|
1
|
Hill DA and Artis D: Intestinal bacteria
and the regulation of immune cell homeostasis. Annu Rev Immunol.
28:623–667. 2010.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Cho I and Blaser MJ: The human microbiome:
At the interface of health and disease. Nat Rev Genet. 13:260–270.
2012.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Breton J, Massart S, Vandamme P, De Brandt
E, Pot B and Foligné B: Ecotoxicology inside the gut: Impact of
heavy metals on the mouse microbiome. BMC Pharmacol Toxicol.
14(62)2013.PubMed/NCBI View Article : Google Scholar
|
|
4
|
World Health Organization (WHO): Trace
elements in human nutrition and health. WHO, Geneva, 1996.
|
|
5
|
Rapisarda V, Miozzi E, Loreto C, Matera S,
Fenga C, Avola R and Ledda C: Cadmium exposure and prostate cancer:
Insights, mechanisms and perspectives. Front Biosci (Landmark Ed).
23:1687–1700. 2018.PubMed/NCBI View
Article : Google Scholar
|
|
6
|
Fenga C, Gangemi S, Di Salvatore V,
Falzone L and Libra M: Immunological effects of occupational
exposure to lead. Mol Med Rep. 15:3355–3360. 2017.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Planchart A, Green A, Hoyo C and Mattingly
CJ: Heavy metal exposure and metabolic syndrome: Evidence from
human and model system studies. Curr Environ Health Rep. 5:110–124.
2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Rehman K, Fatima F, Waheed I and Akash
MSH: Prevalence of exposure of heavy metals and their impact on
health consequences. J Cell Biochem. 119:157–184. 2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Sommer F and Bäckhed F: The gut
microbiota-masters of host development and physiology. Nat Rev
Microbiol. 11:227–238. 2013.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Forbes JD, Van Domselaar G and Bernstein
CN: The gut microbiota in immune-mediated inflammatory diseases.
Front Microbiol. 7(1081)2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Mandel LJ, Bacallao R and Zampighi G:
Uncoupling of the molecular ‘fence’ and paracellular ‘gate’
functions in epithelial tight junctions. Nature. 361:552–555.
1993.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Arumugam M, Raes J, Pelletier E, Le
Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto
JM, et al: Enterotypes of the human gut microbiome. Nature.
473:174–180. 2011.PubMed/NCBI View Article : Google Scholar
|
|
13
|
IARC Monographs: Arsenic, Metals, Fibres,
and Dusts. IARC monographs on the evaluation of carcinogenic risk
to human. Vol 100C. IARC, Lyon, 2012.
|
|
14
|
Richardson JB Jr, Dancy BCR, Horton CL,
Lee YS, Madejczyk MS, Xu ZZ, Ackermann G, Humphrey G, Palacios G,
Knight R and Lewis JA: Exposure to toxic metals triggers unique
responses from the rat gut microbiota. Sci Rep.
8(6578)2018.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Zhang W, Guo R, Yang Y, Ding J and Zhang
Y: Long-term effect of heavy-metal pollution on diversity of
gastrointestinal microbial community of Bufo raddei. Toxicol
Lett. 258:192–197. 2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Li X, Brejnrod AD, Ernst M, Rykær M,
Herschend J, Olsen NMC, Dorrestein PC, Rensing C and Sørensen SJ:
Heavy metal exposure causes changes in the metabolic
health-associated gut microbiome and metabolites. Environ Int.
126:454–467. 2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Rothman JA, Leger L, Kirkwood JS and
McFrederick QS: Cadmium and selenate exposure affects the honey bee
microbiome and metabolome, and bee-associated bacteria show
potential for bioaccumulation. Appl Environ Microbiol.
85:e01411–19. 2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Laue HE, Moroishi Y, Jackson BP, Palys TJ,
Madan JC and Karagas MR: Nutrient-toxic element mixtures and the
early postnatal gut microbiome and in a United States longitudinal
birth cohort. Environ Int. 138(105613)2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Zhai Q, Cen S, Jiang J, Zhao J, Zhang H
and Chen W: Disturbance of trace element and gut microbiota
profiles as indicators of autism spectrum disorder: A pilot study
of Chinese children. Environ Res. 171:501–509. 2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Liu Y, Ji J, Zhang W, Suo Y, Zhao J, Lin
X, Cui L, Li B, Hu H, Chen C and Li YF: Selenium modulated gut
flora and promoted decomposition of methylmercury in
methylmercury-poisoned rats. Ecotoxicol Environ Saf.
185(109720)2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Qiu Y, Chen X, Yan X, Wang J, Yu G, Ma W,
Xiao B, Quinones S, Tian X and Ren X: Gut microbiota perturbations
and neurodevelopmental impacts in offspring rats concurrently
exposure to inorganic arsenic and fluoride. Environ Int.
140(105763)2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Ruan Y, Wu C, Guo X, Xu Z, Xing C, Cao H,
Zhang C, Hu G and Liu P: High doses of copper and mercury changed
cecal microbiota in female mice. Biol Trace Elem Res. 189:134–144.
2019.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Gaulke CA, Rolshoven J, Wong CP, Hudson
LG, Ho E and Sharpton TJ: Marginal zinc deficiency and
environmentally relevant concentrations of arsenic elicit combined
effects on the gut microbiome. mSphere. 3:e00521–18.
2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Faulkner MJ, Wenner BA, Solden LM and
Weiss WP: Source of supplemental dietary copper, zinc, and
manganese affects fecal microbial relative abundance in lactating
dairy Cows. J Dairy Sci. 100:1037–1044. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Wu N, Wang X, Xu X, Cai R and Xie S:
Effects of heavy metals on the bioaccumulation, excretion and gut
microbiome of black soldier fly larvae (Hermetia illucens).
Ecotoxicol Environ Saf. 192(110323)2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Yu H, Wu B, Zhang XX, Liu S, Yu J, Cheng
S, Ren HQ and Ye L: Arsenic metabolism and toxicity influenced by
ferric iron in simulated gastrointestinal tract and the roles of
gut microbiota. Environ Sci Technol. 50:7189–7197. 2016.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Yin N, Cai X, Zheng L, Du H, Wang P, Sun G
and Cui Y: In vitro assessment of arsenic release and
transformation from As(V)-sorbed goethite and jarosite: The
influence of human gut microbiota. Environ Sci Technol.
54:4432–4442. 2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Coryell M, McAlpine M, Pinkham N,
McDermott TR and Walk ST: The gut microbiome is required for full
protection against acute arsenic toxicity in mouse models. Nat
Commun. 9(5424)2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Hoen AG, Madan JC, Li Z, Coker M, Lundgren
SN, Morrison HG, Palys T, Jackson BP, Sogin ML, Cottingham KL and
Karagas MR: Sex-specific associations of infants' gut microbiome
with arsenic exposure in a US population. Sci Rep.
8(12627)2018.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Baker BA, Cassano VA, Murray C and Dreger
M: Arsenic exposure, assessment, toxicity, diagnosis, and
management: Guidance for occupational and environmental physicians.
J Occup Environ Med. 60:e634–e639. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Chi L, Bian X, Gao B, Ru H, Tu P and Lu K:
Sex-specific effects of arsenic exposure on the trajectory and
function of the gut microbiome. Chem Res Toxicol. 29:949–951.
2016.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Dong X, Shulzhenko N, Lemaitre J, Greer
RL, Peremyslova K, Quamruzzaman Q, Rahman M, Hasan OS, Joya SA,
Golam M, et al: Arsenic exposure and intestinal microbiota in
children from Sirajdikhan, Bangladesh. PLoS One.
12(e0188487)2017.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Wu F, Yang L, Islam MT, Jasmine F, Kibriya
MG, Nahar J, Barmon B, Parvez F, Sarwar G, Ahmed A, et al: The role
of gut microbiome and its interaction with arsenic exposure in
carotid intima-media thickness in a Bangladesh population. Environ
Int. 123:104–113. 2019.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Brabec JL, Wright J, Ly T, Wong HT,
McClimans CJ, Tokarev V, Lamendella R, Sherchand S, Shrestha D,
Uprety S, et al: Arsenic disturbs the gut microbiome of individuals
in a disadvantaged community in Nepal. Heliyon.
6(e03313)2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Chi L, Bian X, Gao B, Tu P, Ru H and Lu K:
The effects of an environmentally relevant level of arsenic on the
gut microbiome and its functional metagenome. Toxicol Sci.
160:193–204. 2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Chi L, Xue J, Tu P, Lai Y, Ru H and Lu K:
Gut microbiome disruption altered the biotransformation and liver
toxicity of arsenic in mice. Arch Toxicol. 93:25–35. 2019.
|
|
37
|
Xue J, Lai Y, Chi L, Tu P, Leng J, Liu CW,
Ru H and Lu K: Serum metabolomics reveals that gut microbiome
perturbation mediates metabolic disruption induced by arsenic
exposure in mice. J Proteome Res. 18:1006–1018. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Chi L, Lai Y, Tu P, Liu CW, Xue J, Ru H
and Lu K: Lipid and cholesterol homeostasis after arsenic exposure
and antibiotic treatment in mice: Potential role of the microbiota.
Environ Health Perspect. 127(97002)2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Liu CW, Chi L, Tu P, Xue J, Ru H and Lu K:
Isobaric Labeling quantitative metaproteomics for the study of gut
microbiome response to arsenic. J Proteome Res. 18:970–981.
2019.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Chiocchetti GM, Domene A, Kühl AA, Zúñiga
M, Vélez D, Devesa V and Monedero V: In vivo evaluation of the
effect of arsenite on the intestinal epithelium and associated
microbiota in mice. Arch Toxicol. 93:2127–2139. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Gokulan K, Arnold MG, Jensen J,
Vanlandingham M, Twaddle NC, Doerge DR, Cerniglia CE and Khare S:
Exposure to arsenite in CD-1 mice during juvenile and adult stages:
Effects on intestinal microbiota and Gut-associated immune status.
mBio. 9:e01418–18. 2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Tikka C, Manthari RK, Ommati MM, Niu R,
Sun Z, Zhang J and Wang J: Immune disruption occurs through altered
gut microbiome and NOD2 in arsenic induced mice: Correlation with
colon cancer markers. Chemosphere. 246(125791)2020.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Wang HT, Ding J, Xiong C, Zhu D, Li G, Jia
XY, Zhu YG and Xue XM: Exposure to microplastics lowers arsenic
accumulation and alters gut bacterial communities of earthworm
Metaphire californica. Environ Pollut. 251:110–116.
2019.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Wang HT, Zhu D, Li G, Zheng F, Ding J,
O'Connor PJ, Zhu YG and Xue XM: Effects of arsenic on gut
microbiota and its biotransformation genes in earthworm metaphire
sieboldi. Environ Sci Technol. 53:3841–3849. 2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Yin N, Du H, Zhang Z, Cai X, Li Z, Sun G
and Cui Y: Variability of arsenic bioaccessibility and metabolism
in soils by human gut microbiota using different in vitro methods
combined with SHIME. Sci Total Environ. 566-567:1670–1677.
2016.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Yin N, Cai X, Du H, Zhang Z, Li Z, Chen X,
Sun G and Cui Y: In vitro study of soil arsenic release by human
gut microbiota and its intestinal absorption by Caco-2 cells.
Chemosphere. 168:358–364. 2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Li J, Mandal G and Rosen BP: Expression of
arsenic resistance genes in the obligate anaerobe Bacteroides
vulgatus ATCC 8482, a gut microbiome bacterium. Anaerobe.
39:117–123. 2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
He X, Qi Z, Hou H, Qian L, Gao J and Zhang
XX: Structural and functional alterations of gut microbiome in mice
induced by chronic cadmium exposure. Chemosphere.
246(125747)2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Šrut M, Menke S, Höckner M and Sommer S:
Earthworms and cadmium-Heavy metal resistant gut bacteria as
indicators for heavy metal pollution in soils? Ecotoxicol Environ
Saf. 171:843–853. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Zhang S, Jin Y, Zeng Z, Liu Z and Fu Z:
Subchronic exposure of mice to cadmium perturbs their hepatic
energy metabolism and gut microbiome. Chem Res Toxicol.
28:2000–2009. 2015.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ba Q, Li M, Chen P, Huang C, Duan X, Lu L,
Li J, Chu R, Xie D, Song H, et al: Sex-dependent effects of cadmium
exposure in early life on gut microbiota and fat accumulation in
mice. Environ Health Perspect. 125:437–446. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Feng S, Liu Y, Huang Y, Zhao J, Zhang H,
Zhai Q and Chen W: Influence of oral administration of
Akkermansia muciniphila on the tissue distribution and gut
microbiota composition of acute and chronic cadmium exposure mice.
FEMS Microbiol Lett. 366(fnz160)2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
He X, Qi Z, Hou H, Gao J and Zhang XX:
Effects of chronic cadmium exposure at food limitation-relevant
levels on energy metabolism in mice. J Hazard Mater.
388(121791)2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Chang X, Li H, Feng J, Chen Y, Nie G and
Zhang J: Effects of cadmium exposure on the composition and
diversity of the intestinal microbial community of common carp
(Cyprinus carpio L.). Ecotoxicol Environ Saf. 171:92–98.
2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Zhang Y, Li Z, Kholodkevich S, Sharov A,
Chen C, Feng Y, Ren N and Sun K: Effects of cadmium on intestinal
histology and microbiota in freshwater crayfish (Procambarus
clarkii). Chemosphere. 242(125105)2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wang N, Jiang M, Zhang P, Shu H and Li Y,
Guo Z and Li Y: Amelioration of Cd-induced bioaccumulation,
oxidative stress and intestinal microbiota by Bacillus
cereus in Carassius auratus gibelio. Chemosphere.
245(125613)2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Zhai Q, Yu L, Li T, Zhu J, Zhang C, Zhao
J, Zhang H and Chen W: Effect of dietary probiotic supplementation
on intestinal microbiota and physiological conditions of Nile
tilapia (Oreochromis niloticus) under waterborne cadmium
exposure. Antonie Van Leeuwenhoek. 110:501–513. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Ya J, Ju Z, Wang H and Zhao H: Exposure to
cadmium induced gut histopathological damages and microbiota
alterations of Chinese toad (Bufo gargarizans) larvae.
Ecotoxicol Environ Saf. 180:449–456. 2019.PubMed/NCBI View Article : Google Scholar : Exposure to
cadmium induced gut histopathological damages and microbiota
alterations of Chinese toad (Bufo gargarizans) larvae.
|
|
59
|
Ya J, Li X, Wang L, Kou H, Wang H and Zhao
H: The effects of chronic cadmium exposure on the gut of Bufo
gargarizans larvae at metamorphic climax: Histopathological
impairments, microbiota changes and intestinal remodeling
disruption. Ecotoxicol Environ Saf. 195(110523)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Mu D, Meng J, Bo X, Wu M, Xiao H and Wang
H: The effect of cadmium exposure on diversity of intestinal
microbial community of Rana chensinensis tadpoles.
Ecotoxicol Environ Saf. 154:6–12. 2018.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Lee S, Kim Y and Choi J: Effect of soil
microbial feeding on gut microbiome and cadmium toxicity in
Caenorhabditis elegans. Ecotoxicol Environ Saf.
187(109777)2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zhao Y, Zhou C, Wu C, Guo X, Hu G, Wu Q,
Xu Z, Li G, Cao H, Li L, et al: Subchronic oral mercury caused
intestinal injury and changed gut microbiota in mice. Sci Total
Environ. 721(137639)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Lin X, Zhao J, Zhang W, He L, Wang L,
Chang D, Cui L, Gao Y, Li B, Chen C and Li YF: Acute oral
methylmercury exposure perturbs the gut microbiome and alters
gut-brain axis related metabolites in rats. Ecotoxicol Environ Saf.
190(110130)2020.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Rothenberg SE, Wagner CL, Hamidi B,
Alekseyenko AV and Andrea Azcarate-Peril M: Longitudinal changes
during pregnancy in gut microbiota and methylmercury biomarkers,
and reversal of microbe-exposure correlations. Environ Res.
172:700–712. 2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Zhang BB, Liu YM, Hu AL, Xu SF, Fan LD,
Cheng ML, Li C, Wei LX and Liu J: HgS and Zuotai differ from HgCl2
and methyl mercury in intestinal Hg absorption, transporter
expression and gut microbiome in mice. Toxicol Appl Pharmacol.
379(114615)2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Zhou C, Xu P, Huang C, Liu G, Chen S, Hu
G, Li G, Liu P and Guo X: Effects of subchronic exposure of
mercuric chloride on intestinal histology and microbiota in the
cecum of chicken. Ecotoxicol Environ Saf.
188(109920)2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Eggers S, Safdar N, Sethi AK, Suen G,
Peppard PE, Kates AE, Skarlupka JH, Kanarek M and Malecki KMC:
Urinary lead concentration and composition of the adult gut
microbiota in a cross-sectional population-based sample. Environ
Int. 133(105122)2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Fenga C, Gangemi S, Alibrandi A, Costa C
and Micali E: Relationship between lead exposure and mild cognitive
impairment. J Prev Med Hyg. 57:E205–E210. 2016.PubMed/NCBI
|
|
69
|
Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H
and Lu K: Multi-omics reveals that lead exposure disturbs gut
microbiome development, key metabolites, and metabolic pathways.
Chem Res Toxicol. 30:996–1005. 2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Yu L, Yu Y, Yin R, Duan H, Qu D, Tian F,
Narbad A, Chen W and Zhai Q: Dose-dependent effects of lead induced
gut injuries: An in vitro and in vivo study. Chemosphere.
266(129130)2021.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Cheng D, Li H, Zhou J and Wang S:
Chlorogenic acid relieves lead-induced cognitive impairments and
hepato-renal damage: Via regulating the dysbiosis of the gut
microbiota in mice. Food Funct. 10:681–690. 2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Wu J, Wen XW, Faulk C, Boehnke K, Zhang H,
Dolinoy DC and Xi C: Perinatal lead exposure alters gut microbiota
composition and results in sex-specific bodyweight increases in
adult mice. Toxicol Sci. 151:324–333. 2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Kou H, Fu Y, He Y, Jiang J, Gao X and Zhao
H: Chronic lead exposure induces histopathological damage,
microbiota dysbiosis and immune disorder in the cecum of female
Japanese quails (Coturnix japonica). Ecotoxicol Environ Saf.
183(109588)2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y,
Fu Z and Jin Y: Effects of short term lead exposure on gut
microbiota and hepatic metabolism in adult zebrafish. Comp Biochem
Physiol C Toxicol Pharmacol. 209:1–8. 2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Du H, Yin N, Cai X, Wang P, Li Y, Fu Y,
Sultana MS, Sun G and Cui Y: Lead bioaccessibility in farming and
mining soils: The influence of soil properties, types and human gut
microbiota. Sci Total Environ. 708(135227)2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Reed S, Knez M, Uzan A, Stangoulis JCR,
Glahn RP, Koren O and Tako E: Alterations in the Gut (Gallus
gallus) microbiota following the consumption of Zinc
biofortified wheat (Triticum aestivum)-based diet. J Agric
Food Chem. 66:6291–6299. 2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Podany A, Rauchut J, Wu T, Kawasawa YI,
Wright J, Lamendella R, Soybel DI and Kelleher SL: Excess dietary
Zinc intake in neonatal mice causes oxidative stress and alters
intestinal host-microbe interactions. Mol Nutr Food Res.
63(e1800947)2019.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ishaq SL, Page CM, Yeoman CJ, Murphy TW,
Van Emon ML and Stewart WC: Zinc AA supplementation alters yearling
ram rumen bacterial communities but zinc sulfate supplementation
does not. J Anim Sci. 97:687–697. 2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zackular JP, Moore JL, Jordan AT,
Juttukonda LJ, Noto MJ, Nicholson MR, Crews JD, Semler MW, Zhang Y,
Ware LB, et al: Dietary zinc alters the microbiota and decreases
resistance to Clostridium difficile infection. Nat Med.
22:1330–1334. 2016.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Zhang F, Zheng W, Xue Y and Yao W: Suhuai
suckling piglet hindgut microbiome-metabolome responses to
different dietary copper levels. Appl Microbiol Biotechnol.
103:853–868. 2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Cheng S, Mao H, Ruan Y, Wu C, Xu Z, Hu G,
Guo X, Zhang C, Cao H and Liu P: Copper changes intestinal
microbiota of the cecum and rectum in female mice by 16S rRNA gene
sequencing. Biol Trace Elem Res. 193:445–455. 2020.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Dai J, Yang X, Yuan Y, Jia Y, Liu G, Lin
N, Xiao H, Zhang L and Chen J: Toxicity, gut microbiota and
metabolome effects after copper exposure during early life in SD
rats. Toxicology. 433–434. 2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Zhang F, Zheng W, Guo R and Yao W: Effect
of dietary copper level on the gut microbiota and its correlation
with serum inflammatory cytokines in Sprague-Dawley rats. J
Microbiol. 55:694–702. 2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Song M, Li X, Zhang X, Shi H, Vos MB, Wei
X, Wang Y, Gao H, Rouchka EC, Yin X, et al: Dietary copper-fructose
interactions alter gut microbial activity in male rats. Am J
Physiol Gastrointest Liver Physiol. 314:G119–G130. 2018.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Wang T, Wei X, Chen T, Wang W, Xia X, Miao
J and Yin S: Studies of the mechanism of fatty liver formation in
Takifugu fasciatus following copper exposure. Ecotoxicol
Environ Saf. 181:353–361. 2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Meng XL, Li S, Qin CB, Zhu ZX, Hu WP, Yang
LP, Lu RH, Li WJ and Nie GX: Intestinal microbiota and lipid
metabolism responses in the common carp (Cyprinus carpio L.)
following copper exposure. Ecotoxicol Environ Saf. 160:257–264.
2018.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Yang Y, Song X, Chen A, Wang H and Chai L:
Exposure to copper altered the intestinal microbiota in Chinese
brown frog (Rana chensinensis). Environ Sci Pollut Res.
27:13855–13865. 2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Hemarajata P and Versalovic J: Effects of
probiotics on gut microbiota: Mechanisms of intestinal
immunomodulation and neuromodulation. Therap Adv Gastroenterol.
6:39–51. 2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Yausheva Е, Sizova Е, Lebedev S, Skalny A,
Miroshnikov S, Plotnikov A, Khlopko Y, Gogoleva N and Cherkasov S:
Influence of zinc nanoparticles on survival of worms Eisenia fetida
and taxonomic diversity of the gut microflora. Environ Sci Pollut
Res. 23:13245–13254. 2016.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Costa C, Miozzi E, Teodoro M, Briguglio G,
Rapisarda V and Fenga C: New insights on ‘old’ toxicants in
occupational toxicology (Review). Mol Med Rep. 15:3317–3322.
2017.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Patsiou D, Del Rio-Cubilledo C, Catarino
AI, Summers S, Mohd Fahmi A, Boyle D, Fernandes TF and Henry TB:
Exposure to Pb-halide perovskite nanoparticles can deliver
bioavailable Pb but does not alter endogenous gut microbiota in
zebrafish. Sci Total Environ. 715(136941)2020.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Cholewińska E, Ognik K, Fotschki B,
Zduńczyk Z and Juśkiewicz J: Comparison of the effect of dietary
copper nanoparticles and one copper (II) salt on the copper
biodistribution and gastrointestinal and hepatic morphology and
function in a rat model. PLoS One. 13(e0197083)2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Swart E, Dvorak J, Hernádi S, Goodall T,
Kille P, Spurgeon D, Svendsen C and Prochazkova P: The effects of
in vivo exposure to copper oxide nanoparticles on the gut
microbiome, host immunity, and susceptibility to a bacterial
infection in earthworms. Nanomaterials. 10(1337)2020.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Sizentsov AN, Kvan OV, Miroshnikova EP,
Gavrish IA, Serdaeva VA and Bykov AV: Assessment of biotoxicity of
Cu nanoparticles with respect to probiotic strains of
microorganisms and representatives of the normal flora of the
intestine of broiler chickens. Environ Sci Pollut Res.
25:15765–15773. 2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Wang C, Cheng K, Zhou L, He J, Zheng X,
Zhang L, Zhong X and Wang T: Evaluation of long-term toxicity of
oral zinc oxide nanoparticles and zinc sulfate in mice. Biol Trace
Elem Res. 178:276–282. 2017.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Song R, Yao J, Shi Q and Wei R:
Nanocomposite of Half-Fin anchovy Hydrolysates/Zinc oxide
nanoparticles exhibits actual non-toxicity and regulates intestinal
microbiota, Short-Chain fatty acids production and oxidative status
in mice. Mar Drugs. 16(23)2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Pei X, Xiao Z, Liu L, Wang G, Tao W, Wang
M, Zou J and Leng D: Effects of dietary zinc oxide nanoparticles
supplementation on growth performance, zinc status, intestinal
morphology, microflora population, and immune response in weaned
pigs. J Sci Food Agric. 99:1366–1374. 2019.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Kolba N, Guo Z, Olivas FM, Mahler GJ and
Tako E: Intra-amniotic administration (Gallus gallus) of TiO
2, SiO 2, and ZnO nanoparticles affect brush
border membrane functionality and alters gut microflora
populations. Food Chem Toxicol. 135(110896)2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Vamanu E, Ene M, Biță B, Ionescu C,
Crăciun L and Sârbu I: In vitro human microbiota response to
exposure to silver nanoparticles biosynthesized with mushroom
extract. Nutrients. 10(607)2018.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Yang J, Xu Y, Qian K, Zhang W, Wu D and
Wang C: Effects of chromium-enriched Bacillus subtilis KT260179
supplementation on growth performance, caecal microbiology, tissue
chromium level, insulin receptor expression and plasma biochemical
profile of mice under heat stress. Br J Nutr. 115:774–781.
2016.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Yao Q, Yang H, Wang X and Wang H: Effects
of hexavalent chromium on intestinal histology and microbiota in
Bufo gargarizans tadpoles. Chemosphere. 216:313–323.
2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W,
Liu P and Li X: Gut remediation: A potential approach to reducing
chromium accumulation using Lactobacillus plantarum TW1-1.
Sci Rep. 7(15000)2017.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Chi L, Gao B, Bian X, Tu P, Ru H and Lu K:
Manganese-induced sex-specific gut microbiome perturbations in
C57BL/6 mice. Toxicol Appl Pharmacol. 331:142–153. 2017.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Wang H, Zhang S, Yang F, Xin R, Wang S,
Cui D and Sun Y: The gut microbiota confers protection in the CNS
against neurodegeneration induced by manganism. Biomed
Pharmacother. 127(110150)2020.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Zhou S, Zhang C, Xiao Q, Zhuang Y, Gu X,
Yang F, Xing C, Hu G and Cao H: Effects of different levels of
molybdenum on rumen microbiota and trace elements changes in
tissues from goats. Biol Trace Elem Res. 174:85–92. 2016.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Del Carpio E, Hernández L, Ciangherotti C,
Villalobos Coa V, Jiménez L, Lubes V and Lubes G: Vanadium:
History, chemistry, interactions with α-amino acids and potential
therapeutic applications. Coord Chem Rev. 372:117–140.
2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Yuan ZH, Wang JP, Zhang KY, Ding XM, Bai
SP, Zeng QF, Xuan Y and Su ZW: Effect of vanadium and tea
polyphenols on intestinal morphology, microflora and Short-Chain
fatty acid profile of laying hens. Biol Trace Elem Res.
174:419–427. 2016.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Guarneri F, Costa C, Cannavò SP, Catania
S, Bua GD, Fenga C and Dugo G: Release of nickel and chromium in
common foods during cooking in 18/10 (grade 316) stainless steel
pots. Contact Dermatitis. 76:40–48. 2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Zhou X, Li J and Sun JL: Oral nickel
changes of intestinal microflora in mice. Curr Microbiol.
76:590–596. 2019.PubMed/NCBI View Article : Google Scholar
|