You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Sharma A, Boise LH and Shanmugam M: Cancer metabolism and the evasion of apoptotic cell death. Cancers (Basel). 11:11442019. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM and Yang WS: Ferroptosis: An Iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Čepelak I, Dodig S and Dodig DČ: Ferroptosis: Regulated cell death. Arh Hig Rada Toksikol. 71:99–109. 2020.PubMed/NCBI | |
|
Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK and Manyazewal T: New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 9:205031212110343662021. View Article : Google Scholar : PubMed/NCBI | |
|
Kishi Y, Hasegawa K, Sugawara Y and Kokudo N: Hepatocellular carcinoma: Current management and future development-improved outcomes with surgical resection. Int J Hepatol. 2011:7281032011. View Article : Google Scholar : PubMed/NCBI | |
|
Yiannikourides A and Latunde-Dada GO: A short review of iron metabolism and pathophysiology of iron disorders. Medicines (Basel). 6:852019.PubMed/NCBI | |
|
Camaschella C, Nai A and Silvestri L: Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 105:260–272. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z: Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med (Milton). 2:82–87. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kotla NK, Dutta P, Parimi S and Das NK: The role of ferritin in health and disease: Recent advances and understandings. Metabolites. 12:6092022. View Article : Google Scholar : PubMed/NCBI | |
|
Knovich MA, Storey JA, Coffman LG, Torti SV and Torti FM: Ferritin for the clinician. Blood Rev. 23:95–104. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Abbaspour N, Hurrell R and Kelishadi R: Review on iron and its importance for human health. Iran J Pediatr. 19:164–174. 2014. | |
|
Fillebeen C, Charlebois E, Wagner J, Katsarou A, Mui J, Vali H, Garcia-Santos D, Ponka P, Presley J and Pantopoulos K: Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood. 133:344–355. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Obeagu EI and Tanko MSM: Iron metabolism in breast cancer: Mechanisms and therapeutic implications: A narrative review. Ann Med Surg (Lond). 87:3403–3409. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Singh B, Arora S, Agrawal P and Gupta S: Hepcidin: A novel peptide hormone regulating iron metabolism. Clin Chim Acta. 412:823–830. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nemeth E and Ganz T: The role of hepcidin in iron metabolism. Acta Haematol. 122:78–86. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Shan Z, Wei Z and Shaikh ZA: Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in Triple-negative breast cancer cells. Toxicol Appl Pharmacol. 356:36–43. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Belvin BR and Lewis JP: Ferroportin depletes iron needed for cell cycle progression in head and neck squamous cell carcinoma. Front Oncol. 12:10254342023. View Article : Google Scholar : PubMed/NCBI | |
|
Grillo AS, SantaMaria AM, Kafina MD, Cioffi AG, Huston NC, Han M, Seo YA, Yien YY, Nardone C, Menon AV, et al: Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science. 356:608–616. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Skjørringe T, Burkhart A, Johnsen K and Moos T: Divalent metal transporter 1 (DMT1) in the brain: Implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 8:192015.PubMed/NCBI | |
|
Song Q, Peng S, Sun Z, Heng X and Zhu X: Temozolomide drives ferroptosis via a DMT1-dependent pathway in glioblastoma cells. Yonsei Med J. 62:8432021. View Article : Google Scholar : PubMed/NCBI | |
|
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Aquilano K, Baldelli S and Ciriolo MR: Glutathione: New roles in redox signaling for an old antioxidant. Front Pharmacol. 5:1962014. View Article : Google Scholar : PubMed/NCBI | |
|
Lu SC: Glutathione synthesis. Biochim Biophys Acta. 1830:3143–3153. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Zhu W and Pei D: System Xc-: A key regulatory target of ferroptosis in cancer. Invest New Drugs. 39:1123–1131. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lewerenz J, Hewett SJ, Huang Y, Lambros MP, Gout PW, Kalivas PW, Massie A, Smolders IJ, Methner A, Pergande M, et al: The cystine/glutamate antiporter system x(c)(−) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 18:522–555. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Koppula P, Li Z and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J and Roh J: SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxidants (Basel). 11:24442022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Q: Role of NRF2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kilberg MS, Shan J and Su N: ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab. 20:436–443. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY and Savaskan NE: ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 36:5593–5608. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Shi J, Liu X, Li F, Gong Z, Koppula P, Sirohi K, Xu L, Wei Y, Lee H, et al: BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 20:1181–1192. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Lu Y, Zhang X, Cui W, Liu Y, Sun Q, He Q, Zhao S, Zhang G, Wang Y, et al: Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 20:e475632019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhao Y, Wang H, Zhang C, Wang M, Yang Y, Xu X and Hu Z: Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Bio. 10:637–643. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tsuchihashi K, Okazaki S, Ohmura M, Ishikawa M, Sampetrean O, Onishi N, Wakimoto H, Yoshikawa M, Seishima R, Iwasaki Y, et al: The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(−). Cancer Res. 76:2954–2963. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Jiang L, Tavana O and Gu W: The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res. 79:1913–1924. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS and Stockwell BR: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI | |
|
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, Sriramaratnam R, Welsch M, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Lin J, Guo S, Xue X, Wang Y, Qiu S, Cui J, Ma L, Zhang X and Wang J: RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer. Cancer Cell Int. 20:162020. View Article : Google Scholar : PubMed/NCBI | |
|
Cramer SL, Saha A, Liu J, Tadi S, Tiziani S, Yan W, Triplett K, Lamb C, Alters SE, Rowlinson SW, et al: Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 23:120–127. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sbodio JI, Snyder SH and Paul BD: Regulators of the transsulfuration pathway. Br J Pharmacol. 176:583–593. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hayano M, Yang W, Corn CK, Pagano NC and Stockwell BR: Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ. 23:270–278. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Weaver K and Skouta R: The selenoprotein glutathione peroxidase 4: From molecular mechanisms to novel therapeutic opportunities. Biomedicines. 10:8912022. View Article : Google Scholar : PubMed/NCBI | |
|
Tuo Q, Masaldan S, Southon A, Mawal C, Ayton S, Bush AI, Lei P and Belaidi AA: Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury. Neurotherapeutics. 18:2682–2691. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hao S, Liang B, Huang Q, Dong S, Wu Z, He W and Shi M: Metabolic networks in ferroptosis (Review). Oncol Lett. 16:5279–5287. 2018. | |
|
Zheng J and Conrad M: The metabolic underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shin D, Kim EH, Lee J and Roh J: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 129:454–462. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, SteMarie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279.e25. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Swanda RV, Nie L, Liu X, Wang C, Lee H, Lei G, Mao C, Koppula P, Cheng W, et al: mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 12:15892021. View Article : Google Scholar : PubMed/NCBI | |
|
Chaudhary N, Choudhary BS, Shah S, Khapare N, Dwivedi N, Gaikwad A, Joshi N, Raichanna J, Basu S, Gurjar M, et al: Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer. 149:1495–1511. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Long H, Zhou Z, Luo H, Xu S and Gao L: System Xc-/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 13:9102922022. View Article : Google Scholar : PubMed/NCBI | |
|
Kerins M, Milligan JF, Wohlschlegel JA and Ooi A: Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction. Cancer Sci. 109:2757–2766. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui C, Yang F and Li Q: Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases. Front Mol Biosci. 9:9015652022. View Article : Google Scholar : PubMed/NCBI | |
|
Grossman E, Ward CC, Spradlin JN, Bateman LA, Huffman TR, Miyamoto DK, Kleinman JI and Nomura DK: Covalent ligand discovery against druggable hotspots targeted by anticancer natural products. Cell Chem Biol. 24:1368–1376.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Chen X, Yang Q, Chen J, Huang Q, Yao L, Ding Y, Wu J, Zhang P, Tang D, et al: Broad spectrum deubiquitinase inhibition induces both apoptosis and ferroptosis in cancer cells. Front Oncol. 10:9492020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Zhang Q, Sun X, Zeh HJ, Lotze MT, Kang R and Tang D: HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 77:2064–2077. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, Kim KJ, Gaschler MM, Patel MM, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Viswanathan VS, Ryan M, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, et al: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 547:453–457. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix C, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Winter GE, Musavi L, Lee ED, Snijder B, Rebsamen M, Superti-Furga G and Stockwell BR: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 10:1604–1609. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Freitas FP, Shah R, Aldrovandi M, Da Silva MC, Ingold I, Grocin AG, Da Silva TNX, Panzilius E, Scheel C, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Snaebjornsson MT, Janaki-Raman S and Schulze A: Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer. Cell Metab. 31:62–76. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Xue Z, Huang T, Che X and Wu G: Lipid metabolism in ferroptosis and Ferroptosis-based cancer therapy. Front Oncol. 12:9416182022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JY, Nam M, Son H, Hyun K, Jang SY, Kim JW, Kim MW, Jung Y, Jang E, Yoon S, et al: Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci USA. 117:32433–32442. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JW, Lee J, Oh M and Lee EW: An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Exp Mol Med. 55:1620–1631. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J, Kim WK, Bae K, Lee SC and Lee EW: Lipid metabolism and ferroptosis. Biology (Basel). 10:1842021.PubMed/NCBI | |
|
Song Z, Xiaoli AM and Yang F: Regulation and metabolic significance of de novo lipogenesis in adipose tissues. Nutrients. 10:13832018. View Article : Google Scholar : PubMed/NCBI | |
|
Carracedo A, Cantley LC and Pandolfi PP: Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev Cancer. 13:227–232. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Roehrig F and Schulze A: The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Olzmann JA and Carvalho P: Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 20:137–155. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cruz ALS, Barreto EA, Fazolini NPB, Viola JPB and Bozza PT: Lipid droplets: Platforms with multiple functions in cancer hallmarks. Cell Death Dis. 6:1052020. View Article : Google Scholar : PubMed/NCBI | |
|
Guerrero-Rodriguez S, Mata-Cruz C, Pérez-Tapia SM and Velasco-Velázquez MA: Role of CD36 in cancer progression, stemness, and targeting. Front Cell Dev Biol. 10:10790762022. View Article : Google Scholar : PubMed/NCBI | |
|
Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, et al: Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 541:41–45. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Veglia F, Tyurin VA, Di Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug ZT, Basu S, Wang F, et al: Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 569:73–78. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zielinski ZAM and Pratt DA: Cholesterol autoxidation revisited: Debunking the dogma associated with the most vilified of lipids. J Am Chem Soc. 138:6932–6935. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chushi L, Wu W, Xie K, Feng Y, Xie N and Chen X: HMGCR is up-regulated in gastric cancer and promotes the growth and migration of the cancer cells. Gene. 587:42–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Deng R, Fu L, Liang H, Ai X, Liu F, Li N, Wu L, Li S, Yang X, Lin Y, et al: Inhibition of mitochondrial complex I induces mitochondrial ferroptosis by regulating CoQH2 levels in cancer. Cell Death Dis. 16:2542025. View Article : Google Scholar : PubMed/NCBI | |
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Wang Y, Jiang R, Xue R, Yin X, Wu M and Meng Q: Ferroptosis in liver disease: New insights into disease mechanisms. Cell Death Discov. 7:2762021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan M, Ding Y, Huang S, Liu Y, Xiao J, Yu H, Lu L and Wang X: Lysyl oxidase-like 3 restrains mitochondrial ferroptosis to promote liver cancer chemoresistance by stabilizing dihydroorotate dehydrogenase. Nat Commun. 14:31232023. View Article : Google Scholar : PubMed/NCBI | |
|
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Q, Wei W, Wu D, Huang F, Li M, Li W, Yin J, Peng Y, Lu Y, Zhao Q, et al: Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to Erastin-induced ferroptosis. Front Cell Dev Biol. 10:8103272022. View Article : Google Scholar : PubMed/NCBI | |
|
Lim JKM, Stölting F, Levy T, Thewes L, Picard D, Tishina S, Zhang H, Lewandowska O, Reiff T, Remke M, et al: Oncogenic RAS signaling suppresses ferroptosis via transcriptional upregulation of GCH1. bioRxiv. Jan 29–2024.doi.org/10.1101/2024.01.27.577524. | |
|
Cao J, Chen X, Chen L, Lu Y, Wu Y, Deng A, Pan F, Huang H, Liu Y, Li Y, et al: DHODH-mediated mitochondrial redox homeostasis: A novel ferroptosis regulator and promising therapeutic target. Redox Biol. 85:1037882025. View Article : Google Scholar : PubMed/NCBI | |
|
Mazdak H, Yazdekhasti F, Movahedian A, Mirkheshti N and Shafieian M: The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group. Int Urol Nephrol. 42:89–93. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
An WX, Gupta R, Zhai K, Wang YR, Xu WH and Cui Y: Current and potential roles of ferroptosis in bladder cancer. Curr Med Sci. 44:51–63. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, Chen P, Pan T, Yan L, Jin T, et al: Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B. 11:4045–4054. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ and Stockwell BR: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 12:497–503. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Stepanic V and Kucerova-Chlupacova M: Review and chemoinformatic analysis of ferroptosis modulators with a focus on natural plant products. Molecules. 28:4752023. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang Y, Chen X, Wang W, Zhai L, Sun X, Feng J, Duan T, Zhang M, Pan T, Yan L, et al: Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NRF2 inactivation. Front Pharmacol. 12:7755062021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Berleth N, Wu W, Schlutermann D, Deitersen J, Stuhldreier F, Berning L, Friedrich A, Akgun S, Mendiburo MJ, et al: Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis. 12:10282021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S and Zheng X: Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 235:3425–3437. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M, Chauffert B and Galmiche A: Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Int J Oncol. 34:6417–6422. 2014. | |
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chiang S, Chen S and Chang L: A dual role of HEME oxygenase-1 in cancer cells. Int J Mol Sci. 20:392019. View Article : Google Scholar | |
|
Sun X, Niu X, Chen R, He W, Chen D, Kang R and Tang D: Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. 64:488–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bai T, Lei P, Zhou H, Liang R, Zhu R, Wang W, Zhou L and Sun Y: Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med. 23:7349–7359. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Li J, Deng H, Wang Y, Lei C, Wang Q, Jin X, Liang L, Xia J, Pan X, et al: GSTZ1-1 deficiency activates NRF2/IGF1R axis in HCC via accumulation of oncometabolite succinylacetone. EMBO J. 38:e1019642019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Cheng B, Qin X, Gao Q, Huang A, Wang K and Tang N: GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death Dis. 12:4262021. View Article : Google Scholar : PubMed/NCBI | |
|
Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, François C, Chatelain D, Debuysscher V, Barbare J, et al: The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 356:971–977. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li J, Dong X, Meng D, Zhi X, Liu Y and Yao L: PSAT1 regulated oxidation-reduction balance affects the growth and prognosis of epithelial ovarian cancer. Onco Targets Ther. 13:5443–5453. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Haga Y, Kanda T, Nakamura M, Nakamoto S, Sasaki R, Takahashi K, Wu S and Yokosuka O: Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines. PLoS One. 12:e01741532017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Zhu G, Liu Y, Wu Q, Zhang X, Bian Z, Zhang Y, Pan Q and Sun F: O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer. Cell Signal. 63:1093842019. View Article : Google Scholar : PubMed/NCBI | |
|
Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Song S, Piscuoglio S, Dill MT, Camargo FD, Christofori G, et al: YAP/TAZ and ATF4 drive resistance to sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 13:e143512021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Zhang Z, Tsai H, Liu Y, Gao J, Wang M, Liu S, Cao X, Xu Z, Chen H, et al: Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death Differ. 28:1222–1236. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu Y, Li H, Xie J, Qiao X and Wu J: Identification of ABCC5 among ATP-binding cassette transporter family as a new biomarker for hepatocellular carcinoma based on bioinformatics analysis. Int J Gen Med. 14:7235–7246. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L, Huang W, He G, Liao H, Cai L, et al: ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia. 23:1227–1239. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Byun J, Lee S, Kang G, Lee YR, Park SY, Song I, Yun JW, Lee J, Choi Y and Park K: Macropinocytosis is an alternative pathway of cysteine acquisition and mitigates sorafenib-induced ferroptosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 41:22962022. View Article : Google Scholar | |
|
Lee JY, Kang ES, Kobayashi S, Homma T, Sato H, Seo HG and Fujii J: The viability of primary hepatocytes is maintained under a low cysteine-glutathione redox state with a marked elevation in ophthalmic acid production. Exp Cell Res. 361:178–191. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Li L, Lan J, Yang C, Rao X, Zhao J, Xing T, Ju G, Song G and Lou J: CRISPR screens uncover protective effect of PSTK as a regulator of chemotherapy-induced ferroptosis in hepatocellular carcinoma. Mol Cancer. 21:112022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Fan X, Zhao Z and Shan XH: LncRNA SLC7A11-AS1 contributes to lung cancer progression through facilitating TRAIP expression by inhibiting miR-4775. Onco Targets Ther. 13:6295–6302. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Sun Y, Bai L, Zhi L, Yang Y, Zhao Q, Chen C, Qi Y, Gao W, He W, et al: RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J Clin Invest. 131:e1520672021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu X, Kang N, Ling X, Pan M, Du W and Gao S: MIR-27A-3P promotes non-small cell lung cancer through SLC7A11-mediated ferroptosis. Front Oncol. 11:7593462021. View Article : Google Scholar : PubMed/NCBI | |
|
Gargalionis AN, Papavassiliou KA and Papavassiliou AG: Implication of MTOR signaling in NSCLC: Mechanisms and therapeutic perspectives. Cells. 12:20142023. View Article : Google Scholar : PubMed/NCBI | |
|
Ni J, Chen K, Zhang J and Zhang X: Inhibition of GPX4 or mTOR overcomes resistance to lapatinib via promoting ferroptosis in NSCLC cells. Biochem Biophys Res Commun. 567:154–160. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Yan H, Xu X, Liu H, Wu C and Zhao L: Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett. 19:323–333. 2020.PubMed/NCBI | |
|
Carlisle AE, Lee N, Matthew-Onabanjo AN, Spears ME, Park SJ, Youkana D, Doshi MB, Peppers A, Li R, Joseph AB, et al: Selenium detoxification is required for cancer-cell survival. Nat Metab. 2:603–611. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yu H, Yang C, Lei J, Guo S, Chen R, Li K, Qu F, Tao K, Fu Y, Liu F, et al: Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 42:2650–2660. 2019. | |
|
Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK and Karunagaran D: SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and antitumor effects in human breast cancer cells. Cancer Lett. 522:211–224. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sugezawa K, Morimoto M, Yamamoto M, Matsumi Y, Nakayama Y, Hara K, Uejima C, Kihara K, Matsunaga T, Tokuyasu N, et al: GPX4 regulates tumor cell proliferation via suppressing ferroptosis and exhibits prognostic significance in gastric cancer. Anticancer Res. 42:5719–5729. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zeuner A, Todaro M, Stassi G and De Maria R: Colorectal cancer stem cells: From the crypt to the clinic. Cell Stem Cell. 15:692–705. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hao S, Yu J, He W, Huang Q, Zhao Y, Liang B, Zhang S, Wen Z, Dong S, Rao J, et al: Cysteine dioxygenase 1 mediates Erastin-induced ferroptosis in human gastric cancer cells. Neoplasia. 19:1022–1032. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ye G, Guan W, Cao Z, Guo W, Xiong G, Zhao F, Feng M, Qiu J, Liu Y, Zhang MQ, et al: Integrative genomic analysis of gemcitabine resistance in pancreatic cancer by patient-derived xenograft models. Clin Cancer Res. 27:3383–3396. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Thummuri D, Khan S, Underwood PW, Zheng P, Wiegand J, Zhang X, Budamagunta V, Sobh A, Tagmount A, Loguinov A, et al: Overcoming gemcitabine resistance in pancreatic cancer using the BCL-XL-Specific degrader DT2216. Mol Cancer Ther. 21:184–192. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Liu C, Zhao Y, Zhang W, Xu K, Li D, Zhou Y, Li H, Xiao G, Lu B and Gao G: Inhibition of LONP1 protects against erastin-induced ferroptosis in pancreatic ductal adenocarcinoma PANC1 cells. Biochem Biophys Res Commun. 522:1063–1068. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wu X, Zhao R, Yu-Lin L, Zou W, Chen J and Wang H: Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 66:1009162023. View Article : Google Scholar : PubMed/NCBI | |
|
Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, Lu XJ, Ledergor G, Kollet O and Lapidot T: Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal. 21:1605–1619. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fischbacher A, von Sonntag C and Schmidt TC: Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Chemosphere. 182:738–744. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rassool FV, Gaymes TJ, Omidvar N, Brady N, Beurlet S, Pla M, Reboul M, Lea N, Chomienne C, Thomas NS, et al: Reactive oxygen species, DNA damage, and error-prone repair: A model for genomic instability with progression in myeloid leukemia? Cancer Res. 67:8762–8771. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hole PS, Zabkiewicz J, Munje C, Newton Z, Pearn L, White P, Marquez N, Hills RK, Burnett AK, Tonks A and Darley RL: Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood. 122:3322–3330. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fonseca-Nunes A, Jakszyn P and Agudo A: Iron and cancer risk-a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev. 23:12–31. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Manz DH, Blanchette NL, Paul BT, Torti FM and Torti SV: Iron and cancer: Recent insights. Ann N Y Acad Sci. 1368:149–161. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Long F, Lin Z, Long Q, Lu Z, Zhu K, Zhao M and Yang M: CircZBTB46 protects acute myeloid leukemia cells from ferroptotic cell death by upregulating SCD. Cancers (Basel). 15:4592023. View Article : Google Scholar : PubMed/NCBI | |
|
Aurelius J, Thorén FB, Akhiani AA, Brune M, Palmqvist L, Hansson M, Hellstrand K and Martner A: Monocytic AML cells inactivate antileukemic lymphocytes: Role of NADPH oxidase/gp91(phox) expression and the PARP-1/PAR pathway of apoptosis. Blood. 119:5832–5837. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Lu WY, Zhao MF, Cao XL, Jiang YY, Jin X, Xu P, Yuan TT, Zhang YC, Chai X, et al: Reactive oxygen species mediated T lymphocyte abnormalities in an iron-overloaded mouse model and iron-overloaded patients with myelodysplastic syndromes. Ann Hematol. 96:1085–1095. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Du Z, Huang J, Li T, Zhang J, Li Y, Yi W and Chen C: Ferroptosis in hematological malignant tumors. Front Oncol. 13:11275262023. View Article : Google Scholar : PubMed/NCBI | |
|
Bai Y, Luo Y, Yuan Y, Li X, Jin J, Ping R, Guo J, Jin L, Yu Y and Xiong Y: Ferroptosis: A novel therapeutic warrior in the battle against leukemia. Apoptosis. 30:1776–1795. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wei J, Xie Q, Liu X, Wan C, Wu W, Fang K, Yao Y, Cheng P, Deng D and Liu Z: Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia. Ann Transl Med. 8:6782020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Z, Ye W, Huang X, Li X, Li F, Lin X, Hu C, Wang J, Jin J, Zhu B and Huang J: The ferroptosis landscape in acute myeloid leukemia. Aging (Albany NY). 15:13486–13503. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Zhong S, Qiu K, Chen X, Wu W, Zheng J, Liu Y, Wu H, Fan S, Nie D, et al: Targeting NRF2 uncovered an intrinsic susceptibility of acute myeloid leukemia cells to ferroptosis. Exp Hematol Oncol. 12:472023. View Article : Google Scholar : PubMed/NCBI | |
|
Xia J, Sun S, Jotte MR, Uy GL, Sorani E, Abi Vainstein L, Shemesh Davish L, Caldwell KE, Hawkins WG and Link DC: Combined inhibition of CXCR4 signaling and System xc-transporter activity induces synthetic lethality in T-ALL cells by suppressing GSH and inducing ferroptosis. Blood. 136 (Suppl 1):S372020. View Article : Google Scholar | |
|
Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C, Lu W, Burger JA, Croce CM, Plunkett W, et al: Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol. 14:276–286. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Xia X and Huang P: xCT: A critical molecule that links cancer metabolism to redox signaling. Mol Ther. 28:2358–2366. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Birsen R, Larrue C, Decroocq J, Johnson N, Guiraud N, Gotanegre M, Cantero-Aguilar L, Grignano E, Huynh T, Fontenay M, et al: APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica. 107:403–416. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Pardieu B, Pasanisi J, Ling F, Dal Bello R, Penneroux J, Su A, Joudinaud R, Chat L, Wu HC, Duchmann M, et al: Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia. 36:1585–1595. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Rashkovan M and Ferrando A: Metabolic dependencies and vulnerabilities in leukemia. Genes Dev. 33:1460–1474. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Jin X, Ye F, Liu X, Yu B, Li Z, Zhao T, Chen W, Liu X, Di C and Li Q: Ferroptosis: A novel regulated cell death participating in cellular stress response, radiotherapy, and immunotherapy. Exp Hematol Oncol. 12:652023. View Article : Google Scholar : PubMed/NCBI | |
|
Dächert J, Schoeneberger H, Rohde K and Fulda S: RSL3 and erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death. Oncotarget. 7:63779–63792. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R and Leedman PJ: Altered iron metabolism and impact in cancer biology, metastasis, and immunology. Front Oncol. 10:4762020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang N, Tan S, Ng SC, Shi Y, Zhou J, Tan KSW, Wong WF and Shen H: Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 289:33425–33441. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, Janah R, Greten HJ and Efferth T: Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 22:1045–1054. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Santana-Codina N and Mancias JD: The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals (Basel). 11:1142018. View Article : Google Scholar : PubMed/NCBI | |
|
Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, Dai X, Li Z and Wu G: Ferroptosis: A novel antitumor action for cisplatin. Cancer Res Treat. 50:445–460. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wen RJ, Dong X, Zhuang HW, Pang FX, Ding SC, Li N, Mai YX, Zhou ST, Wang JY and Zhang JF: Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomedicine. 116:1548812023. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Z, Huang Z, Huang Y, Chen Y, Huang M, Liu H, Ye Q, Zhao J and Jia B: Ferroptosis: The silver lining of cancer therapy. Front Cell Dev Biol. 9:7658592021. View Article : Google Scholar : PubMed/NCBI | |
|
Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, Koshiishi I and Torii S: Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci. 108:2187–2194. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zou Y, Li H, Graham E, Deik A, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Tashiro J, Kamatani S, Irie N, Suzuki A, Ishikawa T, Warita K, Oltvai ZN and Warita T: HMG-CoA reductase degrader, SR-12813, counteracted statin-induced upregulation of HMG-CoA reductase and augmented the anticancer effect of atorvastatin. Biochem Biophys Res Commun. 677:13–19. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Xu J, Zhang B, Tan Z, Meng Q, Hua J, Liu J, Wang W, Shi S, Yu X and Liang C: Ferroptosis: At the crossroad of gemcitabine resistance and tumorigenesis in pancreatic cancer. Int J Mol Sci. 22:109442021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Sun R and Fang K: Erianin inhibits tumor growth by promoting ferroptosis and inhibiting invasion in hepatocellular carcinoma through the JAK2/STAT3/SLC7A11 pathway. Pathol Int. 74:119–128. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Zheng Y, Chen H, Tan X, Zhang G, Kong M, Jiang R, Yu H, Shan K, Liu J, et al: Erianin triggers ferroptosis in colorectal cancer cells by facilitating the ubiquitination and degradation of GPX4. Phytomedicine. 139:1564652025. View Article : Google Scholar : PubMed/NCBI | |
|
Tian XY, Han R, Huang QY, Zhou MY, Luo B, Chen XR and Xu JC: Erianin inhibits oral cancer cell growth, migration, and invasion via the Nrf2/HO-1/GPX4 pathway. Asian Pac J Trop Biomed. 12:4372022. View Article : Google Scholar | |
|
Yagoda N, Von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, et al: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 447:865–869. 2007. View Article : Google Scholar | |
|
Zhao J, Xu B, Xiong Q, Feng Y and Du H: Erastin-induced ferroptosis causes physiological and pathological changes in healthy tissues of mice. Mol Med Rep. 24:7132021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S and Li W: Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci. 110:3173–3182. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun S, Shen J, Jiang J, Wang F and Min J: Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 8:3722023. View Article : Google Scholar : PubMed/NCBI | |
|
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Liu J, Wang S and Li X: Role of non-coding RNA-regulated ferroptosis in colorectal cancer. Cell Death Discov. 11:3152025. View Article : Google Scholar : PubMed/NCBI | |
|
Ghosal J, Sinchana VK and Chakrabarty S: Ferroptosis meets microRNAs: A new frontier in anticancer therapy. Free Radic Biol Med. 226:266–278. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ju Y, Lv Y, Liu X, Lu J, Shi Y, Guo H, Xu S, Tian J, Yang J and Zhong J: Role of long non-coding RNAs in the regulation of ferroptosis in tumors. Front Immunol. 16:15685672025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang R, Ma L, Wan J, Li Z, Yang Z, Zhao Z and Ming L: Ferroptosis-associated circular RNAs: Opportunities and challenges in the diagnosis and treatment of cancer. Front Cell Dev Biol. 11:11603812023. View Article : Google Scholar : PubMed/NCBI | |
|
Lyu N, Zeng Y, Kong Y, Chen Q, Deng H, Ou S, Bai Y, Tang H, Wang X and Zhao M: Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med. 9:6752021. View Article : Google Scholar : PubMed/NCBI | |
|
Pan X, Chen K, Gao W, Xu M, Meng F, Wu M, Wang ZQ, Li YQ, Xu W, Zhang M and Luo Y: Circular RNA circBNC2 inhibits tumorigenesis by modulating ferroptosis and acts as a nanotherapeutic target in prostate cancer. Mol Cancer. 24:292025. View Article : Google Scholar : PubMed/NCBI | |
|
Sleire L, Skeie BS, Netland IA, Førde HE, Dodoo E, Selheim F, Leiss L, Heggdal JI, Wang J and Enger PØ: Drug repurposing: Sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletion. Oncogene. 34:5951–5959. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Dai HQ, Huang XW, Feng J, Deng JH, Wang ZX, Yang XM, Liu YJ, Wu Y, Chen PH, et al: Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharm Sin B. 42:301–310. 2021. View Article : Google Scholar | |
|
Li H, Yu Y, Liu Y, Luo Z, Law BYK, Zheng Y, Huang X and Li W: Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer. Pharmacol Res. 182:1063062022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Zhang Z, Ruan S, Qiu Y, Chen Y, Cui J, Wang X, Huang S and Hou B: Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol. 13:12515612023. View Article : Google Scholar : PubMed/NCBI | |
|
Campanella A, Santambrogio P, Fontana F, Frenquelli M, Cenci S, Marcatti M, Sitia R, Tonon G and Camaschella C: Iron increases the susceptibility of multiple myeloma cells to bortezomib. Haematologica. 98:971–979. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chekhun VF, Lukyanova NY, Burlaka AP, Bezdenezhnykh NA, Shpyleva SI, Tryndyak VP, Beland FA and Pogribny IP: Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int J Oncol. 43:1481–1486. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Habib E, Linher-Melville K, Lin H and Singh G: Expression of xCT and activity of system xc(−) are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Redox Biol. 5:33–42. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, et al: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 551:247–250. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lei G, Mao C, Yan Y, Li Z and Gan B: Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 12:836–857. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ye LF, Chaudhary K, Zandkarimi F, Harken A, Kinslow CJ, Upadhyayula PS, Dovas A, Higgins D, Tan H, Zhang Y, et al: Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 15:469–484. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Z, Zou S and Wen K: The crosstalk of CD8+ T cells and ferroptosis in cancer. Front Immunol. 14:12554432024. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Sun L, Guo J and Ma J: The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: Molecular mechanisms and therapeutic controversy. Cancer Commun (Lond). 43:1071–1096. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xia W, Lv Y, Zou Y, Kang Z, Li Z, Tian J, Zhou H, Su W and Zhong J: The role of ferroptosis in colorectal cancer and its potential synergy with immunotherapy. Front Immunol. 15:15267492025. View Article : Google Scholar : PubMed/NCBI | |
|
Tao Q, Liu N, Wu J, Chen J, Chen X and Peng C: Mefloquine enhances the efficacy of anti-PD-1 immunotherapy via IFN-γ-STAT1-IRF1-LPCAT3-induced ferroptosis in tumors. J Immunother Cancer. 12:e0085542024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Li Z, Lei J, Zhang Y, Tong Y, Guan X and Wang S: RGD peptide-functionalized micelles loaded with crocetin ameliorate doxorubicin-induced cardiotoxicity. Int J Pharm X. 9:1003262025.PubMed/NCBI | |
|
Zhang T, Gu F, Lin W, Shao H, Jiang A and Guan X: Boosting cancer immunotherapy: Drug delivery systems leveraging ferroptosis and immune checkpoint blockade. Front Immunol. 16:16112992025. View Article : Google Scholar : PubMed/NCBI | |
|
Manivasagan P, Joe A, Han H, Thambi T, Selvaraj M, Chidambaram K, Kim J and Jang E: Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater Today Bio. 13:1001972022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma P, Xiao H, Chang Y, Liu J, Cheng Z, Song H, Zhang X, Li C, Wang J, Gu Z and Lin J: Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 17:928–937. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Luo L, Wang H, Tian W, Li X, Zhu Z, Huang R and Luo H: Targeting ferroptosis-based cancer therapy using nanomaterials: Strategies and applications. Theranostics. 11:9937–9952. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Gong Y, Sontag DP, Corbin IR and Minuk GY: Effects of Low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines. Mol Biol Rep. 45:1023–1036. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Poggio M, Tao H, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L and Blelloch R: Suppression of exosomal PD-L1 induces systemic antitumor immunity and memory. Cell. 177:414–427.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, Grosse R, Diederich WE and Culmsee C: Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med. 117:45–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Feng Z, Chen L, Li Y, Bian H, Geng J, Zheng ZH, Fu X, Pei Z, Qin Y, et al: TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in Collagen-induced arthritis mouse models. Nat Commun. 13:6762022. View Article : Google Scholar : PubMed/NCBI | |
|
Qin LY, Guan P, Wang JX, Chen Y, Zhao YS, Yang SC, Guo YJ, Wang N and Ji ES: Therapeutic potential of Astragaloside IV against Adriamycin-induced renal damage in rats via ferroptosis. Front Pharmacol. 13:8125942022. View Article : Google Scholar : PubMed/NCBI | |
|
Eaton JK, Ruberto RA, Kramm A, Viswanathan VS and Schreiber SL: Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J Am Chem Soc. 141:20407–20415. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Firtina Karagonlar Z, Koc D, Iscan E, Erdal E and Atabey N: Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci. 107:407–416. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu K, Huang L, Qi S, Liu S, Xie W, Du L, Cui J, Zhang X, Zhang B, Liu L, et al: Ferroptosis: The entanglement between traditional drugs and nanodrugs in tumor therapy. Adv Healthc Mater. 12:e22030852023. View Article : Google Scholar : PubMed/NCBI | |
|
Singh M, Arora HL, Naik R, Joshi S, Sonawane K, Sharma NK and Sinha BK: Ferroptosis in cancer: Mechanism and therapeutic potential. Int J Mol Sci. 26:38522025. View Article : Google Scholar : PubMed/NCBI | |
|
Ojo OA, Grant S, Nwafor-Ezeh PI, Maduakolam-Aniobi TC, Akinborode TI, Ezenabor EH and Ojo AB: Ferroptosis as the new approach to cancer therapy. Cancer Treat Res Commun. 43:1009132025.PubMed/NCBI | |
|
Ubellacker JM and Dixon SJ: Prospects for ferroptosis therapies in cancer. Nat Cancer. 6:13262025. View Article : Google Scholar : PubMed/NCBI | |
|
Hino K, Nishina S and Yanatori I: Ferroptosis: Biology and role in liver disease. J Gastroenterol. Sep 18–2025.doi: 10.1007/s00535-025-02300-5 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G and Chen X: Ferroptosis: A targetable vulnerability for melanoma treatment. J Invest Dermatol. 145:1323–1344. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu CY, Al-Hasnaawei S, Kumar A, Ballal S, Mahmood AA, Kalia R, Joshi KK, Ray S and Pramanik A: Exosomal non-coding RNA as a key mediator of ferroptosis in lung cancer. Cell Signal. 136:1121352025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Han L, Wang J and Song L: Ferroptosis: The dawn of reversing drug resistance in digestive cancers. Genes Dis. 10:1018732025. View Article : Google Scholar |