
Biological applications of imiquimod analogues: An update (Review)
- Authors:
- Joelle Obeid
- Abdullah Shaito
- Hiba El Hajj
- Carine Deleuze‑masquefa
- Pierre-Antoine Bonnet
- Marwan El‑Sabban
- Jessica Saliba
-
Affiliations: Sorbonne University, INSERM, Nutrition and Obesity: Systemic Approaches, Nutriomics, 75006 Paris, France, Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, and College of Medicine, Qatar University, Doha 2713, Qatar, Department of Experimental Pathology, Microbiology and Immunology, American University of Beirut, Beirut 1107, Lebanon, Institute of Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Faculty of Pharmacy, Balard Chemistry Unit, Montpellier University, 34090 Montpellier, France, Institute of Biomolecules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Faculty of Pharmacy, Balard Chemistry Unit, Montpellier University, 34090 Montpellier, France, Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon, Department of Biology, Faculty of Sciences, Lebanese University, Beirut 1533, Lebanon - Published online on: June 30, 2023 https://doi.org/10.3892/wasj.2023.197
- Article Number: 20
-
Copyright : © Obeid et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Dunn GP, Old LJ and Schreiber RD: The three Es of cancer immunoediting. Annu Rev Immunol. 22:329–360. 2004.PubMed/NCBI View Article : Google Scholar | |
Abbott M and Ustoyev Y: Cancer and the immune system: The history and background of immunotherapy. Semin Oncol Nurs. 35(150923)2019.PubMed/NCBI View Article : Google Scholar | |
Kennedy LB and Salama AKS: A review of cancer immunotherapy toxicity. CA Cancer J Clin. 70:86–104. 2020.PubMed/NCBI View Article : Google Scholar | |
Avorn J: Learning about the safety of drugs-a half-century of evolution. N Engl J Med. 365:2151–2153. 2011.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Yang Z, Cheng K, Bi H and Chen J: Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B. 12:4287–4308. 2022.PubMed/NCBI View Article : Google Scholar | |
Kumar AR, Devan AR, Nair B, Vinod BS and Nath LR: Harnessing the immune system against cancer: Current immunotherapy approaches and therapeutic targets. Mol Biol Rep. 48:8075–8095. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu SV, Reck M, Mansfield AS, Mok T, Scherpereel A, Reinmuth N, Garassino MC, Carpeno JD, Califano R, Nishio M, et al: Updated overall survival and PD-L1 subgroup analysis of patients with extensive-stage small-cell lung cancer treated with Atezolizumab, Carboplatin, and Etoposide (IMpower133). J Clin Oncol. 39:619–630. 2021.PubMed/NCBI View Article : Google Scholar | |
Vaddepally RK, Kharel P, Pandey R, Garje R and Chandra AB: Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 12(738)2020.PubMed/NCBI View Article : Google Scholar | |
Chen XY, Li YD, Xie Y, Cao LQ, Ashby CR Jr, Zhao H and Chen ZS: Nivolumab and relatlimab for the treatment of melanoma. Drugs Today (Barc). 59:91–104. 2023.PubMed/NCBI View Article : Google Scholar | |
Kang C: Retifanlimab: First approval. Drugs. 83:731–737. 2023.PubMed/NCBI View Article : Google Scholar | |
Di Trolio R, Simeone E, Di Lorenzo G, Grimaldi AM, Romano A, Ayala F, Caracò C, Mozzillo N and Ascierto PA: Update on PEG-interferon α-2b as adjuvant therapy in melanoma. Anticancer Res. 32:3901–3909. 2012.PubMed/NCBI | |
Qureshi YA, Karp CL and Dubovy SR: Intralesional interferon alpha-2b therapy for adnexal Kaposi sarcoma. Cornea. 28:941–943. 2009.PubMed/NCBI View Article : Google Scholar | |
Rallis KS, Corrigan AE, Dadah H, George AM, Keshwara SM, Sideris M and Szabados B: Cytokine-based cancer immunotherapy: Challenges and opportunities for IL-10. Anticancer Res. 41:3247–3252. 2021.PubMed/NCBI View Article : Google Scholar | |
Lamb YN: Pexidartinib: First Approval. Drugs. 79:1805–1812. 2019.PubMed/NCBI View Article : Google Scholar | |
Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K and Akira S: Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 3:196–200. 2002.PubMed/NCBI View Article : Google Scholar | |
Kamath P, Darwin E, Arora H and Nouri K: A review on imiquimod therapy and discussion on optimal management of basal cell carcinomas. Clin Drug Investig. 38:883–899. 2018.PubMed/NCBI View Article : Google Scholar | |
Tyring S: Imiquimod applied topically: A novel immune response modifier. Skin Therapy Lett. 6:1–4. 2001.PubMed/NCBI | |
Courbet A, Bec N, Constant C, Larroque C, Pugniere M, Messaoudi SE, Zghaib Z, Khier S, Deleuze-Masquefa C and Gattacceca F: Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: Characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity. PLoS One. 12(e0182022)2017.PubMed/NCBI View Article : Google Scholar | |
Moarbess G, Deleuze-Masquefa C, Bonnard V, Gayraud-Paniagua S, Vidal JR, Bressolle F, Pinguet F and Bonnet PA: In vitro and in vivo anti-tumoral activities of imidazo[1,2-a]quinoxaline, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline derivatives. Bioorg Med Chem. 16:6601–6610. 2008.PubMed/NCBI View Article : Google Scholar | |
Deleuze-Masquefa C, Moarbess G, Khier S, David N, Gayraud-Paniagua S, Bressolle F, Pinguet F and Bonnet PA: New imidazo[1,2-a]quinoxaline derivatives: Synthesis and in vitro activity against human melanoma. Eur J Med Chem. 44:3406–3411. 2009.PubMed/NCBI View Article : Google Scholar | |
Kwong A, Sanlorenzo M, Rappersberger K and Vujic I: Update on advanced melanoma treatments: Small molecule targeted therapy, immunotherapy, and future combination therapies. Wien Med Wochenschr. 169:314–322. 2019.PubMed/NCBI View Article : Google Scholar | |
Zghaib Z, Guichou JF, Vappiani J, Bec N, Hadj-Kaddour K, Vincent LA, Paniagua-Gayraud S, Larroque C, Moarbess G, Cuq P, et al: New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships. Bioorg Med Chem. 24:2433–2440. 2016.PubMed/NCBI View Article : Google Scholar | |
Moarbess G, El-Hajj H, Kfoury Y, El-Sabban ME, Lepelletier Y, Hermine O, Deleuze-Masquéfa C, Bonnet PA and Bazarbachi A: EAPB0203, a member of the imidazoquinoxaline family, inhibits growth and induces caspase-dependent apoptosis in T-cell lymphomas and HTLV-I-associated adult T-cell leukemia/lymphoma. Blood. 111:3770–3777. 2008.PubMed/NCBI View Article : Google Scholar | |
Saliba J, Deleuze-Masquéfa C, Iskandarani A, El Eit R, Hmadi R, Mahon FX, Bazarbachi A, Bonnet PA and Nasr R: EAPB0503, a novel imidazoquinoxaline derivative, inhibits growth and induces apoptosis in chronic myeloid leukemia cells. Anticancer Drugs. 25:624–632. 2014.PubMed/NCBI View Article : Google Scholar | |
Nabbouh AI, Hleihel RS, Saliba JL, Karam MM, Hamie MH, Wu HCJM, Berthier CP, Tawil NM, Bonnet PAA, Deleuze-Masquefa C and El Hajj HA: Imidazoquinoxaline derivative EAPB0503: A promising drug targeting mutant nucleophosmin 1 in acute myeloid leukemia. Cancer. 123:1662–1673. 2017.PubMed/NCBI View Article : Google Scholar | |
El Hajj R, Youness HB, Lachaud L, Bastien P, Masquefa C, Bonnet PA, El Hajj H and Khalifeh I: EAPB0503: An Imiquimod analog with potent in vitro activity against cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica. PLoS Negl Trop Dis. 12(e0006854)2018.PubMed/NCBI View Article : Google Scholar | |
Baumann M and Baxendale IR: An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J Org Chem. 9:2265–2319. 2013.PubMed/NCBI View Article : Google Scholar | |
Rudy SJ: Imiquimod (Aldara): Modifying the immune response. Dermatol Nurs. 14:268–270. 2002.PubMed/NCBI | |
Miller RL, Gerster JF, Owens ML, Slade HB and Tomai MA: Imiquimod applied topically: A novel immune response modifier and new class of drug. Int J Immunopharmacol. 21:1–14. 1999.PubMed/NCBI View Article : Google Scholar | |
Smith KJ, Hamza S and Skelton H: The imidazoquinolines and their place in the therapy of cutaneous disease. Expert Opin Pharmacother. 4:1105–1119. 2003.PubMed/NCBI View Article : Google Scholar | |
Deleuze-Masquefa C, Gerebtzoff G, Subra G, Fabreguettes JR, Ovens A, Carraz M, Strub MP, Bompart J, George P and Bonnet PA: Design and synthesis of novel imidazo[1,2-a]quinoxalines as PDE4 inhibitors. Bioorg Med Chem. 12:1129–1139. 2004.PubMed/NCBI View Article : Google Scholar | |
Del Rosso JQ: Topical imiquimod therapy for actinic keratosis: Is long-term clearance a realistic benefit? J Clin Aesthet Dermatol. 1:44–47. 2008.PubMed/NCBI | |
Oumata N, Nguyen PH, Beringue V, Soubigou F, Pang Y, Desban N, Massacrier C, Morel Y, Paturel C, Contesse MA, et al: The toll-like receptor agonist imiquimod is active against prions. PLoS One. 8(e72112)2013.PubMed/NCBI View Article : Google Scholar | |
Sidky YA, Borden EC, Weeks CE, Reiter MJ, Hatcher JF and Bryan GT: Inhibition of murine tumor growth by an interferon-inducing imidazoquinolinamine. Cancer Res. 52:3528–3533. 1992.PubMed/NCBI | |
Sauder DN, Skinner RB, Fox TL and Owens ML: Topical imiquimod 5% cream as an effective treatment for external genital and perianal warts in different patient populations. Sex Transm Dis. 30:124–128. 2003.PubMed/NCBI View Article : Google Scholar | |
Yokogawa M, Takaishi M, Nakajima K, Kamijima R, Digiovanni J and Sano S: Imiquimod attenuates the growth of UVB-induced SCC in mice through Th1/Th17 cells. Mol Carcinog. 52:760–769. 2013.PubMed/NCBI View Article : Google Scholar | |
Spaner DE, Miller RL, Mena J, Grossman L, Sorrenti V and Shi Y: Regression of lymphomatous skin deposits in a chronic lymphocytic leukemia patient treated with the toll-like receptor-7/8 agonist, imiquimod. Leuk Lymphoma. 46:935–939. 2005.PubMed/NCBI View Article : Google Scholar | |
Raman VS, Duthie MS, Fox CB, Matlashewski G and Reed SG: Adjuvants for Leishmania vaccines: From models to clinical application. Front Immunol. 3(144)2012.PubMed/NCBI View Article : Google Scholar | |
Hamie M, Najm R, Deleuze-Masquefa C, Bonnet PA, Dubremetz JF, El Sabban M and El Hajj H: Imiquimod targets toxoplasmosis through modulating host toll-like receptor-MyD88 signaling. Front Immunol. 12(629917)2021.PubMed/NCBI View Article : Google Scholar | |
Arevalo I, Ward B, Miller R, Meng TC, Najar E, Alvarez E, Matlashewski G and Llanos-Cuentas A: Successful treatment of drug-resistant cutaneous leishmaniasis in humans by use of imiquimod, an immunomodulator. Clin Infect Dis. 33:1847–1851. 2001.PubMed/NCBI View Article : Google Scholar | |
Miranda-Verastegui C, Tulliano G, Gyorkos TW, Calderon W, Rahme E, Ward B, Cruz M, Llanos-Cuentas A and Matlashewski G: First-line therapy for human cutaneous leishmaniasis in Peru using the TLR7 agonist imiquimod in combination with pentavalent antimony. PLoS Negl Trop Dis. 3(e491)2009.PubMed/NCBI View Article : Google Scholar | |
Arevalo I, Tulliano G, Quispe A, Spaeth G, Matlashewski G, Llanos-Cuentas A and Pollack H: Role of imiquimod and parenteral meglumine antimoniate in the initial treatment of cutaneous leishmaniasis. Clin Infect Dis. 44:1549–1554. 2007.PubMed/NCBI View Article : Google Scholar | |
Walter A, Schäfer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B, Schönewolf N, Dummer R, Bloch W, Werner S, et al: Aldara activates TLR7-independent immune defence. Nat Commun. 4(1560)2013.PubMed/NCBI View Article : Google Scholar | |
Kono T, Kondo S, Pastore S, Shivji GM, Tomai MA, McKenzie RC and Sauder DN: Effects of a novel topical immunomodulator, imiquimod, on keratinocyte cytokine gene expression. Lymphokine Cytokine Res. 13:71–76. 1994.PubMed/NCBI | |
Weber A, Zimmermann C, Mausberg AK, Kieseier BC, Hartung HP and Hofstetter HH: Induction of pro-inflammatory cytokine production in thymocytes by the immune response modifiers Imiquimod and Gardiquimod. Int Immunopharmacol. 17:427–431. 2013.PubMed/NCBI View Article : Google Scholar | |
Wolf IH, Kodama K, Cerroni L and Kerl H: Nature of inflammatory infiltrate in superficial cutaneous malignancies during topical imiquimod treatment. Am J Dermatopathol. 29:237–241. 2007.PubMed/NCBI View Article : Google Scholar | |
Wong JG, Toole JWP, Demers AA, Musto G and Wiseman MC: Topical 5% imiquimod in the treatment of lentigo maligna. J Cutan Med Surg. 16:245–249. 2012.PubMed/NCBI View Article : Google Scholar | |
Schon M and Schon MP: The antitumoral mode of action of imiquimod and other imidazoquinolines. Curr Med Chem. 14:681–687. 2007.PubMed/NCBI View Article : Google Scholar | |
Schon MP and Schon M: The small-molecule immune response modifier imiquimod-its mode of action and clinical use in the treatment of skin cancer. Expert Opin Ther Targets. 10:69–76. 2006.PubMed/NCBI View Article : Google Scholar | |
Bilu D and Sauder DN: Imiquimod: Modes of action. Br J Dermatol. 149 (Suppl 66):5–8. 2003.PubMed/NCBI View Article : Google Scholar | |
Wagstaff AJ and Perry CM: Topical imiquimod: A review of its use in the management of anogenital warts, actinic keratoses, basal cell carcinoma and other skin lesions. Drugs. 67:2187–2210. 2007.PubMed/NCBI View Article : Google Scholar | |
Megyeri K, Au WC, Rosztoczy I, Raj NB, Miller RL, Tomai MA and Pitha PM: Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by Sendai virus utilize similar signal transduction pathways. Mol Cell Biol. 15:2207–2218. 1995.PubMed/NCBI View Article : Google Scholar | |
Sauder DN: Immunomodulatory and pharmacologic properties of imiquimod. J Am Acad Dermatol. 43:S6–S11. 2000.PubMed/NCBI View Article : Google Scholar | |
Schon MP, Schon M and Klotz KN: The small antitumoral immune response modifier imiquimod interacts with adenosine receptor signaling in a TLR7- and TLR8-independent fashion. J Invest Dermatol. 126:1338–1347. 2006.PubMed/NCBI View Article : Google Scholar | |
Majewski S, Marczak M, Mlynarczyk B, Benninghoff B and Jablonska S: Imiquimod is a strong inhibitor of tumor cell-induced angiogenesis. Int J Dermatol. 44:14–19. 2005.PubMed/NCBI View Article : Google Scholar | |
Denning DP and Hirose T: Anti-tubulins DEPendably induce apoptosis. Nat Cell Biol. 16:741–743. 2014.PubMed/NCBI View Article : Google Scholar | |
Schön MP and Schön M: Immune modulation and apoptosis induction: Two sides of the antitumoral activity of imiquimod. Apoptosis. 9:291–298. 2004.PubMed/NCBI View Article : Google Scholar | |
Bong AB, Bonnekoh B, Franke I, Schön MP, Ulrich J and Gollnick H: Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology. 205:135–138. 2002.PubMed/NCBI View Article : Google Scholar | |
Heikkinen AK and Susitaival P: Severe systemic reaction to topical imiquimod. Acta Derm Venereol. 91:594–595. 2011.PubMed/NCBI View Article : Google Scholar | |
Cannon PS, O'Donnell B, Huilgol SC and Selva D: The ophthalmic side-effects of imiquimod therapy in the management of periocular skin lesions. Br J Ophthalmol. 95:1682–1685. 2011.PubMed/NCBI View Article : Google Scholar | |
Benson E: Imiquimod: Potential risk of an immunostimulant. Australas J Dermatol. 45:123–124. 2004.PubMed/NCBI View Article : Google Scholar | |
Somani N, Martinka M, Crawford RI, Dutz JP and Rivers JK: Treatment of atypical nevi with imiquimod 5% cream. Arch Dermatol. 143:379–385. 2007.PubMed/NCBI View Article : Google Scholar | |
Hanna E, Abadi R and Abbas O: Imiquimod in dermatology: An overview. Int J Dermatol. 55:831–844. 2016.PubMed/NCBI View Article : Google Scholar | |
Rosen T: Limited extent AIDS-related cutaneous Kaposi's sarcoma responsive to imiquimod 5% cream. Int J Dermatol. 45:854–856. 2006.PubMed/NCBI View Article : Google Scholar | |
Ezzell TI, Fromowitz JS and Ramos-Caro FA: Recurrent pyogenic granuloma treated with topical imiquimod. J Am Acad Dermatol. 54 (5 Suppl):S244–S245. 2006.PubMed/NCBI View Article : Google Scholar | |
Barba AR, Kapoor S and Berman B: An open label safety study of topical imiquimod 5% cream in the treatment of Molluscum contagiosum in children. Dermatol Online J. 7(20)2001.PubMed/NCBI | |
Díaz-Guimaraens B, Saceda-Corralo D, Hermosa-Gelbard A, Moreno-Arrones ÓM, Dominguez-Santas M, Suarez-Valle A and Vañó-Galván S: Imiquimod-enhanced immunotherapy with diphencyprone for patients with alopecia areata. Dermatol Ther. 35(e15516)2022.PubMed/NCBI View Article : Google Scholar | |
Palefsky JM, Lee JY, Jay N, Goldstone SE, Darragh TM, Dunlevy HA, Rosa-Cunha I, Arons A, Pugliese JC, Vena D, et al: Treatment of anal high-grade squamous intraepithelial lesions to prevent anal cancer. N Engl J Med. 386:2273–2282. 2022.PubMed/NCBI View Article : Google Scholar | |
Al Fayez N, Rouhollahi E, Ong CY, Wu J, Nguyen A, Böttger R, Cullis PR, Witzigmann D and Li SD: Hepatocyte-targeted delivery of imiquimod reduces hepatitis B virus surface antigen. J Control Release. 350:630–641. 2022.PubMed/NCBI View Article : Google Scholar | |
Daude M, Dinulescu M, Nguyen JM, Maillard H, Duff FL, Machet L, Beylot-Barry M, Legoupil D, Wierzbicka-Hainaut E, Bedane C, et al: Efficacy of imiquimod in the management of lentigo maligna. J Eur Acad Dermatol Venereol. 27(10.1111/jdv.19141)2023.PubMed/NCBI View Article : Google Scholar | |
Chang SH, Lin PY, Wu TK, Hsu CS, Huang SW, Li ZY, Liu KT, Kao JK, Chen YJ, Wong TW, et al: Imiquimod-induced ROS production causes lysosomal membrane permeabilization and activates caspase-8-mediated apoptosis in skin cancer cells. J Dermatol Sci. 107:142–150. 2022.PubMed/NCBI View Article : Google Scholar | |
Urquhart JL and Weston WL: Treatment of multiple trichoepitheliomas with topical imiquimod and tretinoin. Pediatr Dermatol. 22:67–70. 2005.PubMed/NCBI View Article : Google Scholar | |
Cantisani C, Lazic T, Richetta AG, Clerico R, Mattozzi C and Calvieri S: Imiquimod 5% cream use in dermatology, side effects and recent patents. Recent Pat Inflamm Allergy Drug Discov. 6:65–69. 2012.PubMed/NCBI View Article : Google Scholar | |
Pasadyn SR and Cain R: Topical imiquimod induces severe weakness and myalgias after three applications: A case report. J Clin Aesthet Dermatol. 12:58–59. 2019.PubMed/NCBI | |
Safadi MG, Hassan S, Patel V, Viglione M and Zahner SL: Imiquimod-induced hypertrophic lupus erythematosus-like reaction. Dermatol Online J. 28(10.5070/D328458526)2022.PubMed/NCBI View Article : Google Scholar | |
Li HO, Aw M and Glassman SJ: Imiquimod-induced bullous pemphigoid: A case report. SAGE Open Med Case Rep. 11(2050313x231164222)2023.PubMed/NCBI View Article : Google Scholar | |
Arias NM, Bonino CB, Feal PP, Rico MLP, Peñaranda JMS and Osorio IV: Lupus-like reaction following imiquimod treatment for actinic keratoses. Dermatol Ther. 35(e15700)2022.PubMed/NCBI View Article : Google Scholar | |
Raman J, Bisbee E, Missall TA and Saikaly SK: A case of topical imiquimod induced fatigue. J Dermatolog Treat. 33:3202–3204. 2022.PubMed/NCBI View Article : Google Scholar | |
McKinzie AH and Christman MA: Imiquimod-associated localized skin ulceration in a patient with uncontrolled diabetes. Obstet Gynecol. 140:316–319. 2022.PubMed/NCBI View Article : Google Scholar | |
Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV and Fernandes AR: Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine's tool box. Molecules. 20:16852–16891. 2015.PubMed/NCBI View Article : Google Scholar | |
Kumar S, Bawa S and Gupta H: Biological activities of quinoline derivatives. Mini Rev Med Chem. 9:1648–1654. 2009.PubMed/NCBI View Article : Google Scholar | |
Chu XM, Wang C, Liu W, Liang LL, Gong KK, Zhao CY and Sun KL: Quinoline and quinolone dimers and their biological activities: An overview. Eur J Med Chem. 161:101–117. 2019.PubMed/NCBI View Article : Google Scholar | |
Balderas-Renteria I, Gonzalez-Barranco P, Garcia A, Banik BK and Rivera G: Anticancer drug design using scaffolds of β-lactams, sulfonamides, quinoline, quinoxaline and natural products. Drugs advances in clinical trials. Curr Med Chem. 19:4377–4398. 2012.PubMed/NCBI View Article : Google Scholar | |
Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M and Bawa S: A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem. 97:871–910. 2015.PubMed/NCBI View Article : Google Scholar | |
Bonilla-Ramirez L, Rios A, Quiliano M, Ramirez-Calderon G, Beltrán-Hortelano I, Franetich JF, Corcuera L, Bordessoulles M, Vettorazzi A, de Cerain AL, et al: Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. Eur J Med Chem. 158:68–81. 2018.PubMed/NCBI View Article : Google Scholar | |
Burguete A, Pontiki E, Hadjipavlou-Litina D, Ancizu S, Villar R, Solano B, Moreno E, Torres E, Pérez S, Aldana I and Monge A: Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chem Biol Drug Des. 77:255–267. 2011.PubMed/NCBI View Article : Google Scholar | |
Fabian L, Porro MT, Gómez N, Salvatori M, Turk G, Estrin D and Moglioni A: Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme. Eur J Med Chem. 188(111987)2020.PubMed/NCBI View Article : Google Scholar | |
El Newahie AMS, Nissan YM, Ismail NSM, El Ella DA, Khojah SM and Abouzid KAM: Design and synthesis of new quinoxaline derivatives as anticancer agents and apoptotic inducers. Molecules. 24(1175)2019.PubMed/NCBI View Article : Google Scholar | |
Patinote C, Deleuze-Masquéfa C, Kaddour KH, Vincent LA, Larive R, Zghaib Z, Guichou JF, Assaf MD, Cuq P and Bonnet PA: Imidazo[1,2-a]quinoxalines for melanoma treatment with original mechanism of action. Eur J Med Chem. 212(113031)2021.PubMed/NCBI View Article : Google Scholar | |
Lafaille F, Banaigs B, Inguimbert N, Enjalbal C, Doulain PE, Bonnet PA, Masquefa C and Bressolle FMM: Characterization of a new anticancer agent, EAPB0203, and its main metabolites: nuclear magnetic resonance and liquid chromatography-mass spectrometry studies. Anal Chem. 84:9865–9872. 2012.PubMed/NCBI View Article : Google Scholar | |
Khier S, Deleuze-Masquéfa C, Moarbess G, Gattacceca F, Margout D, Solassol I, Cooper JF, Pinguet F, Bonnet PA and Bressolle FMM: Pharmacology of EAPB0203, a novel imidazo[1,2-a]quinoxaline derivative with anti-tumoral activity on melanoma. Eur J Pharm Sci. 39:23–29. 2010.PubMed/NCBI View Article : Google Scholar | |
Morjaria S, Deleuze-Masquefa C, Lafont V, Gayraud S, Bompart J, Bonnet PA and Dornand J: Impairment of TNF-alpha production and action by imidazo[1,2- alpha] quinoxalines, a derivative family which displays potential anti-inflammatory properties. Int J Immunopathol Pharmacol. 19:525–538. 2006.PubMed/NCBI View Article : Google Scholar | |
Lideikaitė A, Mozūraitienė J and Letautienė S: Analysis of prognostic factors for melanoma patients. Acta Med Litu. 24:25–34. 2017.PubMed/NCBI View Article : Google Scholar | |
Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M, Colonna M and Sibilia M: Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest. 122:575–585. 2012.PubMed/NCBI View Article : Google Scholar | |
Chouchou A, Patinote C, Cuq P, Bonnet PA and Deleuze-Masquéfa C: Imidazo[1,2-a]quinoxalines derivatives grafted with amino acids: Synthesis and evaluation on A375 melanoma cells. Molecules. 23(2987)2018.PubMed/NCBI View Article : Google Scholar | |
Quereux G and Dreno B: Fotemustine for the treatment of melanoma. Expert Opin Pharmacother. 12:2891–2904. 2011.PubMed/NCBI View Article : Google Scholar | |
Hermine O, Ramos JC and Tobinai K: A review of new findings in adult T-cell leukemia-lymphoma: A focus on current and emerging treatment strategies. Adv Ther. 35:135–152. 2018.PubMed/NCBI View Article : Google Scholar | |
Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington W Jr, O'Mahony D, Janik JE, Bittencourt AL, Taylor GP, et al: Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: A proposal from an international consensus meeting. J Clin Oncol. 27:453–459. 2009.PubMed/NCBI View Article : Google Scholar | |
Bazarbachi A, Suarez F, Fields P and Hermine O: How I treat adult T-cell leukemia/lymphoma. Blood. 118:1736–1745. 2011.PubMed/NCBI View Article : Google Scholar | |
Cook LB, Fuji S, Hermine O, Bazarbachi A, Ramos JC, Ratner L, Horwitz S, Fields P, Tanase A, Bumbea H, et al: Revised adult T-cell leukemia-lymphoma international consensus meeting report. J Clin Oncol. 37:677–687. 2019.PubMed/NCBI View Article : Google Scholar | |
Tsukasaki K, Marçais A, Nasr R, Kato K, Fukuda T, Hermine O and Bazarbachi A: Diagnostic approaches and established treatments for adult T cell leukemia lymphoma. Front Microbiol. 11(1207)2020.PubMed/NCBI View Article : Google Scholar | |
El Hajj H, Tsukasaki K, Cheminant M, Bazarbachi A, Watanabe T and Hermine O: Novel treatments of adult T cell leukemia lymphoma. Front Microbiol. 11(1062)2020.PubMed/NCBI View Article : Google Scholar | |
Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK, Queisser W, Löffler H, Hochhaus A and Heinze B: Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. The german CML study group. Blood. 84:4064–4077. 1994.PubMed/NCBI | |
Bisen A and Claxton DF: Tyrosine kinase targeted treatment of chronic myelogenous leukemia and other myeloproliferative neoplasms. Adv Exp Med Biol. 779:179–196. 2013.PubMed/NCBI View Article : Google Scholar | |
Krause DS and Van Etten RA: Bedside to bench: Interfering with leukemic stem cells. Nat Med. 14:494–495. 2008.PubMed/NCBI View Article : Google Scholar | |
Okimoto RA and Van Etten RA: Navigating the road toward optimal initial therapy for chronic myeloid leukemia. Curr Opin Hematol. 18:89–97. 2011.PubMed/NCBI View Article : Google Scholar | |
Lagunas-Rangel FA, Chávez-Valencia V, Gómez-Guijosa MA and Cortes-Penagos C: Acute myeloid leukemia-genetic alterations and their clinical prognosis. Int J Hematol Oncol Stem Cell Res. 11:328–339. 2017.PubMed/NCBI | |
Yilmaz M, Kantarjian H and Ravandi F: Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 11(123)2021.PubMed/NCBI View Article : Google Scholar | |
Borthakur G and Kantarjian H: Core binding factor acute myelogenous leukemia-2021 treatment algorithm. Blood Cancer J. 11(114)2021.PubMed/NCBI View Article : Google Scholar | |
Molica M, Breccia M, Foa R, Jabbour E and Kadia TM: Maintenance therapy in AML: The past, the present and the future. Am J Hematol. 94:1254–1265. 2019.PubMed/NCBI View Article : Google Scholar | |
Kassim AA and Savani BN: Hematopoietic stem cell transplantation for acute myeloid leukemia: A review. Hematol Oncol Stem Cell Ther. 10:245–251. 2017.PubMed/NCBI View Article : Google Scholar | |
Lin WY, Fordham SE, Hungate E, Sunter NJ, Elstob C, Xu Y, Park C, Quante A, Strauch K, Gieger C, et al: Genome-wide association study identifies susceptibility loci for acute myeloid leukemia. MedRxiv. 2021(2021.07.22.21259893)2021.PubMed/NCBI View Article : Google Scholar | |
Falini B, Brunetti L, Sportoletti P and Martelli MP: NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood. 136:1707–1721. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang AJ, Han Y, Jia N, Chen P and Minden MD: NPM1c impedes CTCF functions through cytoplasmic mislocalization in acute myeloid leukemia. Leukemia. 34:1278–1290. 2020.PubMed/NCBI View Article : Google Scholar | |
Skayneh H, Jishi B, Hleihel R, Hamie M, El Hajj R, Deleuze-Masquefa C, Bonnet PA, El Sabban M and El Hajj H: EAPB0503, an imidazoquinoxaline derivative modulates SENP3/ARF mediated SUMOylation, and induces NPM1c degradation in NPM1 mutant AML. Int J Mol Sci. 23(3421)2022.PubMed/NCBI View Article : Google Scholar | |
Sacks D and Noben-Trauth N: The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2:845–858. 2002.PubMed/NCBI View Article : Google Scholar | |
Ley SV and Thomas AW: Modern synthetic methods for copper-mediated C(aryl)(bond)O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation. Angew Chem Int Ed Engl. 42:5400–5449. 2003.PubMed/NCBI View Article : Google Scholar |