|
1
|
Tse G, Yan BP, Chan YW, Tian XY and Huang
Y: Reactive oxygen species, endoplasmic reticulum stress and
mitochondrial dysfunction: The link with cardiac arrhythmogenesis.
Front Physiol. 7(313)2016.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Lippi G, Sanchis.Gomar F and Cervellin G:
Global epidemiology of atrial fibrillation: An increasing epidemic
and public health challenge. Int J Stroke: Jan 19, 2020 (Epub ahead
of print).
|
|
3
|
Murakoshi N and Aonuma K: Epidemiology of
arrhythmias and sudden cardiac death in Asia. Circ J. 77:2419–2431.
2013.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Guo Y, Tian Y, Wang H, Si Q, Wang Y and
Lip GYH: Prevalence, incidence, and lifetime risk of atrial
fibrillation in China: New insights into the global burden of
atrial fibrillation. Chest. 147:109–119. 2015.PubMed/NCBI View Article : Google Scholar
|
|
5
|
John RM, Tedrow UB, Koplan BA, Albert CM,
Epstein LM, Sweeney MO, Miller AL, Michaud GF and Stevenson WG:
Ventricular arrhythmias and sudden cardiac death. Lancet.
380:1520–1529. 2012.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Wang T, Lu M, Du Q, Yao X, Zhang P, Chen
X, Xie W, Li Z, Ma Y and Zhu Y: An integrated anti-arrhythmic
target network of compound Chinese medicine Wenxin Keli revealed by
combined machine learning and molecular pathway analysis
[corrected]. Mol Biosyst. 13:1018–1030. 2017.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Kalifa J and Avula UM: The Chinese herb
extract Wenxin Keli: Atrial selectivity from the Far East. Hear
Rhythm. 9:132–133. 2012.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Wang X, Wang X, Gu Y, Wang T and Huang C:
Wenxin Keli attenuates ischemia-induced ventricular arrhythmias in
rats: Involvement of L-type calcium and transient outward potassium
currents. Mol Med Rep. 7:519–524. 2012.
|
|
9
|
Tang Q: Effects of Nardostachys chinensis
Batal extract on sodium and calcium channels in rabbit ventricular
myocytes. Chin J Cardiol. 32:267–70. 2004.(In Chinese).
|
|
10
|
Brenyo A and Aktas MK: Review of
complementary and alternative medical treatment of arrhythmias. Am
J Cardiol. 113:897–903. 2014.PubMed/NCBI View Article : Google Scholar
|
|
11
|
He M, Lv Z, Yang ZW, Huang JL and Liu F:
Efficacy and safety of Chinese herbal medicine Wenxin Keli for
ventricular premature be ats: A systematic review. Complement Ther
Med. 29:181–189. 2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Hou J, Li W, Guo K, Chen XM, Chen YH, Li
CY, Zhao BC, Zhao J, Wang H, Wang YP and Li YG: Antiarrhythmic
effects and potential mechanism of WenXin KeLi in cardiac Purkinje
cells. Hear Rhythm. 13:973–982. 2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Dong Y, Liao J, Yao K, Jiang W and Wang J:
Application of traditional Chinese medicine in treatment of atrial
fibrillation. Evid Based Complement Alternat Med.
2017(1381732)2017.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Yang X, Chen Y, Li Y, Ren X, Xing Y and
Shang H: Effects of Wenxin Keli on Cardiac hypertrophy and
arrhythmia via regulation of the Calcium/Calmodulin dependent
Kinase II signaling pathway. Biomed Res Int.
2017(1569235)2017.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Wang X, Wang Y, Feng X, Lu Y, Zhang Y,
Wang W and Zhu W: Systematic review and meta-analysis of randomized
controlled trials on Wenxin Keli. Drug Des Devel Ther.
10:3725–3736. 2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Li J, Hu D, Song X, Han T, Gao Y and Xing
Y: The role of biologically active ingredients from natural drug
treatments for arrhythmias in different mechanisms. Biomed Res Int.
2017(4615727)2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Jiang M, Wang Q, Chen J, Wang Y, Fan G and
Zhu Y: Comparative metabonomics of Wenxin Keli and verapamil
reveals differential roles of gluconeogenesis and fatty acid
β-oxidation in myocardial injury protection. Sci Rep.
7(8739)2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Burashnikov A, Petroski A, Hu D,
Barajas-Martinez H and Antzelevitch C: Atrial-selective inhibition
of sodium-channel current by Wenxin Keli is effective in
suppressing atrial fibrillation. Hear Rhythm. 9:125–131.
2012.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Chen Y, Li Y, Guo L, Chen W, Zhao M, Gao
Y, Wu A, Lou L, Wang J, Liu X and Xing Y: Effects of Wenxin Keli on
the action potential and L-type calcium current in rats with
transverse aortic constriction-induced heart failure. Evid Based
Complement Alternat Med. 2013(572078)2013.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Li M, Qiu R, Tian G, Zhang X, Li C, Chen
S, Zhang Q and Shang H: Wenxin Keli for Ventricular premature
complexes with Heart failure: A systematic review and meta-analysis
of randomized clinical trials. Complement Ther Med. 33:85–93.
2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Tse G and Yeo JM: Conduction abnormalities
and ventricular arrhythmogenesis: The roles of sodium channels and
gap junctions. Int J Cardiol Heart Vasc. 9:75–82. 2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Wu A, Zhao M, Lou L, Zhai J, Zhang D, Zhu
H, Gao Y, Shang H and Chai L: Effect of Wenxin Granules on Gap
Junction and miR-1 in rats with myocardial infarction. Biomed Res
Int. 2017(3495021)2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Du M, Huang K, Gao L, Yang L, Wang WS,
Wang B, Huang K and Huang D: Nardosinone protects H9c2 cardiac
cells from angiotensin II-induced hypertrophy. J Huazhong Univ Sci
Technolog Med Sci. 33:822–826. 2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Minoura Y, Panama BK, Nesterenko VV,
Betzenhauser M, Barajas-Martínez H, Hu D, Di Diego JM and
Antzelevitch C: Effect of Wenxin Keli and quinidine to suppress
arrhythmogenesis in an experimental model of Brugada syndrome. Hear
Rhythm. 10:1054–1062. 2013.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Sun J, Sun G, Meng X, Wang H, Wang M, Qin
M, Ma B, Luo Y, Yu Y, Chen R, et al: Ginsenoside RK3 prevents
Hypoxia-Reoxygenation induced apoptosis in H9c2 Cardiomyocytes via
AKT and MAPK pathway. Evid Based Complement Alternat Med.
2013(690190)2013.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Li L, Pan CS, Yan L, Cui YC, Liu YY, Mu
HN, He K, Hu BH, Chang X, Sun K, et al: Ginsenoside Rg1 ameliorates
rat myocardial ischemia-reperfusion injury by modulating energy
metabolism pathways. Front Physiol. 9(78)2018.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong
ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al: Ginsenoside Rg1
protects rat cardiomyocyte from hypoxia/reoxygenation oxidative
injury via antioxidant and intracellular calcium homeostasis. J
Cell Biochem. 108:117–124. 2009.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Song H, Wang P, Liu J and Wang C: Panax
notoginseng preparations for unstable angina pectoris: A systematic
review and meta-analysis. Phyther Res. 31:1162–1172.
2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Yu G and Wang J: Exploring mechanisms of
Panax notoginseng saponins in treating coronary heart disease by
integrating gene interaction network and functional enrichment
analysis. Chin J Integr Med. 22:589–596. 2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Zhou Z, Wang J, Song Y, He Y, Zhang C, Liu
C, Zhao H, Dun Y, Yuan D and Wang T: Panax notoginseng saponins
attenuate cardiomyocyte apoptosis through mitochondrial pathway in
natural aging rats. Phyther Res. 32:243–250. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Cui X, Wang S, Cao H, Guo H, Li Y, Xu F,
Zheng M, Xi X and Han C: A review: The bioactivities and
pharmacological applications of polygonatum sibiricum
polysaccharides. Molecules. 23(pii: E1170)2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Zhu X, Wu W, Chen X, Yang F, Zhang J and
Hou J: Protective effects of Polygonatum sibiricum polysaccharide
on acute heart failure in rats 1. Acta Cir Bras. 33:868–878.
2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Chang KS, Lee NH, Kuo WW, Hu WS, Chang MH,
Tsai FJ, Tsai KH, Yang YS, Chen TS and Huang CY: Dung-Shen
downregulates the synergistic apoptotic effects of angiotensin II
plus Leu 27-IGF II on cardiomyoblasts. Acta Cardiol Sin. 30:56–66.
2014.PubMed/NCBI
|
|
34
|
Tsai KH, Lee NH, Chen GY, Hu WS, Tsai CY,
Chang MH, Jong GP, Kuo CH, Tzang BS, Tsai FJ, et al: Dung-Shen
(Codonopsis pilosula) attenuated the cardiac-impaired insulin-like
growth factor II receptor pathway on myocardial cells. Food Chem.
138:1856–1867. 2013.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Aguilar M and Nattel S: The past, present,
and potential future of sodium channel block as an atrial
fibrillation suppressing strategy. J Cardiovasc Pharmacol.
66:432–440. 2015.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Burashnikov A, Di Diego JM, Zygmunt AC,
Belardinelli L and Antzelevitch C: Atrium-selective sodium channel
block as a strategy for suppression of atrial fibrillation:
Differences in sodium channel inactivation between atria and
ventricles and the role of ranolazine. Circulation. 116:1449–1457.
2007.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Burashnikov A and Antzelevitch C: Role of
late sodium channel current block in the management of atrial
fibrillation. Cardiovasc Drugs Ther. 27:79–89. 2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Gharaviri A, Verheule S, Eckstein J, Potse
M, Krause R, Auricchio A, Kuijpers NHL and Schotten U: Effect of
Na+-channel blockade on the three-dimensional substrate of atrial
fibrillation in a model of Endo-Epicardial dissociation and
transmural conduction. Europace. 20 (Suppl 3):iii69–iii76.
2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Hu D, Barajas-Martínez H, Burashnikov A,
Panama BK, Cordeiro JM and Antzelevitch C: Mechanisms underlying
atrial-selective block of sodium channels by Wenxin Keli:
Experimental and theoretical analysis. Int J Cardiol. 207:326–334.
2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Xiao J, Zhao Q, Kebbati AH, Deng H, Wang
X, Dai Z, Yu S and Huang C: Wenxin Keli suppresses atrial substrate
remodeling after epicardial ganglionic Plexi ablation. Exp Clin
Cardiol. 18:153–157. 2013.PubMed/NCBI
|
|
41
|
Zhang N, Tse G, Dahal S, Yang Y, Gong M,
Chan CZY, Liu E, Xu G, Letsas KP, Korantzopoulos P, et al: Efficacy
of Wenxin Keli Plus Amiodarone versus Amiodarone Monotherapy in
treating recent-onset atrial fibrillation. Cardiol Res Pract.
2018(6047271)2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Meng Z, Tan J, He Q, Zhu M, Li X, Zhang J,
Jia Q, Wang S, Zhang G and Zheng W: Wenxin Keli versus Sotalol for
paroxysmal atrial fibrillation caused by hyperthyroidism: A
prospective, open label, and randomized study. Evid Based
Complement Alternat Med. 2015(101904)2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Guo D, Lian J, Liu T, Cox R, Margulies KB,
Kowey PR and Yan GX: Contribution of late sodium current (INa-L) to
rate adaptation of ventricular repolarization and reverse
use-dependence of QT-prolonging agents. Hear Rhythm. 8:762–769.
2011.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Antzelevitch C: Electrical heterogeneity,
cardiac arrhythmias, and the sodium channel. Circ Res. 87:964–965.
2000.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Sicouri S, Timothy KW, Zygmunt AC, Glass
A, Goodrow RJ, Belardinelli L and Antzelevitch C: Cellular basis
for the electrocardiographic and arrhythmic manifestations of
Timothy syndrome: Effects of ranolazine. Hear Rhythm. 4:638–647.
2007.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Qi D, Yang Z, Robinson VM, Li J, Gao C,
Guo D, Kowey PR and Yan GX: Heterogeneous distribution of INa-L
determines interregional differences in rate adaptation of
repolarization. Hear Rhythm. 12:1295–1303. 2015.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Burashnikov A: Late INa Inhibition as an
Antiarrhythmic Strategy. J Cardiovasc Pharmacol. 70:159–167.
2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Xue X, Guo D, Sun H, Wang D, Li J, Liu T,
Yang L, Shu J and Yan GX: Wenxin Keli suppresses ventricular
triggered arrhythmias via selective inhibition of late sodium
current. Pacing Clin Electrophysiol. 36:732–740. 2013.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Xiao L, Koopmann TT, Ördög B, Postema PG,
Verkerk AO, Iyer V, Sampson KJ, Boink GJ, Mamarbachi MA, Varro A,
et al: Unique cardiac Purkinje fiber transient outward current
β-subunit composition: A potential molecular link to idiopathic
ventricular fibrillation. Circ Res. 112:1310–1322. 2013.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Li J, Xie D, Huang J, Lv F, Shi D, Liu Y,
Lin L, Geng L, Wu Y, Liang D and Chen YH: Cold-inducible
RNA-binding protein regulates cardiac repolarization by targeting
transient outward potassium channels. Circ Res. 116:1655–1659.
2015.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Bohnen MS, Iyer V, Sampson KJ and Kass RS:
Novel mechanism of transient outward potassium channel current
regulation in the heart: Implications for cardiac electrophysiology
in health and disease. Circ Res. 116:1633–1635. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Cho JH, Zhang R, Kilfoil PJ, Gallet R, de
Couto G, Bresee C, Goldhaber JI, Marbán E and Cingolani E: Delayed
repolarization underlies ventricular arrhythmias in rats with heart
failure and preserved ejection fraction. Circulation.
136:2037–2050. 2017.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Zheng M, Liu Z, Liu N, Hou C, Pu J and
Zhang S: The effect of Wenxin Keli on the mRNA expression profile
of rabbits with myocardial infarction. Evid Based Complement
Alternat Med. 2016(2352614)2016.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Zheng R, Tian G, Zhang Q, Wu L, Xing Y and
Shang H: Clinical safety and efficacy of Wenxin keli-amiodarone
combination on heart failure complicated by ventricular arrhythmia:
A systematic review and meta-analysis. Front Physiol.
9(487)2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Yang G, Sau C, Lai W, Cichon J and Li W:
Sleep promotes branch-specific formation of dendritic spines after
learning. Science. 344:1173–1178. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Antzelevitch C and Patocskai B: Brugada
Syndrome: Clinical, Genetic, Molecular, Cellular, and Ionic
Aspects. Curr Probl Cardiol. 41:7–57. 2016.PubMed/NCBI View Article : Google Scholar
|
|
57
|
van Opbergen CJM, den Braven L, Delmar M
and van Veen TAB: Mitochondrial Dysfunction as Substrate for
Arrhythmogenic Cardiomyopathy: A search for new disease mechanisms.
Front Physiol. 10(1496)2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Ilkan Z and Akar FG: The mitochondrial
translocator protein and the emerging link between oxidative stress
and arrhythmias in the diabetic heart. Front Physiol.
9(1518)2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ren X, Wang X, Yuan M, Tian C, Li H, Yang
X, Li X, Li Y, Yang Y, Liu N, et al: Mechanisms and treatments of
oxidative stress in atrial fibrillation. Curr Pharm Des.
24:3062–3071. 2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Faria A and Persaud SJ: Cardiac oxidative
stress in diabetes: Mechanisms and therapeutic potential. Pharmacol
Ther. 172:50–62. 2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Köhler AC, Sag CM and Maier LS: Reactive
oxygen species and excitation-contraction coupling in the context
of cardiac pathology. J Mol Cell Cardiol. 73:92–102.
2014.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Gong M, Yuan M, Meng L, Zhang Z, Tse G,
Zhao Y, Zhang Y, Yuan M, Liang X, Fan G, et al: Wenxin Keli
regulates mitochondrial oxidative stress and homeostasis and
improves atrial remodeling in diabetic rats. Oxid Med Cell Longev.
2020(2468031)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Tian G, Sun Y, Liu S, Li C, Chen S, Qiu R,
Zhang X, Li Y, Li M and Shang H: Therapeutic effects of Wenxin Keli
in cardiovascular diseases: An experimental and mechanism overview.
Front Pharmacol. 9(1005)2018.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Nagibin V, Egan Benova T, Viczenczova C,
Szeiffova Bacova B, Dovinova I, Barancik M and Tribulova N: Ageing
related down-regulation of myocardial connexin-43 and up-regulation
of MMP-2 may predict propensity to atrial fibrillation in
experimental animals. Physiol Res. 65 (Suppl 1):S91–S100.
2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kato T, Iwasaki Y and Nattel S: Connexins
and atrial fibrillation. Circulation. 125:203–206. 2011.
|
|
66
|
Shu C, Huang W, Zeng Z, He Y, Luo B, Liu
H, Li J and Xu J: Connexin 43 is involved in the sympathetic atrial
fibrillation in canine and canine atrial myocytes. Anatol J
Cardiol. 18:3–9. 2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Paul M, Wichter T, Gerss J, Arps V,
Schulze-Bahr E, Robenek H, Breithardt G and Weissen-Plenz G:
Connexin expression patterns in arrhythmogenic right ventricular
cardiomyopathy. Am J Cardiol. 111:1488–1495. 2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Milberg P, Fink M, Pott C, Frommeyer G,
Biertz J, Osada N, Stypmann J, Mönnig G, Koopmann M, Breithardt G
and Eckardt L: Blockade of I(Ca) suppresses early
afterdepolarizations and reduces transmural dispersion of
repolarization in a whole heart model of chronic heart failure. Br
J Pharmacol. 166:557–568. 2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Xing Y, Gao Y, Chen J, Zhu H, Wu A, Yang
Q, Teng F, Zhang DM, Xing Y, Gao K, et al: Wenxin-Keli regulates
the calcium/calmodulin-dependent protein kinase II signal
transduction pathway and inhibits cardiac arrhythmia in rats with
myocardial infarction. Evid Based Complement Alternat Med.
2013(464508)2013.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Luo A, Liu Z, Cao Z, Hao J, Wu L, Fu C,
Zeng M, Jiang W, Zhang P, Zhao B, et al: Wenxin Keli diminishes
Ca2+ overload induced by hypoxia/reoxygenation in
cardiomyocytes through inhibiting INaL and
ICaL. Pacing Clin Electrophysiol. 40:1412–1425.
2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Maier LS and Bers DM: Role of
Ca2+/calmodulin-dependent protein kinase (CaMK) in
excitation-contraction coupling in the heart. Cardiovasc Res.
73:631–640. 2007.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Heijman J, Voigt N, Wehrens XH and Dobrev
D: Calcium dysregulation in atrial fibrillation: The role of
CaMKII. Front Pharmacol. 5(30)2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Lai Y, Yu L and Jiang H: Autonomic
neuromodulation for preventing and treating ventricular
arrhythmias. Front Physiol. 10(200)2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Inoue H and Zipes DP: Results of
sympathetic denervation in the canine heart: Supersensitivity that
may be arrhythmogenic. Circulation. 75:877–887. 1987.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Yanowitz F, Preston JB and Abildskov JA:
Functional distribution of right and left stellate innervation to
the ventricles. Production of neurogenic electrocardiographic
changes by unilateral alteration of sympathetic tone. Circ Res.
18:416–428. 1966.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Chen PS, Chen LS, Cao JM, Sharifi B,
Karagueuzian HS and Fishbein MC: Sympathetic nerve sprouting,
electrical remodeling and the mechanisms of sudden cardiac death.
Cardiovasc Res. 50:409–416. 2001.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Ng GA: Vagal modulation of cardiac
ventricular arrhythmia. Exp Physiol. 99:295–299. 2014.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Naggar I, Uchida S, Kamran H, Lazar J and
Stewart M: Autonomic boundary conditions for ventricular
fibrillation and their implications for a novel defibrillation
technique. J Physiol Sci. 62:479–492. 2012.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Meng L, Shivkumar K and Ajijola O:
Autonomic regulation and ventricular arrhythmias. Curr Treat
Options Cardiovasc Med. 20(38)2018.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Takigawa M, Noda T, Shimizu W, Miyamoto K,
Okamura H, Satomi K, Suyama K, Aihara N, Kamakura S and Kurita T:
Seasonal and circadian distributions of ventricular fibrillation in
patients with Brugada syndrome. Hear Rhythm. 5:1523–1527.
2008.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Shen MJ and Zipes DP: Role of the
autonomic nervous system in modulating cardiac arrhythmias. Circ
Res. 114:1004–1021. 2014.PubMed/NCBI View Article : Google Scholar
|