Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
World Academy of Sciences Journal
Join Editorial Board Propose a Special Issue
Print ISSN: 2632-2900 Online ISSN: 2632-2919
Journal Cover
March-April 2021 Volume 3 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-April 2021 Volume 3 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Influence of toxic metal exposure on the gut microbiota (Review)

  • Authors:
    • Federica Giambò
    • Sebastiano Italia
    • Michele Teodoro
    • Giusi Briguglio
    • Nicola Furnari
    • Rosaria Catanoso
    • Chiara Costa
    • Concettina Fenga
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I‑98125 Messina, Italy, Department of Clinical and Experimental Medicine, University of Messina, I‑98125 Messina, Italy
    Copyright: © Giambò et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 19
    |
    Published online on: February 2, 2021
       https://doi.org/10.3892/wasj.2021.90
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The gut microbiota (GM) is composed of >100 trillion different organisms, including bacteria, viruses, fungi, archaea and protists, coexisting in a complex system. The GM can be very sensitive to drugs, diet or even environmental pollutants. In the present review, recent data related to the interaction between the GM and heavy/toxic metals are discussed, focusing on the compounds most widely distributed in the environment or considered biopersistent. There are data to suggest that exposure to metals can alter the composition, diversity, homogeneity and structure of the GM. The specific modifications reported are not homogeneous, and a number of factors may explain this variability, including differences in metal compound, exposure modalities (e.g., food, water, in vitro), exposure time, qualitative and quantitative diversity of bacterial species in basal microbiota and analytical issues. As regards metal nanoparticles, some authors foresee the premises for a safe preventive and therapeutic use, while others have revealed harmful effects on both the gut microbiome and health. These findings, which would benefit from the application of modern approaches such as metagenomic sequencing and metabolomics, seem to indicate structural and functional analysis of gut microbiota as an early biomarker of detrimental effects from exposure to metals.
View Figures

Figure 1

View References

1 

Hill DA and Artis D: Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol. 28:623–667. 2010.PubMed/NCBI View Article : Google Scholar

2 

Cho I and Blaser MJ: The human microbiome: At the interface of health and disease. Nat Rev Genet. 13:260–270. 2012.PubMed/NCBI View Article : Google Scholar

3 

Breton J, Massart S, Vandamme P, De Brandt E, Pot B and Foligné B: Ecotoxicology inside the gut: Impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol. 14(62)2013.PubMed/NCBI View Article : Google Scholar

4 

World Health Organization (WHO): Trace elements in human nutrition and health. WHO, Geneva, 1996.

5 

Rapisarda V, Miozzi E, Loreto C, Matera S, Fenga C, Avola R and Ledda C: Cadmium exposure and prostate cancer: Insights, mechanisms and perspectives. Front Biosci (Landmark Ed). 23:1687–1700. 2018.PubMed/NCBI View Article : Google Scholar

6 

Fenga C, Gangemi S, Di Salvatore V, Falzone L and Libra M: Immunological effects of occupational exposure to lead. Mol Med Rep. 15:3355–3360. 2017.PubMed/NCBI View Article : Google Scholar

7 

Planchart A, Green A, Hoyo C and Mattingly CJ: Heavy metal exposure and metabolic syndrome: Evidence from human and model system studies. Curr Environ Health Rep. 5:110–124. 2018.PubMed/NCBI View Article : Google Scholar

8 

Rehman K, Fatima F, Waheed I and Akash MSH: Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 119:157–184. 2018.PubMed/NCBI View Article : Google Scholar

9 

Sommer F and Bäckhed F: The gut microbiota-masters of host development and physiology. Nat Rev Microbiol. 11:227–238. 2013.PubMed/NCBI View Article : Google Scholar

10 

Forbes JD, Van Domselaar G and Bernstein CN: The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol. 7(1081)2016.PubMed/NCBI View Article : Google Scholar

11 

Mandel LJ, Bacallao R and Zampighi G: Uncoupling of the molecular ‘fence’ and paracellular ‘gate’ functions in epithelial tight junctions. Nature. 361:552–555. 1993.PubMed/NCBI View Article : Google Scholar

12 

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et al: Enterotypes of the human gut microbiome. Nature. 473:174–180. 2011.PubMed/NCBI View Article : Google Scholar

13 

IARC Monographs: Arsenic, Metals, Fibres, and Dusts. IARC monographs on the evaluation of carcinogenic risk to human. Vol 100C. IARC, Lyon, 2012.

14 

Richardson JB Jr, Dancy BCR, Horton CL, Lee YS, Madejczyk MS, Xu ZZ, Ackermann G, Humphrey G, Palacios G, Knight R and Lewis JA: Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 8(6578)2018.PubMed/NCBI View Article : Google Scholar

15 

Zhang W, Guo R, Yang Y, Ding J and Zhang Y: Long-term effect of heavy-metal pollution on diversity of gastrointestinal microbial community of Bufo raddei. Toxicol Lett. 258:192–197. 2016.PubMed/NCBI View Article : Google Scholar

16 

Li X, Brejnrod AD, Ernst M, Rykær M, Herschend J, Olsen NMC, Dorrestein PC, Rensing C and Sørensen SJ: Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ Int. 126:454–467. 2019.PubMed/NCBI View Article : Google Scholar

17 

Rothman JA, Leger L, Kirkwood JS and McFrederick QS: Cadmium and selenate exposure affects the honey bee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation. Appl Environ Microbiol. 85:e01411–19. 2019.PubMed/NCBI View Article : Google Scholar

18 

Laue HE, Moroishi Y, Jackson BP, Palys TJ, Madan JC and Karagas MR: Nutrient-toxic element mixtures and the early postnatal gut microbiome and in a United States longitudinal birth cohort. Environ Int. 138(105613)2020.PubMed/NCBI View Article : Google Scholar

19 

Zhai Q, Cen S, Jiang J, Zhao J, Zhang H and Chen W: Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. Environ Res. 171:501–509. 2019.PubMed/NCBI View Article : Google Scholar

20 

Liu Y, Ji J, Zhang W, Suo Y, Zhao J, Lin X, Cui L, Li B, Hu H, Chen C and Li YF: Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats. Ecotoxicol Environ Saf. 185(109720)2019.PubMed/NCBI View Article : Google Scholar

21 

Qiu Y, Chen X, Yan X, Wang J, Yu G, Ma W, Xiao B, Quinones S, Tian X and Ren X: Gut microbiota perturbations and neurodevelopmental impacts in offspring rats concurrently exposure to inorganic arsenic and fluoride. Environ Int. 140(105763)2020.PubMed/NCBI View Article : Google Scholar

22 

Ruan Y, Wu C, Guo X, Xu Z, Xing C, Cao H, Zhang C, Hu G and Liu P: High doses of copper and mercury changed cecal microbiota in female mice. Biol Trace Elem Res. 189:134–144. 2019.PubMed/NCBI View Article : Google Scholar

23 

Gaulke CA, Rolshoven J, Wong CP, Hudson LG, Ho E and Sharpton TJ: Marginal zinc deficiency and environmentally relevant concentrations of arsenic elicit combined effects on the gut microbiome. mSphere. 3:e00521–18. 2018.PubMed/NCBI View Article : Google Scholar

24 

Faulkner MJ, Wenner BA, Solden LM and Weiss WP: Source of supplemental dietary copper, zinc, and manganese affects fecal microbial relative abundance in lactating dairy Cows. J Dairy Sci. 100:1037–1044. 2017.PubMed/NCBI View Article : Google Scholar

25 

Wu N, Wang X, Xu X, Cai R and Xie S: Effects of heavy metals on the bioaccumulation, excretion and gut microbiome of black soldier fly larvae (Hermetia illucens). Ecotoxicol Environ Saf. 192(110323)2020.PubMed/NCBI View Article : Google Scholar

26 

Yu H, Wu B, Zhang XX, Liu S, Yu J, Cheng S, Ren HQ and Ye L: Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota. Environ Sci Technol. 50:7189–7197. 2016.PubMed/NCBI View Article : Google Scholar

27 

Yin N, Cai X, Zheng L, Du H, Wang P, Sun G and Cui Y: In vitro assessment of arsenic release and transformation from As(V)-sorbed goethite and jarosite: The influence of human gut microbiota. Environ Sci Technol. 54:4432–4442. 2020.PubMed/NCBI View Article : Google Scholar

28 

Coryell M, McAlpine M, Pinkham N, McDermott TR and Walk ST: The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun. 9(5424)2018.PubMed/NCBI View Article : Google Scholar

29 

Hoen AG, Madan JC, Li Z, Coker M, Lundgren SN, Morrison HG, Palys T, Jackson BP, Sogin ML, Cottingham KL and Karagas MR: Sex-specific associations of infants' gut microbiome with arsenic exposure in a US population. Sci Rep. 8(12627)2018.PubMed/NCBI View Article : Google Scholar

30 

Baker BA, Cassano VA, Murray C and Dreger M: Arsenic exposure, assessment, toxicity, diagnosis, and management: Guidance for occupational and environmental physicians. J Occup Environ Med. 60:e634–e639. 2018.PubMed/NCBI View Article : Google Scholar

31 

Chi L, Bian X, Gao B, Ru H, Tu P and Lu K: Sex-specific effects of arsenic exposure on the trajectory and function of the gut microbiome. Chem Res Toxicol. 29:949–951. 2016.PubMed/NCBI View Article : Google Scholar

32 

Dong X, Shulzhenko N, Lemaitre J, Greer RL, Peremyslova K, Quamruzzaman Q, Rahman M, Hasan OS, Joya SA, Golam M, et al: Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh. PLoS One. 12(e0188487)2017.PubMed/NCBI View Article : Google Scholar

33 

Wu F, Yang L, Islam MT, Jasmine F, Kibriya MG, Nahar J, Barmon B, Parvez F, Sarwar G, Ahmed A, et al: The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. Environ Int. 123:104–113. 2019.PubMed/NCBI View Article : Google Scholar

34 

Brabec JL, Wright J, Ly T, Wong HT, McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D, Uprety S, et al: Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal. Heliyon. 6(e03313)2020.PubMed/NCBI View Article : Google Scholar

35 

Chi L, Bian X, Gao B, Tu P, Ru H and Lu K: The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome. Toxicol Sci. 160:193–204. 2017.PubMed/NCBI View Article : Google Scholar

36 

Chi L, Xue J, Tu P, Lai Y, Ru H and Lu K: Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice. Arch Toxicol. 93:25–35. 2019.

37 

Xue J, Lai Y, Chi L, Tu P, Leng J, Liu CW, Ru H and Lu K: Serum metabolomics reveals that gut microbiome perturbation mediates metabolic disruption induced by arsenic exposure in mice. J Proteome Res. 18:1006–1018. 2019.PubMed/NCBI View Article : Google Scholar

38 

Chi L, Lai Y, Tu P, Liu CW, Xue J, Ru H and Lu K: Lipid and cholesterol homeostasis after arsenic exposure and antibiotic treatment in mice: Potential role of the microbiota. Environ Health Perspect. 127(97002)2019.PubMed/NCBI View Article : Google Scholar

39 

Liu CW, Chi L, Tu P, Xue J, Ru H and Lu K: Isobaric Labeling quantitative metaproteomics for the study of gut microbiome response to arsenic. J Proteome Res. 18:970–981. 2019.PubMed/NCBI View Article : Google Scholar

40 

Chiocchetti GM, Domene A, Kühl AA, Zúñiga M, Vélez D, Devesa V and Monedero V: In vivo evaluation of the effect of arsenite on the intestinal epithelium and associated microbiota in mice. Arch Toxicol. 93:2127–2139. 2019.PubMed/NCBI View Article : Google Scholar

41 

Gokulan K, Arnold MG, Jensen J, Vanlandingham M, Twaddle NC, Doerge DR, Cerniglia CE and Khare S: Exposure to arsenite in CD-1 mice during juvenile and adult stages: Effects on intestinal microbiota and Gut-associated immune status. mBio. 9:e01418–18. 2018.PubMed/NCBI View Article : Google Scholar

42 

Tikka C, Manthari RK, Ommati MM, Niu R, Sun Z, Zhang J and Wang J: Immune disruption occurs through altered gut microbiome and NOD2 in arsenic induced mice: Correlation with colon cancer markers. Chemosphere. 246(125791)2020.PubMed/NCBI View Article : Google Scholar

43 

Wang HT, Ding J, Xiong C, Zhu D, Li G, Jia XY, Zhu YG and Xue XM: Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environ Pollut. 251:110–116. 2019.PubMed/NCBI View Article : Google Scholar

44 

Wang HT, Zhu D, Li G, Zheng F, Ding J, O'Connor PJ, Zhu YG and Xue XM: Effects of arsenic on gut microbiota and its biotransformation genes in earthworm metaphire sieboldi. Environ Sci Technol. 53:3841–3849. 2019.PubMed/NCBI View Article : Google Scholar

45 

Yin N, Du H, Zhang Z, Cai X, Li Z, Sun G and Cui Y: Variability of arsenic bioaccessibility and metabolism in soils by human gut microbiota using different in vitro methods combined with SHIME. Sci Total Environ. 566-567:1670–1677. 2016.PubMed/NCBI View Article : Google Scholar

46 

Yin N, Cai X, Du H, Zhang Z, Li Z, Chen X, Sun G and Cui Y: In vitro study of soil arsenic release by human gut microbiota and its intestinal absorption by Caco-2 cells. Chemosphere. 168:358–364. 2017.PubMed/NCBI View Article : Google Scholar

47 

Li J, Mandal G and Rosen BP: Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium. Anaerobe. 39:117–123. 2016.PubMed/NCBI View Article : Google Scholar

48 

He X, Qi Z, Hou H, Qian L, Gao J and Zhang XX: Structural and functional alterations of gut microbiome in mice induced by chronic cadmium exposure. Chemosphere. 246(125747)2020.PubMed/NCBI View Article : Google Scholar

49 

Šrut M, Menke S, Höckner M and Sommer S: Earthworms and cadmium-Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicol Environ Saf. 171:843–853. 2019.PubMed/NCBI View Article : Google Scholar

50 

Zhang S, Jin Y, Zeng Z, Liu Z and Fu Z: Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol. 28:2000–2009. 2015.PubMed/NCBI View Article : Google Scholar

51 

Ba Q, Li M, Chen P, Huang C, Duan X, Lu L, Li J, Chu R, Xie D, Song H, et al: Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health Perspect. 125:437–446. 2017.PubMed/NCBI View Article : Google Scholar

52 

Feng S, Liu Y, Huang Y, Zhao J, Zhang H, Zhai Q and Chen W: Influence of oral administration of Akkermansia muciniphila on the tissue distribution and gut microbiota composition of acute and chronic cadmium exposure mice. FEMS Microbiol Lett. 366(fnz160)2019.PubMed/NCBI View Article : Google Scholar

53 

He X, Qi Z, Hou H, Gao J and Zhang XX: Effects of chronic cadmium exposure at food limitation-relevant levels on energy metabolism in mice. J Hazard Mater. 388(121791)2020.PubMed/NCBI View Article : Google Scholar

54 

Chang X, Li H, Feng J, Chen Y, Nie G and Zhang J: Effects of cadmium exposure on the composition and diversity of the intestinal microbial community of common carp (Cyprinus carpio L.). Ecotoxicol Environ Saf. 171:92–98. 2019.PubMed/NCBI View Article : Google Scholar

55 

Zhang Y, Li Z, Kholodkevich S, Sharov A, Chen C, Feng Y, Ren N and Sun K: Effects of cadmium on intestinal histology and microbiota in freshwater crayfish (Procambarus clarkii). Chemosphere. 242(125105)2020.PubMed/NCBI View Article : Google Scholar

56 

Wang N, Jiang M, Zhang P, Shu H and Li Y, Guo Z and Li Y: Amelioration of Cd-induced bioaccumulation, oxidative stress and intestinal microbiota by Bacillus cereus in Carassius auratus gibelio. Chemosphere. 245(125613)2020.PubMed/NCBI View Article : Google Scholar

57 

Zhai Q, Yu L, Li T, Zhu J, Zhang C, Zhao J, Zhang H and Chen W: Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie Van Leeuwenhoek. 110:501–513. 2017.PubMed/NCBI View Article : Google Scholar

58 

Ya J, Ju Z, Wang H and Zhao H: Exposure to cadmium induced gut histopathological damages and microbiota alterations of Chinese toad (Bufo gargarizans) larvae. Ecotoxicol Environ Saf. 180:449–456. 2019.PubMed/NCBI View Article : Google Scholar : Exposure to cadmium induced gut histopathological damages and microbiota alterations of Chinese toad (Bufo gargarizans) larvae.

59 

Ya J, Li X, Wang L, Kou H, Wang H and Zhao H: The effects of chronic cadmium exposure on the gut of Bufo gargarizans larvae at metamorphic climax: Histopathological impairments, microbiota changes and intestinal remodeling disruption. Ecotoxicol Environ Saf. 195(110523)2020.PubMed/NCBI View Article : Google Scholar

60 

Mu D, Meng J, Bo X, Wu M, Xiao H and Wang H: The effect of cadmium exposure on diversity of intestinal microbial community of Rana chensinensis tadpoles. Ecotoxicol Environ Saf. 154:6–12. 2018.PubMed/NCBI View Article : Google Scholar

61 

Lee S, Kim Y and Choi J: Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans. Ecotoxicol Environ Saf. 187(109777)2020.PubMed/NCBI View Article : Google Scholar

62 

Zhao Y, Zhou C, Wu C, Guo X, Hu G, Wu Q, Xu Z, Li G, Cao H, Li L, et al: Subchronic oral mercury caused intestinal injury and changed gut microbiota in mice. Sci Total Environ. 721(137639)2020.PubMed/NCBI View Article : Google Scholar

63 

Lin X, Zhao J, Zhang W, He L, Wang L, Chang D, Cui L, Gao Y, Li B, Chen C and Li YF: Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicol Environ Saf. 190(110130)2020.PubMed/NCBI View Article : Google Scholar

64 

Rothenberg SE, Wagner CL, Hamidi B, Alekseyenko AV and Andrea Azcarate-Peril M: Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environ Res. 172:700–712. 2019.PubMed/NCBI View Article : Google Scholar

65 

Zhang BB, Liu YM, Hu AL, Xu SF, Fan LD, Cheng ML, Li C, Wei LX and Liu J: HgS and Zuotai differ from HgCl2 and methyl mercury in intestinal Hg absorption, transporter expression and gut microbiome in mice. Toxicol Appl Pharmacol. 379(114615)2019.PubMed/NCBI View Article : Google Scholar

66 

Zhou C, Xu P, Huang C, Liu G, Chen S, Hu G, Li G, Liu P and Guo X: Effects of subchronic exposure of mercuric chloride on intestinal histology and microbiota in the cecum of chicken. Ecotoxicol Environ Saf. 188(109920)2020.PubMed/NCBI View Article : Google Scholar

67 

Eggers S, Safdar N, Sethi AK, Suen G, Peppard PE, Kates AE, Skarlupka JH, Kanarek M and Malecki KMC: Urinary lead concentration and composition of the adult gut microbiota in a cross-sectional population-based sample. Environ Int. 133(105122)2019.PubMed/NCBI View Article : Google Scholar

68 

Fenga C, Gangemi S, Alibrandi A, Costa C and Micali E: Relationship between lead exposure and mild cognitive impairment. J Prev Med Hyg. 57:E205–E210. 2016.PubMed/NCBI

69 

Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H and Lu K: Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 30:996–1005. 2017.PubMed/NCBI View Article : Google Scholar

70 

Yu L, Yu Y, Yin R, Duan H, Qu D, Tian F, Narbad A, Chen W and Zhai Q: Dose-dependent effects of lead induced gut injuries: An in vitro and in vivo study. Chemosphere. 266(129130)2021.PubMed/NCBI View Article : Google Scholar

71 

Cheng D, Li H, Zhou J and Wang S: Chlorogenic acid relieves lead-induced cognitive impairments and hepato-renal damage: Via regulating the dysbiosis of the gut microbiota in mice. Food Funct. 10:681–690. 2019.PubMed/NCBI View Article : Google Scholar

72 

Wu J, Wen XW, Faulk C, Boehnke K, Zhang H, Dolinoy DC and Xi C: Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice. Toxicol Sci. 151:324–333. 2016.PubMed/NCBI View Article : Google Scholar

73 

Kou H, Fu Y, He Y, Jiang J, Gao X and Zhao H: Chronic lead exposure induces histopathological damage, microbiota dysbiosis and immune disorder in the cecum of female Japanese quails (Coturnix japonica). Ecotoxicol Environ Saf. 183(109588)2019.PubMed/NCBI View Article : Google Scholar

74 

Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, Fu Z and Jin Y: Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 209:1–8. 2018.PubMed/NCBI View Article : Google Scholar

75 

Du H, Yin N, Cai X, Wang P, Li Y, Fu Y, Sultana MS, Sun G and Cui Y: Lead bioaccessibility in farming and mining soils: The influence of soil properties, types and human gut microbiota. Sci Total Environ. 708(135227)2020.PubMed/NCBI View Article : Google Scholar

76 

Reed S, Knez M, Uzan A, Stangoulis JCR, Glahn RP, Koren O and Tako E: Alterations in the Gut (Gallus gallus) microbiota following the consumption of Zinc biofortified wheat (Triticum aestivum)-based diet. J Agric Food Chem. 66:6291–6299. 2018.PubMed/NCBI View Article : Google Scholar

77 

Podany A, Rauchut J, Wu T, Kawasawa YI, Wright J, Lamendella R, Soybel DI and Kelleher SL: Excess dietary Zinc intake in neonatal mice causes oxidative stress and alters intestinal host-microbe interactions. Mol Nutr Food Res. 63(e1800947)2019.PubMed/NCBI View Article : Google Scholar

78 

Ishaq SL, Page CM, Yeoman CJ, Murphy TW, Van Emon ML and Stewart WC: Zinc AA supplementation alters yearling ram rumen bacterial communities but zinc sulfate supplementation does not. J Anim Sci. 97:687–697. 2019.PubMed/NCBI View Article : Google Scholar

79 

Zackular JP, Moore JL, Jordan AT, Juttukonda LJ, Noto MJ, Nicholson MR, Crews JD, Semler MW, Zhang Y, Ware LB, et al: Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat Med. 22:1330–1334. 2016.PubMed/NCBI View Article : Google Scholar

80 

Zhang F, Zheng W, Xue Y and Yao W: Suhuai suckling piglet hindgut microbiome-metabolome responses to different dietary copper levels. Appl Microbiol Biotechnol. 103:853–868. 2019.PubMed/NCBI View Article : Google Scholar

81 

Cheng S, Mao H, Ruan Y, Wu C, Xu Z, Hu G, Guo X, Zhang C, Cao H and Liu P: Copper changes intestinal microbiota of the cecum and rectum in female mice by 16S rRNA gene sequencing. Biol Trace Elem Res. 193:445–455. 2020.PubMed/NCBI View Article : Google Scholar

82 

Dai J, Yang X, Yuan Y, Jia Y, Liu G, Lin N, Xiao H, Zhang L and Chen J: Toxicity, gut microbiota and metabolome effects after copper exposure during early life in SD rats. Toxicology. 433–434. 2020.PubMed/NCBI View Article : Google Scholar

83 

Zhang F, Zheng W, Guo R and Yao W: Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats. J Microbiol. 55:694–702. 2017.PubMed/NCBI View Article : Google Scholar

84 

Song M, Li X, Zhang X, Shi H, Vos MB, Wei X, Wang Y, Gao H, Rouchka EC, Yin X, et al: Dietary copper-fructose interactions alter gut microbial activity in male rats. Am J Physiol Gastrointest Liver Physiol. 314:G119–G130. 2018.PubMed/NCBI View Article : Google Scholar

85 

Wang T, Wei X, Chen T, Wang W, Xia X, Miao J and Yin S: Studies of the mechanism of fatty liver formation in Takifugu fasciatus following copper exposure. Ecotoxicol Environ Saf. 181:353–361. 2019.PubMed/NCBI View Article : Google Scholar

86 

Meng XL, Li S, Qin CB, Zhu ZX, Hu WP, Yang LP, Lu RH, Li WJ and Nie GX: Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicol Environ Saf. 160:257–264. 2018.PubMed/NCBI View Article : Google Scholar

87 

Yang Y, Song X, Chen A, Wang H and Chai L: Exposure to copper altered the intestinal microbiota in Chinese brown frog (Rana chensinensis). Environ Sci Pollut Res. 27:13855–13865. 2020.PubMed/NCBI View Article : Google Scholar

88 

Hemarajata P and Versalovic J: Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol. 6:39–51. 2013.PubMed/NCBI View Article : Google Scholar

89 

Yausheva Е, Sizova Е, Lebedev S, Skalny A, Miroshnikov S, Plotnikov A, Khlopko Y, Gogoleva N and Cherkasov S: Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora. Environ Sci Pollut Res. 23:13245–13254. 2016.PubMed/NCBI View Article : Google Scholar

90 

Costa C, Miozzi E, Teodoro M, Briguglio G, Rapisarda V and Fenga C: New insights on ‘old’ toxicants in occupational toxicology (Review). Mol Med Rep. 15:3317–3322. 2017.PubMed/NCBI View Article : Google Scholar

91 

Patsiou D, Del Rio-Cubilledo C, Catarino AI, Summers S, Mohd Fahmi A, Boyle D, Fernandes TF and Henry TB: Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish. Sci Total Environ. 715(136941)2020.PubMed/NCBI View Article : Google Scholar

92 

Cholewińska E, Ognik K, Fotschki B, Zduńczyk Z and Juśkiewicz J: Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One. 13(e0197083)2018.PubMed/NCBI View Article : Google Scholar

93 

Swart E, Dvorak J, Hernádi S, Goodall T, Kille P, Spurgeon D, Svendsen C and Prochazkova P: The effects of in vivo exposure to copper oxide nanoparticles on the gut microbiome, host immunity, and susceptibility to a bacterial infection in earthworms. Nanomaterials. 10(1337)2020.PubMed/NCBI View Article : Google Scholar

94 

Sizentsov AN, Kvan OV, Miroshnikova EP, Gavrish IA, Serdaeva VA and Bykov AV: Assessment of biotoxicity of Cu nanoparticles with respect to probiotic strains of microorganisms and representatives of the normal flora of the intestine of broiler chickens. Environ Sci Pollut Res. 25:15765–15773. 2018.PubMed/NCBI View Article : Google Scholar

95 

Wang C, Cheng K, Zhou L, He J, Zheng X, Zhang L, Zhong X and Wang T: Evaluation of long-term toxicity of oral zinc oxide nanoparticles and zinc sulfate in mice. Biol Trace Elem Res. 178:276–282. 2017.PubMed/NCBI View Article : Google Scholar

96 

Song R, Yao J, Shi Q and Wei R: Nanocomposite of Half-Fin anchovy Hydrolysates/Zinc oxide nanoparticles exhibits actual non-toxicity and regulates intestinal microbiota, Short-Chain fatty acids production and oxidative status in mice. Mar Drugs. 16(23)2018.PubMed/NCBI View Article : Google Scholar

97 

Pei X, Xiao Z, Liu L, Wang G, Tao W, Wang M, Zou J and Leng D: Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs. J Sci Food Agric. 99:1366–1374. 2019.PubMed/NCBI View Article : Google Scholar

98 

Kolba N, Guo Z, Olivas FM, Mahler GJ and Tako E: Intra-amniotic administration (Gallus gallus) of TiO 2, SiO 2, and ZnO nanoparticles affect brush border membrane functionality and alters gut microflora populations. Food Chem Toxicol. 135(110896)2020.PubMed/NCBI View Article : Google Scholar

99 

Vamanu E, Ene M, Biță B, Ionescu C, Crăciun L and Sârbu I: In vitro human microbiota response to exposure to silver nanoparticles biosynthesized with mushroom extract. Nutrients. 10(607)2018.PubMed/NCBI View Article : Google Scholar

100 

Yang J, Xu Y, Qian K, Zhang W, Wu D and Wang C: Effects of chromium-enriched Bacillus subtilis KT260179 supplementation on growth performance, caecal microbiology, tissue chromium level, insulin receptor expression and plasma biochemical profile of mice under heat stress. Br J Nutr. 115:774–781. 2016.PubMed/NCBI View Article : Google Scholar

101 

Yao Q, Yang H, Wang X and Wang H: Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles. Chemosphere. 216:313–323. 2019.PubMed/NCBI View Article : Google Scholar

102 

Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W, Liu P and Li X: Gut remediation: A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep. 7(15000)2017.PubMed/NCBI View Article : Google Scholar

103 

Chi L, Gao B, Bian X, Tu P, Ru H and Lu K: Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicol Appl Pharmacol. 331:142–153. 2017.PubMed/NCBI View Article : Google Scholar

104 

Wang H, Zhang S, Yang F, Xin R, Wang S, Cui D and Sun Y: The gut microbiota confers protection in the CNS against neurodegeneration induced by manganism. Biomed Pharmacother. 127(110150)2020.PubMed/NCBI View Article : Google Scholar

105 

Zhou S, Zhang C, Xiao Q, Zhuang Y, Gu X, Yang F, Xing C, Hu G and Cao H: Effects of different levels of molybdenum on rumen microbiota and trace elements changes in tissues from goats. Biol Trace Elem Res. 174:85–92. 2016.PubMed/NCBI View Article : Google Scholar

106 

Del Carpio E, Hernández L, Ciangherotti C, Villalobos Coa V, Jiménez L, Lubes V and Lubes G: Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord Chem Rev. 372:117–140. 2018.PubMed/NCBI View Article : Google Scholar

107 

Yuan ZH, Wang JP, Zhang KY, Ding XM, Bai SP, Zeng QF, Xuan Y and Su ZW: Effect of vanadium and tea polyphenols on intestinal morphology, microflora and Short-Chain fatty acid profile of laying hens. Biol Trace Elem Res. 174:419–427. 2016.PubMed/NCBI View Article : Google Scholar

108 

Guarneri F, Costa C, Cannavò SP, Catania S, Bua GD, Fenga C and Dugo G: Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots. Contact Dermatitis. 76:40–48. 2017.PubMed/NCBI View Article : Google Scholar

109 

Zhou X, Li J and Sun JL: Oral nickel changes of intestinal microflora in mice. Curr Microbiol. 76:590–596. 2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Giambò F, Italia S, Teodoro M, Briguglio G, Furnari N, Catanoso R, Costa C and Fenga C: Influence of toxic metal exposure on the gut microbiota (Review). World Acad Sci J 3: 19, 2021.
APA
Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021). Influence of toxic metal exposure on the gut microbiota (Review). World Academy of Sciences Journal, 3, 19. https://doi.org/10.3892/wasj.2021.90
MLA
Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R., Costa, C., Fenga, C."Influence of toxic metal exposure on the gut microbiota (Review)". World Academy of Sciences Journal 3.2 (2021): 19.
Chicago
Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R., Costa, C., Fenga, C."Influence of toxic metal exposure on the gut microbiota (Review)". World Academy of Sciences Journal 3, no. 2 (2021): 19. https://doi.org/10.3892/wasj.2021.90
Copy and paste a formatted citation
x
Spandidos Publications style
Giambò F, Italia S, Teodoro M, Briguglio G, Furnari N, Catanoso R, Costa C and Fenga C: Influence of toxic metal exposure on the gut microbiota (Review). World Acad Sci J 3: 19, 2021.
APA
Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R. ... Fenga, C. (2021). Influence of toxic metal exposure on the gut microbiota (Review). World Academy of Sciences Journal, 3, 19. https://doi.org/10.3892/wasj.2021.90
MLA
Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R., Costa, C., Fenga, C."Influence of toxic metal exposure on the gut microbiota (Review)". World Academy of Sciences Journal 3.2 (2021): 19.
Chicago
Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R., Costa, C., Fenga, C."Influence of toxic metal exposure on the gut microbiota (Review)". World Academy of Sciences Journal 3, no. 2 (2021): 19. https://doi.org/10.3892/wasj.2021.90
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team