
CAR T‑cell immunotherapy: A safe and potent living drug technique for cancer treatment (Review)
- Authors:
- Adnan Ahmad
- Mohammad Haneef
- Shadma Andleeb Khan
- Fariya Khan
- Nabeel Ahmad
- Saif Khan
- Samriddhi Jaswani
-
Affiliations: Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India, Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248001, India, Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha'il, Ha'il 2440, Saudi Arabia - Published online on: August 22, 2023 https://doi.org/10.3892/wasj.2023.200
- Article Number: 23
-
Copyright : © Ahmad et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
![]() |
![]() |
Poondla N, Sheykhhasan M, Akbari M, Samadi P, Kalhor N and Manoochehri H: The Promise of CAR T-Cell therapy for the treatment of cancer stem cells: A short review. Curr Stem Cell Res Ther. 17:400–406. 2022.PubMed/NCBI View Article : Google Scholar | |
Maus MV and Levine BL: Chimeric Antigen Receptor T-Cell Therapy for the Community Oncologist. Oncologist. 21:608–617. 2016.PubMed/NCBI View Article : Google Scholar | |
Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S and Kobold S: Limitations in the design of chimeric antigen receptors for cancer therapy. Cells. 8(472)2019.PubMed/NCBI View Article : Google Scholar | |
Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB and Hamid M: scFv Antibody: Principles and clinical application. Clin Dev Immunol. 2012(980250)2012.PubMed/NCBI View Article : Google Scholar | |
Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, Yang X, Sun J, Li Z, Han WD and Wang W: Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther. 4(35)2019.PubMed/NCBI View Article : Google Scholar | |
Zhao L and Cao YJ: Engineered T cell therapy for cancer in the clinic. Front Immunol. 10(2250)2019.PubMed/NCBI View Article : Google Scholar | |
Gross G, Gorochov G, Waks T and Eshhar Z: Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant Proc. 21:127–130. 1989.PubMed/NCBI | |
Eshhar Z, Waks T, Gross G and Schindler DG: Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 90:720–724. 1993.PubMed/NCBI View Article : Google Scholar | |
Zhylko A, Winiarska M and Graczyk-Jarzynka A: The great war of today: Modifications of CAR-T cells to effectively combat malignancies. Cancers (Basel). 12(2030)2020.PubMed/NCBI View Article : Google Scholar | |
Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, Cherif H, Uddin S, Steinhoff M, Marincola FM and Dermime S: CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances. Mol Cancer. 22(20)2023.PubMed/NCBI View Article : Google Scholar | |
FDA approval brings first gene therapy to the United States. https://www.fda.gov/news-events/fda-newsroom/press-announcements, Accessed February 15, 2021. | |
Chmielewski M, Hombach AA and Abken H: Antigen-specific T-cell activation independently of the MHC: Chimeric antigen receptor-redirected T Cells. Front Immunol. 4(371)2013.PubMed/NCBI View Article : Google Scholar | |
Lustgarten J, Waks T and Eshhar Z: CD4 and CD8 accessory molecules function through interactions with major histocompatibility complex molecules which are not directly associated with the T cell receptor-antigen complex. Eur J Immunol. 21:2507–2515. 1991.PubMed/NCBI View Article : Google Scholar | |
Miliotou AN and Papadopoulou LC: CAR T-cell Therapy: A New Era in cancer immunotherapy. Curr Pharm Biotechnol. 19:5–18. 2018.PubMed/NCBI View Article : Google Scholar | |
van der Schans JJ, van de Donk NWCJ and Mutis T: Dual targeting to overcome current challenges in multiple myeloma CAR T-Cell treatment. Front Oncol. 10(1362)2020.PubMed/NCBI View Article : Google Scholar | |
Kany S, Vollrath JT and Relja B: Cytokines in inflammatory disease. Int J Mol Sci. 20(6008)2019.PubMed/NCBI View Article : Google Scholar | |
Ramos CA, Savoldo B and Dotti G: CD19-CAR trials. Cancer J. 20:112–118. 2014.PubMed/NCBI View Article : Google Scholar | |
Diehn M, Alizadeh AA, Rando OJ, Liu CL, Stankunas K, Botstein D, Crabtree GR and Brown PO: Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci USA. 99:11796–11801. 2002.PubMed/NCBI View Article : Google Scholar | |
US Food, Drug Administration: KYMRIAH (tisagenlecleucel). https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel. Accessed February, 2021. | |
Weinkove R, George P, Dasyam N and McLellan AD: Selecting costimulatory domains for chimeric antigen receptors: Functional and clinical considerations. Clin Transl Immunology. 8(e1049)2019.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP, Rosenberg SA and Morgan RA: Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther. 19:751–759. 2011.PubMed/NCBI View Article : Google Scholar | |
Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang CH, Saso K, Butler MO, Minden MD and Hirano N: A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med. 24:352–359. 2018.PubMed/NCBI View Article : Google Scholar | |
Wei J, Han X, Bo J and Han W: Target selection for CAR-T therapy. J Hematol Oncol. 12(62)2019.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Guo Y and Han W: Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein Cell. 8:896–925. 2017.PubMed/NCBI View Article : Google Scholar | |
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et al: Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 371:1507–1517. 2014.PubMed/NCBI View Article : Google Scholar | |
Aykan NF and Ozatlı T: Objective response rate assessment in oncology: Current situation and future expectations. World J Clin Oncol. 11:53–73. 2020.PubMed/NCBI View Article : Google Scholar | |
Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M, et al: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 6(224ra25)2014.PubMed/NCBI View Article : Google Scholar | |
Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, Bleakley M, Brown C, Mgebroff S, Kelly-Spratt KS, et al: Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 129:3322–3331. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Wu Z, Liu Y and Han W: New development in CAR-T cell therapy. J Hematol Oncol. 10(53)2017.PubMed/NCBI View Article : Google Scholar | |
Wei G, Hu Y, Pu C, Yu J, Luo Y, Shi J, Cui Q, Wu W, Wang J, Xiao L, et al: CD19 targeted CAR-T therapy versus chemotherapy in re-induction treatment of refractory/relapsed acute lymphoblastic leukemia: Results of a case-controlled study. Ann Hematol. 97:781–789. 2018.PubMed/NCBI View Article : Google Scholar | |
Pacenta HL, Laetsch TW and John S: CD19 CAR T cells for the treatment of pediatric Pre-B cell acute lymphoblastic leukemia. Paediatr Drugs. 22:1–11. 2020.PubMed/NCBI View Article : Google Scholar | |
Qu C, Ping N, Kang L, Liu H, Qin S, Wu Q, Chen X, Zhou M, Xia F, Ye A, et al: Radiation priming chimeric antigen receptor T-Cell therapy in relapsed/refractory diffuse large B-Cell lymphoma with high tumor Burden. J Immunother. 43:32–37. 2020.PubMed/NCBI View Article : Google Scholar | |
Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, Grupp SA and Mackall CL: Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 24:188–195. 2014.PubMed/NCBI View Article : Google Scholar | |
Yanez L, Alarcon A, Sanchez Escamilla M and Perales MA: How I treat adverse effects of CAR-T cell therapy. ESMO Open. 4(Suppl 4)(e000746)2020.PubMed/NCBI View Article : Google Scholar | |
Cordeiro A, Bezerra ED, Hirayama AV, Hill JA, Wu QV, Voutsinas J, Sorror ML, Turtle CJ, Maloney DG and Bar M: Late events after treatment with CD19-Targeted chimeric antigen receptor modified T cells. Biol Blood Marrow Transplant. 26:26–33. 2020.PubMed/NCBI View Article : Google Scholar | |
Park JH, Romero FA, Taur Y, Sadelain M, Brentjens RJ, Hohl TM and Seo SK: Cytokine release Syndrome grade as a predictive marker for infections in patients with relapsed or refractory B-Cell acute lymphoblastic leukemia treated with chimeric antigen receptor T cells. Clin Infect Dis. 67:533–540. 2018.PubMed/NCBI View Article : Google Scholar | |
Abu-Alfa AK and Younes A: Tumor lysis syndrome and acute kidney injury: Evaluation, prevention, and management. Am J Kidney Dis. 55 (Suppl 3):S1–S19; quiz S14-9. 2010.PubMed/NCBI View Article : Google Scholar | |
Curran KJ, Pegram HJ and Brentjens RJ: Chimeric antigen receptors for T cell immunotherapy: Current understanding and future directions. J Gene Med. 14:405–415. 2012.PubMed/NCBI View Article : Google Scholar | |
Schneider D, Xiong Y, Wu D, Nӧlle V, Schmitz S, Haso W, Kaiser A, Dropulic B and Orentas RJ: A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J Immunother Cancer. 5(42)2017.PubMed/NCBI View Article : Google Scholar | |
Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, Corder A, Schönfeld K, Koch J, Dotti G, et al: TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids. 2(e105)2013.PubMed/NCBI View Article : Google Scholar | |
Malard F and Mohty M: Acute lymphoblastic leukaemia. Lancet. 395:1146–1162. 2020.PubMed/NCBI View Article : Google Scholar | |
Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M, et al: Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 321:974–977. 2008.PubMed/NCBI View Article : Google Scholar | |
Lohmueller JJ, Ham JD, Kvorjak M and Finn OJ: mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology. 7(e1368604)2017.PubMed/NCBI View Article : Google Scholar | |
Shi H, Sun M, Liu L and Wang Z: Chimeric antigen receptor for adoptive immunotherapy of cancer: Latest research and future prospects. Mol Cancer. 13(219)2014.PubMed/NCBI View Article : Google Scholar | |
Cho JH, Collins JJ and Wong WW: Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 173:1426–1438.e11. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen YY: Increasing T cell versatility with SUPRA CARs. Cell. 173:1316–1317. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang H and Pan W: Challenges of chimeric antigen receptor-T/natural killer cell therapy in the treatment of solid tumors: Focus on colorectal cancer and evaluation of combination therapies. Mol Cell Biochem. 478:967–980. 2023.PubMed/NCBI View Article : Google Scholar | |
Hossain N, Sahaf B, Abramian M, Spiegel JY, Kong K, Kim S, Mavroukakis S, Oak J, Natkunam Y, Meyer EH, et al: Phase I experience with a Bi-specific CAR targeting CD19 and CD22 in adults with B-cell malignancies. Blood. 132 (Suppl 1)(S490)2018. | |
Sterner RC and Sterner RM: CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 11(69)2021.PubMed/NCBI View Article : Google Scholar | |
Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, et al: A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 12:6106–6115. 2006.PubMed/NCBI View Article : Google Scholar | |
Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, Vulto A, den Bakker M, Oosterwijk E, Debets R and Gratama JW: Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells. Clinical evaluation and management of on-target toxicity. Mol Ther. 21:904–912. 2013.PubMed/NCBI View Article : Google Scholar | |
Lamers CH, Langeveld SC, Groot-van Ruijven CM, Debets R, Sleijfer S and Gratama JW: Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo. Cancer Immunol Immunother. 56:1875–1883. 2007.PubMed/NCBI View Article : Google Scholar | |
Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, Meechoovet HB, Bautista C, Chang WC, Ostberg JR and Jensen MC: Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 15:825–833. 2007.PubMed/NCBI View Article : Google Scholar | |
Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E, et al: Antitumour activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 118:6050–6056. 2011.PubMed/NCBI View Article : Google Scholar | |
Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, Huls MH, Liu E, Gee AP, Mei Z, et al: Virus-specific T cells engineered to coexpress tumour-specific receptors: Persistence and antitumour activity in individuals with neuroblastoma. Nat Med. 14:1264–1270. 2008.PubMed/NCBI View Article : Google Scholar | |
Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM, et al: Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumour activity in solid malignancies. Cancer Immunol Res. 2:112–120. 2014.PubMed/NCBI View Article : Google Scholar | |
Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, Zhao Y, Kalos M and June CH: T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. 1:26–31. 2013.PubMed/NCBI View Article : Google Scholar | |
Ahmed N, Brawley V, Hegde M, Bielamowicz K, Wakefield A, Ghazi A, Ashoori A, Diouf O, Gerken C, Landi D, et al: Autologous HER2 CMV bispecific CAR T cells are safe and demonstrate clinical benefit for glioblastoma in a Phase I trial. J Immunother Cancer. 3 (Suppl 2)(S011)2015. | |
Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, et al: Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res. 21:3149–3159. 2015.PubMed/NCBI View Article : Google Scholar | |
Saied A, Licata L, Burga RA, Thorn M, McCormack E, Stainken BF, Assanah EO, Khare PD, Davies R, Espat NJ, et al: Neutrophil: lymphocyte ratios and serum cytokine changes after hepatic artery chimeric antigen receptor-modified T-cell infusions for liver metastases. Cancer Gene Ther. 21:457–462. 2014.PubMed/NCBI View Article : Google Scholar | |
Katz SC, Point GR, Cunetta M, Thorn M, Guha P, Espat NJ, Boutros C, Hanna N and Junghans RP: Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther. 23:142–148. 2016.PubMed/NCBI View Article : Google Scholar | |
Petrausch U, Schuberth PC, Hagedorn C, Soltermann A, Tomaszek S, Stahel R, Weder W and Renner C: Re-directed T cells for the treatment of fibroblast activation protein (FAP)-positive malignant pleural mesothelioma (FAPME-1). BMC Cancer. 12(615)2012.PubMed/NCBI View Article : Google Scholar | |
Koneru M, O'Cearbhaill R, Pendharkar S, Spriggs DR and Brentjens RJ: A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J Transl Med. 13(102)2015.PubMed/NCBI View Article : Google Scholar | |
Morgan RA, Johnson LA, Davis JL, Zheng Z, Woolard KD, Reap EA, Feldman SA, Chinnasamy N, Kuan CT, Song H, et al: Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 23:1043–1053. 2012.PubMed/NCBI View Article : Google Scholar | |
Heczey A, Liu D, Tian G, Courtney AN, Wei J, Marinova E, Gao X, Guo L, Yvon E, Hicks J, et al: Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood. 124:2824–2833. 2014.PubMed/NCBI View Article : Google Scholar | |
Tanaka M, Tashiro H, Omer B, Lapteva N, Ando J, Ngo M, Mehta B, Dotti G, Kinchington PR, Leen AM, et al: Vaccination Targeting native receptors to enhance the function and proliferation of chimeric antigen receptor (CAR)-Modified T Cells. Clin Cancer Res. 23:3499–3509. 2017.PubMed/NCBI View Article : Google Scholar | |
Stroncek DF, Lee DW, Ren J, Sabatino M, Highfill S, Khuu H, Shah NN, Kaplan RN, Fry TJ and Mackall CL: Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells. J Transl Med. 15(59)2017.PubMed/NCBI View Article : Google Scholar | |
ClinicalTrials.gov: Intervention of Bladder Cancer by CAR-T. https://clinicaltrials.gov/ct2/show/NCT03185468, Accessed March 13, 2021. | |
ClinicalTrials.gov: Anti-GD2 4th Generation Chimeric Antigen Receptor-modified T Cells (4SCAR-GD2) Targeting Refractory and/or Recurrent Neuroblastoma. https://clinicaltrials.gov/ct2/show/NCT02765243, Accessed March 13, 2021 (2016). | |
ClinicalTrials.gov: Intervention of Advanced or Metastatic Urothelial Bladder Cancer by 4SCAR-T Cell Therapies, https://clinicaltrials.gov/ct2/show/NCT03185468, Accessed March 5, 2021 (2017). | |
Jain MD, Bachmeier CA, Phuoc VH and Chavez JC: Axicabtagene ciloleucel (KTE-C19), an anti-CD19 CAR T therapy for the treatment of relapsed/refractory aggressive B-cell non-Hodgkin's lymphoma. Ther Clin Risk Manag. 14:1007–1017. 2018.PubMed/NCBI View Article : Google Scholar | |
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, et al: Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 377:2531–2544. 2017.PubMed/NCBI View Article : Google Scholar | |
Vairy S, Garcia JL, Teira P and Bittencourt H: CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Des Devel Ther. 12:3885–3898. 2018.PubMed/NCBI View Article : Google Scholar | |
Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, Mehta A, Purev E, Maloney DG, Andreadis C, et al: Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet. 396:839–852. 2020.PubMed/NCBI View Article : Google Scholar | |
Rodríguez-Lobato LG, Ganzetti M, Fernandez de Larrea C, Hudecek M, Einsele H and Danhof S: CAR T-Cells in Multiple Myeloma: State of the Art and Future Directions. Front Oncol. 10(1243)2020.PubMed/NCBI View Article : Google Scholar | |
Clinical Trials Arena. Tecartus (brexucabtagene autoleucel) for the Treatment of Mantle Cell Lymphoma (MCL). https://www.clinicaltrialsarena.com/projects/tecartus-brexucabtagene-autoleucel/. Accessed April, 2021 (2020). | |
Neelapu SS: Managing the toxicities of CAR T-cell therapy. Hematol Oncol. 37 (Suppl 1):S48–S52. 2019.PubMed/NCBI View Article : Google Scholar |