, Liao H, Cai L, et al: ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia. 23:1227–1239. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Byun J, Lee S, Kang G, Lee YR, Park SY, Song I, Yun JW, Lee J, Choi Y and Park K: Macropinocytosis is an alternative pathway of cysteine acquisition and mitigates sorafenib-induced ferroptosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 41:22962022. View Article : Google Scholar

110 

Lee JY, Kang ES, Kobayashi S, Homma T, Sato H, Seo HG and Fujii J: The viability of primary hepatocytes is maintained under a low cysteine-glutathione redox state with a marked elevation in ophthalmic acid production. Exp Cell Res. 361:178–191. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Chen Y, Li L, Lan J, Yang C, Rao X, Zhao J, Xing T, Ju G, Song G and Lou J: CRISPR screens uncover protective effect of PSTK as a regulator of chemotherapy-induced ferroptosis in hepatocellular carcinoma. Mol Cancer. 21:112022. View Article : Google Scholar : PubMed/NCBI

112 

Liu Y, Fan X, Zhao Z and Shan XH: LncRNA SLC7A11-AS1 contributes to lung cancer progression through facilitating TRAIP expression by inhibiting miR-4775. Onco Targets Ther. 13:6295–6302. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Zhang W, Sun Y, Bai L, Zhi L, Yang Y, Zhao Q, Chen C, Qi Y, Gao W, He W, et al: RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J Clin Invest. 131:e1520672021. View Article : Google Scholar : PubMed/NCBI

114 

Lu X, Kang N, Ling X, Pan M, Du W and Gao S: MIR-27A-3P promotes non-small cell lung cancer through SLC7A11-mediated ferroptosis. Front Oncol. 11:7593462021. View Article : Google Scholar : PubMed/NCBI

115 

Gargalionis AN, Papavassiliou KA and Papavassiliou AG: Implication of MTOR signaling in NSCLC: Mechanisms and therapeutic perspectives. Cells. 12:20142023. View Article : Google Scholar : PubMed/NCBI

116 

Ni J, Chen K, Zhang J and Zhang X: Inhibition of GPX4 or mTOR overcomes resistance to lapatinib via promoting ferroptosis in NSCLC cells. Biochem Biophys Res Commun. 567:154–160. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Li Y, Yan H, Xu X, Liu H, Wu C and Zhao L: Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett. 19:323–333. 2020.PubMed/NCBI

118 

Carlisle AE, Lee N, Matthew-Onabanjo AN, Spears ME, Park SJ, Youkana D, Doshi MB, Peppers A, Li R, Joseph AB, et al: Selenium detoxification is required for cancer-cell survival. Nat Metab. 2:603–611. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Yu H, Yang C, Lei J, Guo S, Chen R, Li K, Qu F, Tao K, Fu Y, Liu F, et al: Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 42:2650–2660. 2019.

120 

Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK and Karunagaran D: SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and antitumor effects in human breast cancer cells. Cancer Lett. 522:211–224. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Sugezawa K, Morimoto M, Yamamoto M, Matsumi Y, Nakayama Y, Hara K, Uejima C, Kihara K, Matsunaga T, Tokuyasu N, et al: GPX4 regulates tumor cell proliferation via suppressing ferroptosis and exhibits prognostic significance in gastric cancer. Anticancer Res. 42:5719–5729. 2022. View Article : Google Scholar : PubMed/NCBI

122 

Zeuner A, Todaro M, Stassi G and De Maria R: Colorectal cancer stem cells: From the crypt to the clinic. Cell Stem Cell. 15:692–705. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Hao S, Yu J, He W, Huang Q, Zhao Y, Liang B, Zhang S, Wen Z, Dong S, Rao J, et al: Cysteine dioxygenase 1 mediates Erastin-induced ferroptosis in human gastric cancer cells. Neoplasia. 19:1022–1032. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Ye G, Guan W, Cao Z, Guo W, Xiong G, Zhao F, Feng M, Qiu J, Liu Y, Zhang MQ, et al: Integrative genomic analysis of gemcitabine resistance in pancreatic cancer by patient-derived xenograft models. Clin Cancer Res. 27:3383–3396. 2021. View Article : Google Scholar : PubMed/NCBI

125 

Thummuri D, Khan S, Underwood PW, Zheng P, Wiegand J, Zhang X, Budamagunta V, Sobh A, Tagmount A, Loguinov A, et al: Overcoming gemcitabine resistance in pancreatic cancer using the BCL-XL-Specific degrader DT2216. Mol Cancer Ther. 21:184–192. 2022. View Article : Google Scholar : PubMed/NCBI

126 

Wang H, Liu C, Zhao Y, Zhang W, Xu K, Li D, Zhou Y, Li H, Xiao G, Lu B and Gao G: Inhibition of LONP1 protects against erastin-induced ferroptosis in pancreatic ductal adenocarcinoma PANC1 cells. Biochem Biophys Res Commun. 522:1063–1068. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Wang Y, Wu X, Zhao R, Yu-Lin L, Zou W, Chen J and Wang H: Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 66:1009162023. View Article : Google Scholar : PubMed/NCBI

128 

Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, Lu XJ, Ledergor G, Kollet O and Lapidot T: Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal. 21:1605–1619. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Fischbacher A, von Sonntag C and Schmidt TC: Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Chemosphere. 182:738–744. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Rassool FV, Gaymes TJ, Omidvar N, Brady N, Beurlet S, Pla M, Reboul M, Lea N, Chomienne C, Thomas NS, et al: Reactive oxygen species, DNA damage, and error-prone repair: A model for genomic instability with progression in myeloid leukemia? Cancer Res. 67:8762–8771. 2007. View Article : Google Scholar : PubMed/NCBI

131 

Hole PS, Zabkiewicz J, Munje C, Newton Z, Pearn L, White P, Marquez N, Hills RK, Burnett AK, Tonks A and Darley RL: Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood. 122:3322–3330. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Fonseca-Nunes A, Jakszyn P and Agudo A: Iron and cancer risk-a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev. 23:12–31. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Manz DH, Blanchette NL, Paul BT, Torti FM and Torti SV: Iron and cancer: Recent insights. Ann N Y Acad Sci. 1368:149–161. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Long F, Lin Z, Long Q, Lu Z, Zhu K, Zhao M and Yang M: CircZBTB46 protects acute myeloid leukemia cells from ferroptotic cell death by upregulating SCD. Cancers (Basel). 15:4592023. View Article : Google Scholar : PubMed/NCBI

135 

Aurelius J, Thorén FB, Akhiani AA, Brune M, Palmqvist L, Hansson M, Hellstrand K and Martner A: Monocytic AML cells inactivate antileukemic lymphocytes: Role of NADPH oxidase/gp91(phox) expression and the PARP-1/PAR pathway of apoptosis. Blood. 119:5832–5837. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Chen J, Lu WY, Zhao MF, Cao XL, Jiang YY, Jin X, Xu P, Yuan TT, Zhang YC, Chai X, et al: Reactive oxygen species mediated T lymphocyte abnormalities in an iron-overloaded mouse model and iron-overloaded patients with myelodysplastic syndromes. Ann Hematol. 96:1085–1095. 2017. View Article : Google Scholar : PubMed/NCBI

137 

Liu Y, Du Z, Huang J, Li T, Zhang J, Li Y, Yi W and Chen C: Ferroptosis in hematological malignant tumors. Front Oncol. 13:11275262023. View Article : Google Scholar : PubMed/NCBI

138 

Bai Y, Luo Y, Yuan Y, Li X, Jin J, Ping R, Guo J, Jin L, Yu Y and Xiong Y: Ferroptosis: A novel therapeutic warrior in the battle against leukemia. Apoptosis. 30:1776–1795. 2025. View Article : Google Scholar : PubMed/NCBI

139 

Wei J, Xie Q, Liu X, Wan C, Wu W, Fang K, Yao Y, Cheng P, Deng D and Liu Z: Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia. Ann Transl Med. 8:6782020. View Article : Google Scholar : PubMed/NCBI

140 

Ma Z, Ye W, Huang X, Li X, Li F, Lin X, Hu C, Wang J, Jin J, Zhu B and Huang J: The ferroptosis landscape in acute myeloid leukemia. Aging (Albany NY). 15:13486–13503. 2023. View Article : Google Scholar : PubMed/NCBI

141 

Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI

142 

Liu X, Zhong S, Qiu K, Chen X, Wu W, Zheng J, Liu Y, Wu H, Fan S, Nie D, et al: Targeting NRF2 uncovered an intrinsic susceptibility of acute myeloid leukemia cells to ferroptosis. Exp Hematol Oncol. 12:472023. View Article : Google Scholar : PubMed/NCBI

143 

Xia J, Sun S, Jotte MR, Uy GL, Sorani E, Abi Vainstein L, Shemesh Davish L, Caldwell KE, Hawkins WG and Link DC: Combined inhibition of CXCR4 signaling and System xc-transporter activity induces synthetic lethality in T-ALL cells by suppressing GSH and inducing ferroptosis. Blood. 136 (Suppl 1):S372020. View Article : Google Scholar

144 

Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C, Lu W, Burger JA, Croce CM, Plunkett W, et al: Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol. 14:276–286. 2012. View Article : Google Scholar : PubMed/NCBI

145 

Liu J, Xia X and Huang P: xCT: A critical molecule that links cancer metabolism to redox signaling. Mol Ther. 28:2358–2366. 2020. View Article : Google Scholar : PubMed/NCBI

146 

Birsen R, Larrue C, Decroocq J, Johnson N, Guiraud N, Gotanegre M, Cantero-Aguilar L, Grignano E, Huynh T, Fontenay M, et al: APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica. 107:403–416. 2022. View Article : Google Scholar : PubMed/NCBI

147 

Pardieu B, Pasanisi J, Ling F, Dal Bello R, Penneroux J, Su A, Joudinaud R, Chat L, Wu HC, Duchmann M, et al: Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia. 36:1585–1595. 2022. View Article : Google Scholar : PubMed/NCBI

148 

Rashkovan M and Ferrando A: Metabolic dependencies and vulnerabilities in leukemia. Genes Dev. 33:1460–1474. 2019. View Article : Google Scholar : PubMed/NCBI

149 

Zheng X, Jin X, Ye F, Liu X, Yu B, Li Z, Zhao T, Chen W, Liu X, Di C and Li Q: Ferroptosis: A novel regulated cell death participating in cellular stress response, radiotherapy, and immunotherapy. Exp Hematol Oncol. 12:652023. View Article : Google Scholar : PubMed/NCBI

150 

Dächert J, Schoeneberger H, Rohde K and Fulda S: RSL3 and erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death. Oncotarget. 7:63779–63792. 2016. View Article : Google Scholar : PubMed/NCBI

151 

Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R and Leedman PJ: Altered iron metabolism and impact in cancer biology, metastasis, and immunology. Front Oncol. 10:4762020. View Article : Google Scholar : PubMed/NCBI

152 

Yang N, Tan S, Ng SC, Shi Y, Zhou J, Tan KSW, Wong WF and Shen H: Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 289:33425–33441. 2014. View Article : Google Scholar : PubMed/NCBI

153 

Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, Janah R, Greten HJ and Efferth T: Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 22:1045–1054. 2015. View Article : Google Scholar : PubMed/NCBI

154 

Santana-Codina N and Mancias JD: The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals (Basel). 11:1142018. View Article : Google Scholar : PubMed/NCBI

155 

Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, Dai X, Li Z and Wu G: Ferroptosis: A novel antitumor action for cisplatin. Cancer Res Treat. 50:445–460. 2018. View Article : Google Scholar : PubMed/NCBI

156 

Wen RJ, Dong X, Zhuang HW, Pang FX, Ding SC, Li N, Mai YX, Zhou ST, Wang JY and Zhang JF: Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomedicine. 116:1548812023. View Article : Google Scholar : PubMed/NCBI

157 

Tang Z, Huang Z, Huang Y, Chen Y, Huang M, Liu H, Ye Q, Zhao J and Jia B: Ferroptosis: The silver lining of cancer therapy. Front Cell Dev Biol. 9:7658592021. View Article : Google Scholar : PubMed/NCBI

158 

Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, Koshiishi I and Torii S: Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 108:2187–2194. 2017. View Article : Google Scholar : PubMed/NCBI

159 

Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Zou Y, Li H, Graham E, Deik A, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020. View Article : Google Scholar : PubMed/NCBI

161 

Zhou Y, Tashiro J, Kamatani S, Irie N, Suzuki A, Ishikawa T, Warita K, Oltvai ZN and Warita T: HMG-CoA reductase degrader, SR-12813, counteracted statin-induced upregulation of HMG-CoA reductase and augmented the anticancer effect of atorvastatin. Biochem Biophys Res Commun. 677:13–19. 2023. View Article : Google Scholar : PubMed/NCBI

162 

Yang J, Xu J, Zhang B, Tan Z, Meng Q, Hua J, Liu J, Wang W, Shi S, Yu X and Liang C: Ferroptosis: At the crossroad of gemcitabine resistance and tumorigenesis in pancreatic cancer. Int J Mol Sci. 22:109442021. View Article : Google Scholar : PubMed/NCBI

163 

Chen L, Sun R and Fang K: Erianin inhibits tumor growth by promoting ferroptosis and inhibiting invasion in hepatocellular carcinoma through the JAK2/STAT3/SLC7A11 pathway. Pathol Int. 74:119–128. 2024. View Article : Google Scholar : PubMed/NCBI

164 

Zheng Y, Zheng Y, Chen H, Tan X, Zhang G, Kong M, Jiang R, Yu H, Shan K, Liu J, et al: Erianin triggers ferroptosis in colorectal cancer cells by facilitating the ubiquitination and degradation of GPX4. Phytomedicine. 139:1564652025. View Article : Google Scholar : PubMed/NCBI

165 

Tian XY, Han R, Huang QY, Zhou MY, Luo B, Chen XR and Xu JC: Erianin inhibits oral cancer cell growth, migration, and invasion via the Nrf2/HO-1/GPX4 pathway. Asian Pac J Trop Biomed. 12:4372022. View Article : Google Scholar

166 

Yagoda N, Von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, et al: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 447:865–869. 2007. View Article : Google Scholar

167 

Zhao J, Xu B, Xiong Q, Feng Y and Du H: Erastin-induced ferroptosis causes physiological and pathological changes in healthy tissues of mice. Mol Med Rep. 24:7132021. View Article : Google Scholar : PubMed/NCBI

168 

Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S and Li W: Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci. 110:3173–3182. 2019. View Article : Google Scholar : PubMed/NCBI

169 

Sun S, Shen J, Jiang J, Wang F and Min J: Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 8:3722023. View Article : Google Scholar : PubMed/NCBI

170 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

171 

Zhao Y, Liu J, Wang S and Li X: Role of non-coding RNA-regulated ferroptosis in colorectal cancer. Cell Death Discov. 11:3152025. View Article : Google Scholar : PubMed/NCBI

172 

Ghosal J, Sinchana VK and Chakrabarty S: Ferroptosis meets microRNAs: A new frontier in anticancer therapy. Free Radic Biol Med. 226:266–278. 2025. View Article : Google Scholar : PubMed/NCBI

173 

Ju Y, Lv Y, Liu X, Lu J, Shi Y, Guo H, Xu S, Tian J, Yang J and Zhong J: Role of long non-coding RNAs in the regulation of ferroptosis in tumors. Front Immunol. 16:15685672025. View Article : Google Scholar : PubMed/NCBI

174 

Yang R, Ma L, Wan J, Li Z, Yang Z, Zhao Z and Ming L: Ferroptosis-associated circular RNAs: Opportunities and challenges in the diagnosis and treatment of cancer. Front Cell Dev Biol. 11:11603812023. View Article : Google Scholar : PubMed/NCBI

175 

Lyu N, Zeng Y, Kong Y, Chen Q, Deng H, Ou S, Bai Y, Tang H, Wang X and Zhao M: Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med. 9:6752021. View Article : Google Scholar : PubMed/NCBI

176 

Pan X, Chen K, Gao W, Xu M, Meng F, Wu M, Wang ZQ, Li YQ, Xu W, Zhang M and Luo Y: Circular RNA circBNC2 inhibits tumorigenesis by modulating ferroptosis and acts as a nanotherapeutic target in prostate cancer. Mol Cancer. 24:292025. View Article : Google Scholar : PubMed/NCBI

177 

Sleire L, Skeie BS, Netland IA, Førde HE, Dodoo E, Selheim F, Leiss L, Heggdal JI, Wang J and Enger PØ: Drug repurposing: Sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletion. Oncogene. 34:5951–5959. 2015. View Article : Google Scholar : PubMed/NCBI

178 

Li Z, Dai HQ, Huang XW, Feng J, Deng JH, Wang ZX, Yang XM, Liu YJ, Wu Y, Chen PH, et al: Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharm Sin B. 42:301–310. 2021. View Article : Google Scholar

179 

Li H, Yu Y, Liu Y, Luo Z, Law BYK, Zheng Y, Huang X and Li W: Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer. Pharmacol Res. 182:1063062022. View Article : Google Scholar : PubMed/NCBI

180 

Wang H, Zhang Z, Ruan S, Qiu Y, Chen Y, Cui J, Wang X, Huang S and Hou B: Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol. 13:12515612023. View Article : Google Scholar : PubMed/NCBI

181 

Campanella A, Santambrogio P, Fontana F, Frenquelli M, Cenci S, Marcatti M, Sitia R, Tonon G and Camaschella C: Iron increases the susceptibility of multiple myeloma cells to bortezomib. Haematologica. 98:971–979. 2013. View Article : Google Scholar : PubMed/NCBI

182 

Chekhun VF, Lukyanova NY, Burlaka AP, Bezdenezhnykh NA, Shpyleva SI, Tryndyak VP, Beland FA and Pogribny IP: Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int J Oncol. 43:1481–1486. 2013. View Article : Google Scholar : PubMed/NCBI

183 

Habib E, Linher-Melville K, Lin H and Singh G: Expression of xCT and activity of system xc(−) are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Redox Biol. 5:33–42. 2015. View Article : Google Scholar : PubMed/NCBI

184 

Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, et al: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 551:247–250. 2017. View Article : Google Scholar : PubMed/NCBI

185 

Lei G, Mao C, Yan Y, Li Z and Gan B: Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 12:836–857. 2021. View Article : Google Scholar : PubMed/NCBI

186 

Ye LF, Chaudhary K, Zandkarimi F, Harken A, Kinslow CJ, Upadhyayula PS, Dovas A, Higgins D, Tan H, Zhang Y, et al: Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 15:469–484. 2020. View Article : Google Scholar : PubMed/NCBI

187 

Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI

188 

Lin Z, Zou S and Wen K: The crosstalk of CD8+ T cells and ferroptosis in cancer. Front Immunol. 14:12554432024. View Article : Google Scholar : PubMed/NCBI

189 

Zheng Y, Sun L, Guo J and Ma J: The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: Molecular mechanisms and therapeutic controversy. Cancer Commun (Lond). 43:1071–1096. 2023. View Article : Google Scholar : PubMed/NCBI

190 

Xia W, Lv Y, Zou Y, Kang Z, Li Z, Tian J, Zhou H, Su W and Zhong J: The role of ferroptosis in colorectal cancer and its potential synergy with immunotherapy. Front Immunol. 15:15267492025. View Article : Google Scholar : PubMed/NCBI

191 

Tao Q, Liu N, Wu J, Chen J, Chen X and Peng C: Mefloquine enhances the efficacy of anti-PD-1 immunotherapy via IFN-γ-STAT1-IRF1-LPCAT3-induced ferroptosis in tumors. J Immunother Cancer. 12:e0085542024. View Article : Google Scholar : PubMed/NCBI

192 

Wang T, Li Z, Lei J, Zhang Y, Tong Y, Guan X and Wang S: RGD peptide-functionalized micelles loaded with crocetin ameliorate doxorubicin-induced cardiotoxicity. Int J Pharm X. 9:1003262025.PubMed/NCBI

193 

Zhang T, Gu F, Lin W, Shao H, Jiang A and Guan X: Boosting cancer immunotherapy: Drug delivery systems leveraging ferroptosis and immune checkpoint blockade. Front Immunol. 16:16112992025. View Article : Google Scholar : PubMed/NCBI

194 

Manivasagan P, Joe A, Han H, Thambi T, Selvaraj M, Chidambaram K, Kim J and Jang E: Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater Today Bio. 13:1001972022. View Article : Google Scholar : PubMed/NCBI

195 

Ma P, Xiao H, Chang Y, Liu J, Cheng Z, Song H, Zhang X, Li C, Wang J, Gu Z and Lin J: Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 17:928–937. 2017. View Article : Google Scholar : PubMed/NCBI

196 

Luo L, Wang H, Tian W, Li X, Zhu Z, Huang R and Luo H: Targeting ferroptosis-based cancer therapy using nanomaterials: Strategies and applications. Theranostics. 11:9937–9952. 2021. View Article : Google Scholar : PubMed/NCBI

197 

Yang J, Gong Y, Sontag DP, Corbin IR and Minuk GY: Effects of Low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines. Mol Biol Rep. 45:1023–1036. 2018. View Article : Google Scholar : PubMed/NCBI

198 

Poggio M, Tao H, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L and Blelloch R: Suppression of exosomal PD-L1 induces systemic antitumor immunity and memory. Cell. 177:414–427.e13. 2019. View Article : Google Scholar : PubMed/NCBI

199 

Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, Grosse R, Diederich WE and Culmsee C: Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med. 117:45–57. 2018. View Article : Google Scholar : PubMed/NCBI

200 

Wu J, Feng Z, Chen L, Li Y, Bian H, Geng J, Zheng ZH, Fu X, Pei Z, Qin Y, et al: TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in Collagen-induced arthritis mouse models. Nat Commun. 13:6762022. View Article : Google Scholar : PubMed/NCBI

201 

Qin LY, Guan P, Wang JX, Chen Y, Zhao YS, Yang SC, Guo YJ, Wang N and Ji ES: Therapeutic potential of Astragaloside IV against Adriamycin-induced renal damage in rats via ferroptosis. Front Pharmacol. 13:8125942022. View Article : Google Scholar : PubMed/NCBI

202 

Eaton JK, Ruberto RA, Kramm A, Viswanathan VS and Schreiber SL: Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J Am Chem Soc. 141:20407–20415. 2019. View Article : Google Scholar : PubMed/NCBI

203 

Firtina Karagonlar Z, Koc D, Iscan E, Erdal E and Atabey N: Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci. 107:407–416. 2016. View Article : Google Scholar : PubMed/NCBI

204 

Liu K, Huang L, Qi S, Liu S, Xie W, Du L, Cui J, Zhang X, Zhang B, Liu L, et al: Ferroptosis: The entanglement between traditional drugs and nanodrugs in tumor therapy. Adv Healthc Mater. 12:e22030852023. View Article : Google Scholar : PubMed/NCBI

205 

Singh M, Arora HL, Naik R, Joshi S, Sonawane K, Sharma NK and Sinha BK: Ferroptosis in cancer: Mechanism and therapeutic potential. Int J Mol Sci. 26:38522025. View Article : Google Scholar : PubMed/NCBI

206 

Ojo OA, Grant S, Nwafor-Ezeh PI, Maduakolam-Aniobi TC, Akinborode TI, Ezenabor EH and Ojo AB: Ferroptosis as the new approach to cancer therapy. Cancer Treat Res Commun. 43:1009132025.PubMed/NCBI

207 

Ubellacker JM and Dixon SJ: Prospects for ferroptosis therapies in cancer. Nat Cancer. 6:13262025. View Article : Google Scholar : PubMed/NCBI

208 

Hino K, Nishina S and Yanatori I: Ferroptosis: Biology and role in liver disease. J Gastroenterol. Sep 18–2025.doi: 10.1007/s00535-025-02300-5 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

209 

Meng Y, Zhou Q, Dian Y, Zeng F, Deng G and Chen X: Ferroptosis: A targetable vulnerability for melanoma treatment. J Invest Dermatol. 145:1323–1344. 2025. View Article : Google Scholar : PubMed/NCBI

210 

Hsu CY, Al-Hasnaawei S, Kumar A, Ballal S, Mahmood AA, Kalia R, Joshi KK, Ray S and Pramanik A: Exosomal non-coding RNA as a key mediator of ferroptosis in lung cancer. Cell Signal. 136:1121352025. View Article : Google Scholar : PubMed/NCBI

211 

Chen W, Han L, Wang J and Song L: Ferroptosis: The dawn of reversing drug resistance in digestive cancers. Genes Dis. 10:1018732025. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mouawad N, El Jaafari N, El Sibai M and Abi-Habib RJ: Harnessing ferroptosis for cancer therapy: Mechanisms and therapeutic strategies (Review). Oncol Rep 55: 24, 2026.
APA
Mouawad, N., El Jaafari, N., El Sibai, M., & Abi-Habib, R.J. (2026). Harnessing ferroptosis for cancer therapy: Mechanisms and therapeutic strategies (Review). Oncology Reports, 55, 24. https://doi.org/10.3892/or.2025.9029
MLA
Mouawad, N., El Jaafari, N., El Sibai, M., Abi-Habib, R. J."Harnessing ferroptosis for cancer therapy: Mechanisms and therapeutic strategies (Review)". Oncology Reports 55.1 (2026): 24.
Chicago
Mouawad, N., El Jaafari, N., El Sibai, M., Abi-Habib, R. J."Harnessing ferroptosis for cancer therapy: Mechanisms and therapeutic strategies (Review)". Oncology Reports 55, no. 1 (2026): 24. https://doi.org/10.3892/or.2025.9029
Copy and paste a formatted citation
x
Spandidos Publications style
Mouawad N, El Jaafari N, El Sibai M and Abi-Habib RJ: Harnessing ferroptosis for cancer therapy: Mechanisms and therapeutic strategies (Review). Oncol Rep 55: 24, 2026.
APA
Mouawad, N., El Jaafari, N., El Sibai, M., & Abi-Habib, R.J. (2026). Harnessing ferroptosis for cancer therapy: Mechanisms and therapeutic strategies (Review). Oncology Reports, 55, 24. https://doi.org/10.3892/or.2025.9029
MLA
Mouawad, N., El Jaafari, N., El Sibai, M., Abi-Habib, R. J."Harnessing ferroptosis for cancer therapy: Mechanisms and therapeutic strategies (Review)". Oncology Reports 55.1 (2026): 24.
Chicago
Mouawad, N., El Jaafari, N., El Sibai, M., Abi-Habib, R. J."Harnessing ferroptosis for cancer therapy: Mechanisms and therapeutic strategies (Review)". Oncology Reports 55, no. 1 (2026): 24. https://doi.org/10.3892/or.2025.9029
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team