Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
World Academy of Sciences Journal
Join Editorial Board Propose a Special Issue
Print ISSN: 2632-2900 Online ISSN: 2632-2919
Journal Cover
January-February 2024 Volume 6 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-February 2024 Volume 6 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of PIN1 in human pathology: Cellular regulation, pathogenesis and therapeutic implications (Review)

  • Authors:
    • Julian Maggio
    • Romina Gabriela Armando
    • Lara Balcone
    • Román Nicolás Vilarullo
    • Maria Del Pilar Casco
    • Diego Luis Mengual Gomez
    • Daniel Eduardo Gomez
  • View Affiliations / Copyright

    Affiliations: Molecular Oncology Unit, Center of Molecular and Translational Oncology, Quilmes National University, Bernal B1876BXD, Argentina
    Copyright: © Maggio et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 5
    |
    Published online on: December 21, 2023
       https://doi.org/10.3892/wasj.2023.220
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Peptidyl‑prolyl isomerase NIMA‑interacting 1 (PIN1) plays a crucial regulatory role in cells, and it is the only enzyme capable of selectively binding to phosphorylated proline‑directed serine/threonine (pSer/Thr‑Pro) residues in target proteins and catalyzing their isomerization. The change in the conformational status of the protein, transitioning between cis and trans, affects its three‑dimensional structure and, therefore, alters its function and stability. In this manner, PIN1 plays a role in the development of several human pathologies by regulating essential proteins. In cancer, the enzymatic activity of PIN1 induces conformational changes in essential proteins, promoting oncogenic processes and fostering aggressive tumor characteristics and resistance to chemotherapies. Moreover, the effects of PIN1 on viral infections are notable, as it interacts with viral proteins, enhancing their replication and infection mechanisms. In addition, PIN1 participates in autoimmune, cardiovascular, metabolic, neurodegenerative diseases and osteoporosis. These diverse functions render PIN1 as an attractive therapeutic target, leading to the development of PIN1 inhibitors. The critical role of PIN1 in human pathology is further underscored by its relevance to various diseases, rendering it a potential nexus for novel interventions in human pathologies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Liou YC, Zhou XZ and Lu KP: Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci. 36:501–514. 2011.PubMed/NCBI View Article : Google Scholar

2 

Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C, Curran T and Davis RJ: Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem. 266:15277–15285. 1991.PubMed/NCBI

3 

Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y and Liu JY: Proline Isomerization: From the chemistry and biology to therapeutic opportunities. Biology (Basel). 12(1008)2023.PubMed/NCBI View Article : Google Scholar

4 

Lu KP, Hanes SD and Hunter T: A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature. 380:544–547. 1996.PubMed/NCBI View Article : Google Scholar

5 

El Boustani M, De Stefano L, Caligiuri I, Mouawad N, Granchi C, Canzonieri V, Tuccinardi T, Giordano A and Rizzolio F: A Guide to PIN1 function and mutations across cancers. Front Pharmacol. 9(1477)2018.PubMed/NCBI View Article : Google Scholar

6 

Rustighi A, Tiberi L, Soldano A, Napoli M, Nuciforo P, Rosato A, Kaplan F, Capobianco A, Pece S, Di Fiore PP and Del Sal G: The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol. 11:133–142. 2009.PubMed/NCBI View Article : Google Scholar

7 

Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW and Lu KP: PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol. 22:5281–5295. 2002.PubMed/NCBI View Article : Google Scholar

8 

MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH and El-Deiry WS: BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem. 275:2777–2785. 2000.PubMed/NCBI View Article : Google Scholar

9 

Luo ML, Gong C, Chen CH, Lee DY, Hu H, Huang P, Yao Y, Guo W, Reinhardt F, Wulf G, et al: Prolyl isomerase Pin1 acts downstream of miR200c to promote cancer stem-like cell traits in breast cancer. Cancer Res. 74:3603–3616. 2014.PubMed/NCBI View Article : Google Scholar

10 

Eckerdt F, Yuan J, Saxena K, Martin B, Kappel S, Lindenau C, Kramer A, Naumann S, Daum S, Fischer G, et al: Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J Biol Chem. 280:36575–36583. 2005.PubMed/NCBI View Article : Google Scholar

11 

Chen CH, Chang CC, Lee TH, Luo M, Huang P, Liao PH, Wei S, Li FA, Chen RH, Zhou XZ, et al: SENP1 deSUMOylates and regulates Pin1 protein activity and cellular function. Cancer Res. 73:3951–3962. 2013.PubMed/NCBI View Article : Google Scholar

12 

Hamdane M, Dourlen P, Bretteville A, Sambo AV, Ferreira S, Ando K, Kerdraon O, Bégard S, Geay L, Lippens G, et al: Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol Cell Neurosci. 32:155–160. 2006.PubMed/NCBI View Article : Google Scholar

13 

Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, Uchida T, Bronson R, Bing G, Li X, et al: Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature. 424:556–561. 2003.PubMed/NCBI View Article : Google Scholar

14 

Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y and Assi HI: Metabolic Syndrome: Updates on pathophysiology and management in 2021. Int J Mol Sci. 23(786)2022.PubMed/NCBI View Article : Google Scholar

15 

Saltiel AR: Insulin signaling in health and disease. J Clin Invest. 131(e142241)2021.PubMed/NCBI View Article : Google Scholar

16 

Nakatsu Y, Mori K, Matsunaga Y, Yamamotoya T, Ueda K, Inoue Y, Mitsuzaki-Miyoshi K, Sakoda H, Fujishiro M, Yamaguchi S, et al: The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion. J Biol Chem. 292:11886–11895. 2017.PubMed/NCBI View Article : Google Scholar

17 

Inoue MK, Nakatsu Y, Yamamotoya T, Hasei S, Kanamoto M, Naitou M, Matsunaga Y, Sakoda H, Fujishiro M, Ono H, et al: Pin1 plays essential roles in NASH development by modulating multiple target proteins. Cells. 8(1545)2019.PubMed/NCBI View Article : Google Scholar

18 

Han Y, Lee SH, Bahn M, Yeo CY and Lee KY: Pin1 enhances adipocyte differentiation by positively regulating the transcriptional activity of PPARγ. Mol Cell Endocrinol. 436:150–158. 2016.PubMed/NCBI View Article : Google Scholar

19 

Nakatsu Y and Asano T: Prolyl isomerase Pin1 impacts on metabolism in muscle and adipocytes. Yakugaku Zasshi. 142:449–456. 2022.PubMed/NCBI View Article : Google Scholar : (In Japanese).

20 

Kanna M, Nakatsu Y, Yamamotoya T, Kushiyama A, Fujishiro M, Sakoda H, Ono H, Arihiro K and Asano T: Hepatic Pin1 expression, particularly in nuclei, is increased in NASH patients in accordance with evidence of the role of Pin1 in lipid accumulation shown in hepatoma cell lines. Int J Mol Sci. 24(8847)2023.PubMed/NCBI View Article : Google Scholar

21 

Azeez TA: Osteoporosis and cardiovascular disease: A review. Mol Biol Rep. 50:1753–1763. 2023.PubMed/NCBI View Article : Google Scholar

22 

Xu J, Yu L, Liu F, Wan L and Deng Z: The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review. Front Immunol. 14(1222129)2023.PubMed/NCBI View Article : Google Scholar

23 

Islam R, Yoon WJ and Ryoo HM: Pin1, the master orchestrator of bone cell differentiation. J Cell Physiol. 232:2339–2347. 2017.PubMed/NCBI View Article : Google Scholar

24 

Park KR, Kim S, Cho M, Kang SW and Yun HM: Effects of PIN on osteoblast differentiation and matrix mineralization through runt-related transcription factor. Int J Mol Sci. 21(9579)2020.PubMed/NCBI View Article : Google Scholar

25 

Kurakula K, Hagdorn QAJ, van der Feen DE, Vonk Noordegraaf A, Ten Dijke P, de Boer RA, Bogaard HJ, Goumans MJ and Berger RMF: Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular remodelling in pulmonary hypertension by inhibiting TGF-β signalling. Angiogenesis. 25:99–112. 2022.PubMed/NCBI View Article : Google Scholar

26 

Shin HR, Bae HS, Kim BS, Yoon HI, Cho YD, Kim WJ, Choi KY, Lee YS, Woo KM, Baek JH and Ryoo HM: PIN1 is a new therapeutic target of craniosynostosis. Hum Mol Genet. 27:3827–3839. 2018.PubMed/NCBI View Article : Google Scholar

27 

Lee SH, Jeong HM, Han Y, Cheong H, Kang BY and Lee KY: Prolyl isomerase Pin1 regulates the osteogenic activity of Osterix. Mol Cell Endocrinol. 400:32–40. 2015.PubMed/NCBI View Article : Google Scholar

28 

Cho E, Lee JK, Lee JY, Chen Z, Ahn SH, Kim ND, Kook MS, Min SH, Park BJ and Lee TH: BCPA {N, N'-1,4-Butanediylbis[3-(2-chlorophenyl)acrylamide]} Inhibits Osteoclast Differentiation through Increased Retention of Peptidyl-Prolyl cis-trans Isomerase Never in Mitosis A-Interacting 1. Int J Mol Sci. 19(3436)2018.PubMed/NCBI View Article : Google Scholar

29 

Gao Y, Chen N, Fu Z and Zhang Q: Progress of wnt signaling pathway in osteoporosis. Biomolecules. 13(483)2023.PubMed/NCBI View Article : Google Scholar

30 

Li S, Cui Y, Li M, Zhang W, Sun X, Xin Z and Li J: Acteoside derived from cistanche improves glucocorticoid-induced osteoporosis by activating PI3K/AKT/mTOR pathway. J Invest Surg. 36(2154578)2023.PubMed/NCBI View Article : Google Scholar

31 

Zhao P, Xiao L, Peng J, Qian YQ and Huang CC: Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. Eur Rev Med Pharmacol Sci. 22:3962–3970. 2018.PubMed/NCBI View Article : Google Scholar

32 

Yoshida G, Kawabata T, Takamatsu H, Saita S, Nakamura S, Nishikawa K, Fujiwara M, Enokidani Y, Yamamuro T, Tabata K, et al: Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis. Autophagy. 18:2323–2332. 2022.PubMed/NCBI View Article : Google Scholar

33 

Vazgiourakis VM, Zervou MI, Papageorgiou L, Chaniotis D, Spandidos DA, Vlachakis D, Eliopoulos E and Goulielmos GN: Association of endometriosis with cardiovascular disease: Genetic aspects (Review). Int J Mol Med. 51(29)2023.PubMed/NCBI View Article : Google Scholar

34 

Sarmah N, Nauli AM, Ally A and Nauli SM: Interactions among endothelial nitric oxide synthase, cardiovascular system, and nociception during physiological and pathophysiological states. Molecules. 27(2835)2022.PubMed/NCBI View Article : Google Scholar

35 

Fagiani F, Vlachou M, Di Marino D, Canobbio I, Romagnoli A, Racchi M, Govoni S and Lanni C: Pin1 as molecular switch in vascular endothelium: Notes on its putative role in age-associated vascular diseases. Cells. 10(3287)2021.PubMed/NCBI View Article : Google Scholar

36 

Kennard S, Ruan L, Buffett RJ, Fulton D and Venema RC: TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vascul Pharmacol. 81:61–68. 2016.PubMed/NCBI View Article : Google Scholar

37 

Liu M, Yu P, Jiang H, Yang X, Zhao J, Zou Y and Ge J: TThe essential role of Pin1 via NF-κB signaling in vascular inflammation and atherosclerosis in ApoE-/-Mice. Int J Mol Sci. 18(644)2017.PubMed/NCBI View Article : Google Scholar

38 

Liang G, Wang S, Shao J, Jin YJ, Xu L, Yan Y, Günther S, Wang L and Offermanns S: Tenascin-X mediates Flow-induced suppression of EndMT and atherosclerosis. Circ Res. 130:1647–1659. 2022.PubMed/NCBI View Article : Google Scholar

39 

Huminiecki L, Goldovsky L, Freilich S, Moustakas A, Ouzounis C and Heldin CH: Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom. BMC Evol Biol. 9(28)2009.PubMed/NCBI View Article : Google Scholar

40 

Gentile C, Muise-Helmericks RC and Drake CJ: VEGF-mediated phosphorylation of eNOS regulates angioblast and embryonic endothelial cell proliferation. Dev Biol. 373:163–175. 2013.PubMed/NCBI View Article : Google Scholar

41 

Rai N, Sydykov A, Kojonazarov B, Wilhelm J, Manaud G, Veeroju S, Ruppert C, Perros F, Ghofrani HA, Weissmann N, et al: Targeting peptidyl-prolyl isomerase 1 in experimental pulmonary arterial hypertension. Eur Respir J. 60(2101698)2022.PubMed/NCBI View Article : Google Scholar

42 

Kim MR, Choi HS, Heo TH, Hwang SW and Kang KW: Induction of vascular endothelial growth factor by peptidyl-prolyl isomerase Pin1 in breast cancer cells. Biochem Biophys Res Commun. 369:547–553. 2008.PubMed/NCBI View Article : Google Scholar

43 

Toko H, Konstandin MH, Doroudgar S, Ormachea L, Joyo E, Joyo AY, Din S, Gude NA, Collins B, Völkers M, et al: Regulation of cardiac hypertrophic signaling by prolyl isomerase Pin1. Circ Res. 112:1244–1252. 2013.PubMed/NCBI View Article : Google Scholar

44 

Chen Y, Wu YR, Yang HY, Li XZ, Jie MM, Hu CJ, Wu YY, Yang SM and Yang YB: Prolyl isomerase Pin1: A promoter of cancer and a target for therapy. Cell Death Dis. 9(883)2018.PubMed/NCBI View Article : Google Scholar

45 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar

46 

Chuang HH, Zhen YY, Tsai YC, Chuang CH, Huang MS, Hsiao M and Yang CJ: Targeting Pin1 for modulation of cell motility and cancer therapy. Biomedicines. 9(359)2021.PubMed/NCBI View Article : Google Scholar

47 

Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022.PubMed/NCBI View Article : Google Scholar

48 

Wu W, Xue X, Chen Y, Zheng N and Wang J: Targeting prolyl isomerase Pin1 as a promising strategy to overcome resistance to cancer therapies. Pharmacol Res. 184(106456)2022.PubMed/NCBI View Article : Google Scholar

49 

Cohn GM, Liefwalker DF, Langer EM and Sears RC: PIN1 provides dynamic control of MYC in response to extrinsic signals. Front Cell Dev Biol. 8(224)2020.PubMed/NCBI View Article : Google Scholar

50 

Nashaat S, Henen MA, El-Messery SM and Eisa H: New benzimidazoles targeting breast cancer: Synthesis, Pin1 inhibition, 2D NMR binding, and computational studies. Molecules. 27(5245)2022.PubMed/NCBI View Article : Google Scholar

51 

Ueda K, Nakatsu Y, Yamamotoya T, Ono H, Inoue Y, Inoue MK, Mizuno Y, Matsunaga Y, Kushiyama A, Sakoda H, et al: Prolyl isomerase Pin1 binds to and stabilizes acetyl CoA carboxylase 1 protein, thereby supporting cancer cell proliferation. Oncotarget. 10:1637–1648. 2019.PubMed/NCBI View Article : Google Scholar

52 

Tan X, Zhou F, Wan J, Hang J, Chen Z, Li B, Zhang C, Shao K, Jiang P, Shi S, et al: Pin1 expression contributes to lung cancer: Prognosis and carcinogenesis. Cancer Biol Ther. 9:111–119. 2010.PubMed/NCBI View Article : Google Scholar

53 

Kim G, Bhattarai PY and Choi HS: Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 as a molecular target in breast cancer: A therapeutic perspective of gynecological cancer. Arch Pharm Res. 42:128–139. 2019.PubMed/NCBI View Article : Google Scholar

54 

Chen Y, Wu Y, Yu S, Yang H, Wang X, Zhang Y, Zhu S, Jie M, Liu C, Li X, et al: Deficiency of microRNA-628-5p promotes the progression of gastric cancer by upregulating PIN1. Cell Death Dis. 11(559)2020.PubMed/NCBI View Article : Google Scholar

55 

Chen M, Xia Y, Tan Y, Jiang G, Jin H and Chen Y: Downregulation of microRNA-370 in esophageal squamous-cell carcinoma is associated with cancer progression and promotes cancer cell proliferation via upregulating PIN1. Gene. 661:68–77. 2018.PubMed/NCBI View Article : Google Scholar

56 

Kuramochi J, Arai T, Ikeda S, Kumagai J, Uetake H and Sugihara K: High Pin1 expression is associated with tumor progression in colorectal cancer. J Surg Oncol. 94:155–160. 2006.PubMed/NCBI View Article : Google Scholar

57 

Wang T, Liu Z, Shi F and Wang J: Pin1 modulates chemo-resistance by up-regulating FoxM1 and the involvements of Wnt/β-catenin signaling pathway in cervical cancer. Mol Cell Biochem. 413:179–187. 2016.PubMed/NCBI View Article : Google Scholar

58 

Kim G, Bhattarai PY, Lim SC, Kim JY and Choi HS: PIN1 facilitates ubiquitin-mediated degradation of serine/threonine kinase 3 and promotes melanoma development via TAZ activation. Cancer Lett. 499:164–174. 2021.PubMed/NCBI View Article : Google Scholar

59 

Maggio J, Cardama GA, Armando RG, Balcone L, Sobol NT, Gomez DE and Mengual Gómez DL: Key role of PIN1 in telomere maintenance and oncogenic behavior in a human glioblastoma model. Oncol Rep. 49(91)2023.PubMed/NCBI View Article : Google Scholar

60 

Li Q, Dong Z, Lin Y, Jia X, Li Q, Jiang H, Wang L and Gao Y: The rs2233678 polymorphism in PIN1 promoter region reduced cancer risk: A meta-analysis. PLoS One. 8(e68148)2013.PubMed/NCBI View Article : Google Scholar

61 

Wulf G, Garg P, Liou YC, Iglehart D and Lu KP: Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 23:3397–3407. 2004.PubMed/NCBI View Article : Google Scholar

62 

Takahashi K, Akiyama H, Shimazaki K, Uchida C, Akiyama-Okunuki H, Tomita M, Fukumoto M and Uchida T: Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene. 26:3835–3845. 2007.PubMed/NCBI View Article : Google Scholar

63 

Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E, Capaci V, Jordan L, Quinlan P, Thompson A, et al: A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 20:79–91. 2011.PubMed/NCBI View Article : Google Scholar

64 

Zucchi D, Silvagni E, Elefante E, Signorini V, Cardelli C, Trentin F, Schilirò D, Cascarano G, Valevich A, Bortoluzzi A and Tani C: Systemic lupus erythematosus: One year in review 2023. Clin Exp Rheumatol. 41:997–1008. 2023.PubMed/NCBI View Article : Google Scholar

65 

Baek WY, Choi YS, Lee SW, Son IO, Jeon KW, Choi SD and Suh CH: Toll-like receptor signaling inhibitory peptide improves inflammation in animal model and human systemic lupus erythematosus. Int J Mol Sci. 22(12764)2021.PubMed/NCBI View Article : Google Scholar

66 

Khoryati L, Augusto JF, Shipley E, Contin-Bordes C, Douchet I, Mitrovic S, Truchetet ME, Lazaro E, Duffau P, Couzi L, et al: IgE inhibits Toll-like receptor 7- and Toll-like receptor 9-mediated expression of interferon-α by plasmacytoid dendritic cells in patients with systemic lupus erythematosus. Arthritis Rheumatol. 68:2221–2231. 2016.PubMed/NCBI View Article : Google Scholar

67 

Salloum R and Niewold TB: Interferon regulatory factors in human lupus pathogenesis. Transl Res. 157:326–331. 2011.PubMed/NCBI View Article : Google Scholar

68 

Tun-Kyi A, Finn G, Greenwood A, Nowak M, Lee TH, Asara JM, Tsokos GC, Fitzgerald K, Israel E, Li X, et al: Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon-mediated immunity. Nat Immunol. 12:733–741. 2011.PubMed/NCBI View Article : Google Scholar

69 

Wei S, Yoshida N, Finn G, Kozono S, Nechama M, Kyttaris VC, Zhen Zhou X, Tsokos GC and Ping Lu K: Pin1-Targeted therapy for systemic lupus erythematosus. Arthritis Rheumatol. 68:2503–2513. 2016.PubMed/NCBI View Article : Google Scholar

70 

Jacob N and Stohl W: Cytokine disturbances in systemic lupus erythematosus. Arthritis Res Ther. 13(228)2011.PubMed/NCBI View Article : Google Scholar

71 

Ding J, Su S, You T, Xia T, Lin X, Chen Z and Zhang L: Serum interleukin-6 level is correlated with the disease activity of systemic lupus erythematosus: A meta-analysis. Clinics (Sao Paulo). 75(e1801)2020.PubMed/NCBI View Article : Google Scholar

72 

Tackey E, Lipsky PE and Illei GG: Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus. 13:339–343. 2004.PubMed/NCBI View Article : Google Scholar

73 

Takeno M, Gunn J, Suzuki JT, Kim NP, Kang J, Finn TB, Vazirpour M, Martin W and Leung CJ: A novel role of peptidyl-prolyl isomerase-1 as inducer of IL-6 expression in systemic lupus erythematosus. Am J BioMedicine. 3:439–450. 2015.

74 

Jang S, Kwon EJ and Lee JJ: Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci. 23(905)2022.PubMed/NCBI View Article : Google Scholar

75 

Nagaoka A, Takizawa N, Takeuchi R, Inaba Y, Saito I, Nagashima Y, Saito T and Aoki I: Possible involvement of peptidylprolyl isomerase Pin1 in rheumatoid arthritis. Pathol Int. 61:59–66. 2011.PubMed/NCBI View Article : Google Scholar

76 

Makarov SS: NF-kappa B in rheumatoid arthritis: A pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 3:200–206. 2001.PubMed/NCBI View Article : Google Scholar

77 

Araki Y and Mimura T: Matrix metalloproteinase gene activation resulting from disordred epigenetic mechanisms in rheumatoid arthritis. Int J Mol Sci. 18(905)2017.PubMed/NCBI View Article : Google Scholar

78 

Li X and Makarov SS: An essential role of NF-kappaB in the ‘tumor-like’ phenotype of arthritic synoviocytes. Proc Natl Acad Sci USA. 103:17432–17437. 2006.PubMed/NCBI View Article : Google Scholar

79 

Ma Y, Hong FF and Yang SL: Role of prostaglandins in rheumatoid arthritis. Clin Exp Rheumatol. 39:162–172. 2021.PubMed/NCBI View Article : Google Scholar

80 

Kondo N, Kuroda T and Kobayashi D: Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. 22(10922)2021.PubMed/NCBI View Article : Google Scholar

81 

Jeong HG, Pokharel YR, Lim SC, Hwang YP, Han EH, Yoon JH, Ahn SG, Lee KY and Kang KW: Novel role of Pin1 induction in type II collagen-mediated rheumatoid arthritis. J Immunol. 183:6689–6697. 2009.PubMed/NCBI View Article : Google Scholar

82 

M'Koma AE: Inflammatory bowel disease: Clinical diagnosis and pharmaceutical management. Med Res Arch. 11(10)2023.PubMed/NCBI View Article : Google Scholar

83 

Matsunaga Y, Hasei S, Yamamotoya T, Honda H, Kushiyama A, Sakoda H, Fujishiro M, Ono H, Ito H, Okabe T, et al: Pathological role of Pin1 in the development of DSS-Induced colitis. Cells. 10(1230)2021.PubMed/NCBI View Article : Google Scholar

84 

Shao BZ, Wang SL, Pan P, Yao J, Wu K, Li ZS, Bai Y and Linghu EQ: Targeting NLRP3 inflammasome in inflammatory bowel disease: Putting out the fire of inflammation. Inflammation. 42:1147–1159. 2019.PubMed/NCBI View Article : Google Scholar

85 

Dong R, Xue Z, Fan G, Zhang N, Wang C, Li G and Da Y: Pin1 promotes NLRP3 inflammasome activation by phosphorylation of p38 MAPK pathway in septic shock. Front Immunol. 12(620238)2021.PubMed/NCBI View Article : Google Scholar

86 

Dagenais A, Villalba-Guerrero C and Olivier M: Trained immunity: A ‘new’ weapon in the fight against infectious diseases. Front Immunol. 14(1147476)2023.PubMed/NCBI View Article : Google Scholar

87 

Kanna M, Nakatsu Y, Yamamotoya T, Encinas J, Ito H, Okabe T, Asano T and Sakaguchi T: Roles of peptidyl prolyl isomerase Pin1 in viral propagation. Front Cell Dev Biol. 10(1005325)2022.PubMed/NCBI View Article : Google Scholar

88 

Stroh LJ and Krey T: Structural insights into hepatitis C virus neutralization. Curr Opin Virol. 60(101316)2023.PubMed/NCBI View Article : Google Scholar

89 

Lim YS, Tran HT, Park SJ, Yim SA and Hwang SB: Peptidyl-prolyl isomerase Pin1 is a cellular factor required for hepatitis C virus propagation. J Virol. 85:8777–8788. 2011.PubMed/NCBI View Article : Google Scholar

90 

Jeng WJ, Papatheodoridis GV and Lok ASF: Hepatitis B. Lancet. 401:1039–1052. 2023.PubMed/NCBI View Article : Google Scholar

91 

Kojima Y and Ryo A: Pinning down viral proteins: A new prototype for virus-host cell interaction. Front Microbiol. 1(107)2010.PubMed/NCBI View Article : Google Scholar

92 

Pang R, Lee TK, Poon RT, Fan ST, Wong KB, Kwong YL and Tse E: Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology. 132:1088–1103. 2007.PubMed/NCBI View Article : Google Scholar

93 

Shang S, Hua F and Hu ZW: The regulation of β-catenin activity and function in cancer: Therapeutic opportunities. Oncotarget. 8:33972–33989. 2017.PubMed/NCBI View Article : Google Scholar

94 

Ao R, Zhang DR, Du YQ and Wang Y: Expression and significance of Pin1, β-catenin and cyclin D1 in hepatocellular carcinoma. Mol Med Rep. 10:1893–1898. 2014.PubMed/NCBI View Article : Google Scholar

95 

Nishi M, Miyakawa K, Matsunaga S, Khatun H, Yamaoka Y, Watashi K, Sugiyama M, Kimura H, Wakita T and Ryo A: Prolyl Isomerase Pin1 regulates the stability of hepatitis B virus core protein. Front Cell Dev Biol. 8(26)2020.PubMed/NCBI View Article : Google Scholar

96 

Kwon H, Kim J, Song C, Sajjad MA, Ha J, Jung J, Park S, Shin HJ and Kim K: Peptidyl-prolyl cis/trans isomerase Pin1 interacts with hepatitis B virus core particle, but not with HBc protein, to promote HBV replication. Front Cell Infect Microbiol. 13(1195063)2023.PubMed/NCBI View Article : Google Scholar

97 

Womack J and Jimenez M: Common questions about infectious mononucleosis. Am Fam Physician. 91:372–376. 2015.PubMed/NCBI

98 

Hutcheson RL, Chakravorty A and Sugden B: Burkitt lymphomas evolve to escape dependencies on Epstein-Barr virus. Front Cell Infect Microbiol. 10(606412)2020.PubMed/NCBI View Article : Google Scholar

99 

Narita Y, Murata T, Ryo A, Kawashima D, Sugimoto A, Kanda T, Kimura H and Tsurumi T: Pin1 interacts with the Epstein-Barr virus DNA polymerase catalytic subunit and regulates viral DNA replication. J Virol. 87:2120–2127. 2013.PubMed/NCBI View Article : Google Scholar

100 

Chang ET, Ye W, Zeng YX and Adami HO: The evolving epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 30:1035–1047. 2021.PubMed/NCBI View Article : Google Scholar

101 

Xu M, Cheung CC, Chow C, Lun SW, Cheung ST and Lo KW: Overexpression of PIN1 enhances cancer growth and aggressiveness with cyclin D1 induction in EBV-Associated nasopharyngeal carcinoma. PLoS One. 11(e0156833)2016.PubMed/NCBI View Article : Google Scholar

102 

Yu JH, Im CY and Min SH: Function of PIN1 in cancer development and its inhibitors as cancer therapeutics. Front Cell Dev Biol. 8(120)2020.PubMed/NCBI View Article : Google Scholar

103 

Letafati A, Soheili R, Norouzi M, Soleimani P and Mozhgani SH: Therapeutic approaches for HTLV-1-associated adult T-cell leukemia/lymphoma: A comprehensive review. Med Oncol. 40(295)2023.PubMed/NCBI View Article : Google Scholar

104 

Ernzen KJ and Panfil AR: Regulation of HTLV-1 transformation. Biosci Rep. 42(BSR20211921)2022.PubMed/NCBI View Article : Google Scholar

105 

Peloponese JM Jr, Yasunaga J, Kinjo T, Watashi K and Jeang KT: Peptidylproline cis-trans-isomerase Pin1 interacts with human T-cell leukemia virus type 1 tax and modulates its activation of NF-kappaB. J Virol. 83:3238–3248. 2009.PubMed/NCBI View Article : Google Scholar

106 

Jeong SJ, Ryo A and Yamamoto N: The prolyl isomerase Pin1 stabilizes the human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein and promotes malignant transformation. Biochem Biophys Res Commun. 381:294–299. 2009.PubMed/NCBI View Article : Google Scholar

107 

Mesnard JM, Barbeau B, Cesaire R and Peloponese JM: Roles of HTLV-1 basic zip factor (HBZ) in viral chronicity and leukemic transformation. Potential new therapeutic approaches to prevent and treat HTLV-1-related diseases. Viruses. 7:6490–6505. 2015.PubMed/NCBI View Article : Google Scholar

108 

Szymonowicz KA and Chen J: Biological and clinical aspects of HPV-related cancers. Cancer Biol Med. 17:864–878. 2020.PubMed/NCBI View Article : Google Scholar

109 

Fowler JR, Maani EV, Dunton CJ and Jack BW: Cervical Cancer. In: StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Elizabeth Maani declares no relevant financial relationships with ineligible companies. Disclosure: Charles Dunton declares no relevant financial relationships with ineligible companies. Disclosure: Brian Jack declares no relevant financial relationships with ineligible companies, 2023.

110 

McBride AA: The papillomavirus E2 proteins. Virology. 445:57–79. 2013.PubMed/NCBI View Article : Google Scholar

111 

Hareza DA, Wilczynski JR and Paradowska E: Human papillomaviruses as infectious agents in gynecological cancers. Oncogenic properties of viral proteins. Int J Mol Sci. 23(1818)2022.PubMed/NCBI View Article : Google Scholar

112 

Prabhavathy D, Vijayalakshmi R, Kanchana MP and Karunagaran D: HHPV16 E2 enhances the expression of NF-κB and STAT3 target genes and potentiates NF-κB activation by inflammatory mediators. Cell Immunol. 292:70–77. 2014.PubMed/NCBI View Article : Google Scholar

113 

Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M and Kirabo A: HIV-Host Cell Interactions. Cells. 12(1351)2023.PubMed/NCBI View Article : Google Scholar

114 

Sarkar S, Balakrishnan K, Chintala K, Chintala K, Mohareer K, Luedde T, Vasudevan AAJ, Münk C and Banerjee S: Tough Way In, Tough Way Out: The complex interplay of host and viral factors in nucleocytoplasmic trafficking during HIV-1 infection. Viruses. 14(2503)2022.PubMed/NCBI View Article : Google Scholar

115 

Watashi K, Khan M, Yedavalli VR, Yeung ML, Strebel K and Jeang KT: Human immunodeficiency virus type 1 replication and regulation of APOBEC3G by peptidyl prolyl isomerase Pin1. J Virol. 82:9928–9936. 2008.PubMed/NCBI View Article : Google Scholar

116 

Saleh S, Lu HK, Evans V, Harisson D, Zhou J, Jaworowski A, Sallmann G, Cheong KY, Mota TM, Tennakoon S, et al: HIV integration and the establishment of latency in CCL19-treated resting CD4(+) T cells require activation of NF-κB. Retrovirology. 13(49)2016.PubMed/NCBI View Article : Google Scholar

117 

Dochi T, Nakano T, Inoue M, Takamune N, Shoji S, Sano K and Misumi S: Phosphorylation of human immunodeficiency virus type 1 capsid protein at serine 16, required for peptidyl-prolyl isomerase-dependent uncoating, is mediated by virion-incorporated extracellular signal-regulated kinase 2. J Gen Virol. 95:1156–1166. 2014.PubMed/NCBI View Article : Google Scholar

118 

Rossi E, Meuser ME, Cunanan CJ and Cocklin S: Structure, function, and interactions of the HIV-1 Capsid Protein. Life (Basel). 11(100)2021.PubMed/NCBI View Article : Google Scholar

119 

Bao Q and Zhou J: Various strategies for developing APOBEC3G protectors to circumvent human immunodeficiency virus type 1. Eur J Med Chem. 250(115188)2023.PubMed/NCBI View Article : Google Scholar

120 

Hu B, Guo H, Zhou P and Shi ZL: Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 19:141–154. 2021.PubMed/NCBI View Article : Google Scholar

121 

Yamamotoya T, Nakatsu Y, Kanna M, Hasei S, Ohata Y, Encinas J, Ito H, Okabe T, Asano T and Sakaguchi T: Prolyl isomerase Pin1 plays an essential role in SARS-CoV-2 proliferation, indicating its possibility as a novel therapeutic target. Sci Rep. 11(18581)2021.PubMed/NCBI View Article : Google Scholar

122 

Ino Y, Nishi M, Yamaoka Y, Miyakawa K, Jeremiah SS, Osada M, Kimura Y and Ryo A: Phosphopeptide enrichment using Phos-tag technology reveals functional phosphorylation of the nucleocapsid protein of SARS-CoV-2. J Proteomics. 255(104501)2022.PubMed/NCBI View Article : Google Scholar

123 

Ye H, Robak LA, Yu M, Cykowski M and Shulman JM: Genetics and pathogenesis of Parkinson's syndrome. Annu Rev Pathol. 18:95–121. 2023.PubMed/NCBI View Article : Google Scholar

124 

Hallacli E, Kayatekin C, Nazeen S, Wang XH, Sheinkopf Z, Sathyakumar S, Sarkar S, Jiang X, Dong X, Di Maio R, et al: The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell. 185:2035–2056 e2033. 2022.PubMed/NCBI View Article : Google Scholar

125 

Gao V, Briano JA, Komer LE and Burre J: Functional and Pathological Effects of α-Synuclein on Synaptic SNARE Complexes. J Mol Biol. 435(167714)2023.PubMed/NCBI View Article : Google Scholar

126 

Carvajal-Oliveros A, Dominguez-Baleon C, Sanchez-Diaz I, Zambrano-Tipan D, Hernández-Vargas R, Campusano JM, Narváez-Padilla V and Reynaud E: Parkinsonian phenotypes induced by Synphilin-1 expression are differentially contributed by serotonergic and dopaminergic circuits and suppressed by nicotine treatment. PLoS One. 18(e0282348)2023.PubMed/NCBI View Article : Google Scholar

127 

Ghosh A, Saminathan H, Kanthasamy A, Anantharam V, Jin H, Sondarva G, Harischandra DS, Qian Z, Rana A and Kanthasamy AG: The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: Relevance to the pathogenesis of Parkinson disease. J Biol Chem. 288:21955–21971. 2013.PubMed/NCBI View Article : Google Scholar

128 

Ryo A, Togo T, Nakai T, Hirai A, Nishi M, Yamaguchi A, Suzuki K, Hirayasu Y, Kobayashi H, Perrem K, et al: Prolyl-isomerase Pin1 accumulates in lewy bodies of parkinson disease and facilitates formation of alpha-synuclein inclusions. J Biol Chem. 281:4117–4125. 2006.PubMed/NCBI View Article : Google Scholar

129 

Weller J and Budson A: Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res 7: Faculty Rev-1161, 2018.

130 

Karran E and De Strooper B: The amyloid hypothesis in Alzheimer disease: New insights from new therapeutics. Nat Rev Drug Discov. 21:306–318. 2022.PubMed/NCBI View Article : Google Scholar

131 

Ma C, Hong F and Yang S: Amyloidosis in Alzheimer's Disease: Pathogeny, etiology, and related therapeutic directions. Molecules. 27(1210)2022.PubMed/NCBI View Article : Google Scholar

132 

Bianchi M and Manco M: Pin1 modulation in physiological status and neurodegeneration. Any contribution to the pathogenesis of type 3 diabetes? Int J Mol Sci. 19(2319)2018.PubMed/NCBI View Article : Google Scholar

133 

Wang SC, Hu XM and Xiong K: The regulatory role of Pin1 in neuronal death. Neural Regen Res. 18:74–80. 2023.PubMed/NCBI View Article : Google Scholar

134 

Fagiani F, Govoni S, Racchi M and Lanni C: The Peptidyl-prolyl Isomerase Pin1 in neuronal Signaling: From neurodevelopment to neurodegeneration. Mol Neurobiol. 58:1062–1073. 2021.PubMed/NCBI View Article : Google Scholar

135 

Palaiogeorgou AM, Papakonstantinou E, Golfinopoulou R, Sigala M, Mitsis T, Papageorgiou L, Diakou I, Pierouli K, Dragoumani K, Spandidos DA, et al: Recent approaches on Huntington's disease (Review). Biomed Rep. 18(5)2023.PubMed/NCBI View Article : Google Scholar

136 

D'Egidio F, Castelli V, Cimini A and d'Angelo M: Cell rearrangement and oxidant/antioxidant imbalance in huntington's disease. Antioxidants (Basel). 12(571)2023.PubMed/NCBI View Article : Google Scholar

137 

Pereira CAS, Medaglia NC, Ureshino RP, Bincoletto C, Antonioli M, Fimia GM, Piacentini M, Pereira GJDS, Erustes AG and Smaili SS: NAADP-Evoked Ca2+ signaling leads to mutant huntingtin aggregation and autophagy impairment in murine astrocytes. Int J Mol Sci. 24(5593)2023.PubMed/NCBI View Article : Google Scholar

138 

Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT and Reits EA: Ubiquitin-modifying enzymes in Huntington's disease. Front Mol Biosci. 10(1107323)2023.PubMed/NCBI View Article : Google Scholar

139 

Napoli M, Girardini JE, Piazza S and Del Sal G: Wiring the oncogenic circuitry: Pin1 unleashes mutant p53. Oncotarget. 2:654–656. 2011.PubMed/NCBI View Article : Google Scholar

140 

Steger M, Murina O, Hühn D, Ferretti LP, Walser R, Hänggi K, Lafranchi L, Neugebauer C, Paliwal S, Janscak P, et al: Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol Cell. 50:333–343. 2013.PubMed/NCBI View Article : Google Scholar

141 

Ulugut H and Pijnenburg YAL: Frontotemporal dementia: Past, present, and future. Alzheimers Dement. 19:5253–5263. 2023.PubMed/NCBI View Article : Google Scholar

142 

Thorpe JR, Mosaheb S, Hashemzadeh-Bonehi L, Cairns NJ, Kay JE, Morley SJ and Rulten SL: Shortfalls in the peptidyl-prolyl cis-trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Neurobiol Dis. 17:237–249. 2004.PubMed/NCBI View Article : Google Scholar

143 

Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT and Nixon RA: Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: Differential effects of APOE genotype and presenilin mutations. Am J Pathol. 157:277–286. 2000.PubMed/NCBI View Article : Google Scholar

144 

Husseman JW, Nochlin D and Vincent I: Mitotic activation: A convergent mechanism for a cohort of neurodegenerative diseases. Neurobiol Aging. 21:815–828. 2000.PubMed/NCBI View Article : Google Scholar

145 

Mead RJ, Shan N, Reiser HJ, Marshall F and Shaw PJ: Amyotrophic lateral sclerosis: A neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov. 22:185–212. 2023.PubMed/NCBI View Article : Google Scholar

146 

Iridoy MO, Zubiri I, Zelaya MV, Martinez L, Ausín K, Lachen-Montes M, Santamaría E, Fernandez-Irigoyen J and Jericó I: Neuroanatomical quantitative proteomics reveals common pathogenic biological routes between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Int J Mol Sci. 20(4)2018.PubMed/NCBI View Article : Google Scholar

147 

Perrot R and Eyer J: Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull. 80:282–295. 2009.PubMed/NCBI View Article : Google Scholar

148 

Kesavapany S, Patel V, Zheng YL, Pareek TK, Bjelogrlic M, Albers W, Amin N, Jaffe H, Gutkind JS, Strong MJ, et al: Inhibition of Pin1 reduces glutamate-induced perikaryal accumulation of phosphorylated neurofilament-H in neurons. Mol Biol Cell. 18:3645–3655. 2007.PubMed/NCBI View Article : Google Scholar

149 

Chao SH, Greenleaf AL and Price DH: Juglone, an inhibitor of the peptidyl-prolyl isomerase Pin1, also directly blocks transcription. Nucleic Acids Res. 29:767–773. 2001.PubMed/NCBI View Article : Google Scholar

150 

Xi L, Wang Y, He Q, Zhang Q and Du L: Interaction between Pin1 and its natural product inhibitor epigallocatechin-3-gallate by spectroscopy and molecular dynamics simulations. Spectrochim Acta A Mol Biomol Spectrosc. 169:134–143. 2016.PubMed/NCBI View Article : Google Scholar

151 

Bayer E, Thutewohl M, Christner C, Tradler T, Osterkamp F, Waldmann H and Bayer P: Identification of hPin1 inhibitors that induce apoptosis in a mammalian Ras transformed cell line. Chem Commun (Camb). 516–518. 2005.PubMed/NCBI View Article : Google Scholar

152 

Jiang B and Pei D: A selective, cell-permeable nonphosphorylated bicyclic peptidyl inhibitor against Peptidyl-Prolyl isomerase Pin1. J Med Chem. 58:6306–6312. 2015.PubMed/NCBI View Article : Google Scholar

153 

He S, Li L, Jin R and Lu X: Biological function of Pin1 in vivo and its inhibitors for preclinical study: Early development, current strategies, and future directions. J Med Chem. 66:9251–9277. 2023.PubMed/NCBI View Article : Google Scholar

154 

Guo C, Hou X, Dong L, Dagostino E, Greasley S, Ferre R, Marakovits J, Johnson MC, Matthews D, Mroczkowski B, et al: Structure-based design of novel human Pin1 inhibitors (I). Bioorg Med Chem Lett. 19:5613–5616. 2009.PubMed/NCBI View Article : Google Scholar

155 

Russo Spena C, De Stefano L, Poli G, Granchi C, El Boustani M, Ecca F, Grassi G, Grassi M, Canzonieri V, Giordano A, et al: Virtual screening identifies a PIN1 inhibitor with possible antiovarian cancer effects. J Cell Physiol. 234:15708–15716. 2019.PubMed/NCBI View Article : Google Scholar

156 

Campaner E, Rustighi A, Zannini A, Cristiani A, Piazza S, Ciani Y, Kalid O, Golan G, Baloglu E, Shacham S, et al: A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action. Nat Commun. 8(15772)2017.PubMed/NCBI View Article : Google Scholar

157 

Liu L, Zhu R, Li J, Pei Y, Wang S, Xu P, Wang M, Wen Y, Zhang H, Du D, et al: Computational and structure-based development of high potent cell-active covalent inhibitor targeting the Peptidyl-Prolyl isomerase NIMA-Interacting-1 (Pin1). J Med Chem. 65:2174–2190. 2022.PubMed/NCBI View Article : Google Scholar

158 

Born A, Henen MA and Vogeli B: Activity and Affinity of Pin1 Variants. Molecules. 25:2019.PubMed/NCBI View Article : Google Scholar

159 

Lu PJ, Zhou XZ, Liou YC, Noel JP and Lu KP: Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem. 277:2381–2384. 2002.PubMed/NCBI View Article : Google Scholar

160 

Verdecia MA, Bowman ME, Lu KP, Hunter T and Noel JP: Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol. 7:639–643. 2000.PubMed/NCBI View Article : Google Scholar

161 

Wang JZ, Xi L, Lin T, Wang Y, Zhu GF and Du LF: The structural and functional role of the three tryptophan residues in Pin1. J Photochem Photobiol B. 146:58–67. 2015.PubMed/NCBI View Article : Google Scholar

162 

Li K, Li L, Wang S, Li X, Ma T, Liu D, Jing Y and Zhao L: Design and synthesis of novel 2-substituted 11-keto-boswellic acid heterocyclic derivatives as anti-prostate cancer agents with Pin1 inhibition ability. Eur J Med Chem. 126:910–919. 2017.PubMed/NCBI View Article : Google Scholar

163 

Maggio J, Cabrera M, Armando R, Chinestrad P, Pifano M, Menna PL, Gomez DE and Gómez DLM: Rational design of PIN1 inhibitors for cancer treatment based on conformational diversity analysis and docking based virtual screening. J Biomol Struct Dyn. 40:5858–5867. 2022.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Maggio J, Armando RG, Balcone L, Vilarullo RN, Casco MD, Mengual Gomez DL and Gomez DE: Role of PIN1 in human pathology: Cellular regulation, pathogenesis and therapeutic implications (Review). World Acad Sci J 6: 5, 2024.
APA
Maggio, J., Armando, R.G., Balcone, L., Vilarullo, R.N., Casco, M.D., Mengual Gomez, D.L., & Gomez, D.E. (2024). Role of PIN1 in human pathology: Cellular regulation, pathogenesis and therapeutic implications (Review). World Academy of Sciences Journal, 6, 5. https://doi.org/10.3892/wasj.2023.220
MLA
Maggio, J., Armando, R. G., Balcone, L., Vilarullo, R. N., Casco, M. D., Mengual Gomez, D. L., Gomez, D. E."Role of PIN1 in human pathology: Cellular regulation, pathogenesis and therapeutic implications (Review)". World Academy of Sciences Journal 6.1 (2024): 5.
Chicago
Maggio, J., Armando, R. G., Balcone, L., Vilarullo, R. N., Casco, M. D., Mengual Gomez, D. L., Gomez, D. E."Role of PIN1 in human pathology: Cellular regulation, pathogenesis and therapeutic implications (Review)". World Academy of Sciences Journal 6, no. 1 (2024): 5. https://doi.org/10.3892/wasj.2023.220
Copy and paste a formatted citation
x
Spandidos Publications style
Maggio J, Armando RG, Balcone L, Vilarullo RN, Casco MD, Mengual Gomez DL and Gomez DE: Role of PIN1 in human pathology: Cellular regulation, pathogenesis and therapeutic implications (Review). World Acad Sci J 6: 5, 2024.
APA
Maggio, J., Armando, R.G., Balcone, L., Vilarullo, R.N., Casco, M.D., Mengual Gomez, D.L., & Gomez, D.E. (2024). Role of PIN1 in human pathology: Cellular regulation, pathogenesis and therapeutic implications (Review). World Academy of Sciences Journal, 6, 5. https://doi.org/10.3892/wasj.2023.220
MLA
Maggio, J., Armando, R. G., Balcone, L., Vilarullo, R. N., Casco, M. D., Mengual Gomez, D. L., Gomez, D. E."Role of PIN1 in human pathology: Cellular regulation, pathogenesis and therapeutic implications (Review)". World Academy of Sciences Journal 6.1 (2024): 5.
Chicago
Maggio, J., Armando, R. G., Balcone, L., Vilarullo, R. N., Casco, M. D., Mengual Gomez, D. L., Gomez, D. E."Role of PIN1 in human pathology: Cellular regulation, pathogenesis and therapeutic implications (Review)". World Academy of Sciences Journal 6, no. 1 (2024): 5. https://doi.org/10.3892/wasj.2023.220
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team