|
1
|
Watson H: Biological membranes. Essays
Biochem. 59:43–69. 2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Gopalakrishnan G, Awasthi A, Belkaid W, De
Faria O Jr, Liazoghli D, Colman DR and Dhaunchak AS: Lipidome and
proteome map of myelin membranes. J Neurosci Res. 91:321–334.
2013.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Muller MP, Jiang T, Sun C, Lihan M, Pant
S, Mahinthichaichan P, Trifan A and Tajkhorshid E: Characterization
of lipid-protein interactions and lipid-mediated modulation of
membrane protein function through molecular simulation. Chem Rev.
119:6086–6161. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Wardhan R and Mudgal P: Membrane Proteins
in Textbook of Membrane Biology. Springer, Singapore, pp49-80,
2017.
|
|
5
|
Bai L and Li H: Structural insights into
the membrane chaperones for multi-pass membrane protein biogenesis.
Curr Opin Struct Biol. 79(102563)2023.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Hegde RS and Keenan RJ: The mechanisms of
integral membrane protein biogenesis. Nat Rev Mol Cell Biol.
23:107–124. 2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Tzen JTC: Integral proteins in plant oil
bodies. ISRN Botany. 2012:1–16. 2012.
|
|
8
|
Che T: Advances in the treatment of
chronic pain by targeting GPCRs. Biochemistry. 60:1401–1412.
2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Li Y, Zhang H, Kosturakis AK, Cassidy RM,
Zhang H, Kennamer-Chapman RM, Jawad AB, Colomand CM, Harrison DS
and Dougherty PM: MAPK signaling downstream to TLR4 contributes to
paclitaxel-induced peripheral neuropathy. Brain Behav Immun.
49:255–266. 2015.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Müller GA and Müller TD: (Patho)Physiology
of glycosylphosphatidylinositol-anchored proteins I: Localization
at plasma membranes and extracellular compartments. Biomolecules.
13(855)2023.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Lee IH, Imanaka M, Modahl EH and
Torres-Ocampo AP: Lipid raft phase modulation by membrane-anchored
proteins with inherent phase separation properties. ACS Omega.
4:6551–6559. 2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Henderson JC, Zimmerman SM, Crofts AA,
Boll JM, Kuhns LG, Herrera CM and Trent MS: The power of asymmetry:
Architecture and assembly of the gram-negative outer membrane lipid
bilayer. Ann Rev Microbiol. 70:255–278. 2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Lorent JH, Levental KR, Ganesan L,
Rivera-Longsworth G, Sezgin E, Doktorova M, Lyman E and levental I:
Plasma membranes are asymmetric in lipid unsaturation, packing and
protein shape. Nat Chem Biol. 16:642–652. 2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Coskun O: Separation techniques:
Chromatography. North Clin Istanb. 3:156–160. 2016.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Jorrin-Novo JV, Komatsu S, Sanchez-Lucas R
and de Francisco LE: Gel electrophoresis-based plant proteomics:
Past, present, and future. Happy 10th anniversary Journal of
Proteomics! J Proteomics. 198:1–10. 2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Orwick-Rydmark M, Arnold T and Linke D:
The use of detergents to purify membrane proteins. Curr Protoc
Protein Sci. 84:4.8.1–4.8.35. 2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zhou D, Zhong S, Han X, Liu D, Fang H and
Wang Y: Protocol for mitochondrial isolation and sub-cellular
localization assay for mitochondrial proteins. STAR Protoc.
4(102088)2023.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Webster J and Oxley D: Protein
identification by MALDI-TOF mass spectrometry. Methods Mol Biol.
2012:227–240. 2012.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Santos IC, Hildenbrand ZL and Schug KA:
Applications of MALDI-TOF MS in environmental microbiology.
Analyst. 141:2827–2837. 2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Crook AA and Powers R: Quantitative
NMR-based biomedical metabolomics: Current status and applications.
Molecules. 25(5128)2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Hatzakis E: Nuclear magnetic resonance
(NMR) spectroscopy in food science: A comprehensive review. Compr
Rev Food Sci Food Saf. 18:189–220. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Li M, Xu W and Su Y: Solid-state NMR
spectroscopy in pharmaceutical sciences. Trends Anal Chem.
135(116152)2021.
|
|
23
|
D'cruz D, Babu A and Joshy E:
Bioanalytical method development and validation of ticagrelor by
rp-Hplc. Int J App Pharm. 9(51)2017.
|
|
24
|
Aneesh TP, Radhakrishnan R, Sasidharan APM
and Choyal M: RP-HPLC method for simultaneous determination of
losartan and chlorthalidone in pharmaceutical dosage form. Int Res
J Pharm. 6:453–457. 2015.
|
|
25
|
Sobsey CA, Ibrahim S, Richard VR, Gaspar
V, Mitsa G, Lacasse V, Zahedi RP, Batist G and Borchers CH:
Targeted and untargeted proteomics approaches in biomarker
development. Proteomics. 20(1900029)2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Gallagher RI, Wulfkuhle J, Wolf DM,
Brown-Swigart L, Yau C, O'Grady N, Basu A, Lu R, Campbell MJ,
Magbanua MJ, et al: Protein signaling and drug target activation
signatures to guide therapy prioritization: Therapeutic resistance
and sensitivity in the I-SPY 2 trial. Cell Rep Med.
4(101312)2023.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Mann M: The rise of mass spectrometry and
the fall of edman degradation. Clin Chem. 62:293–294.
2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Matsudaira P: A Practical Guide to Protein
and Peptide Purification for Microsequencing. Matsudaira P (ed).
2nd edition. Academic Press, San Diego, CA, pp1-13, 1993.
|
|
29
|
Pomerantz SC and McCloskey JA: Analysis of
RNA hydrolyzates by liquid chromatography-mass spectrometry.
Methods Enzymol. 193:796–824. 1990.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Su D, Chan CT, Gu C, Lim KS, Chionh YH,
McBee ME, Russell BS, Babu IR, Begley TJ and Dedon PC: Quantitative
analysis of ribonucleoside modifications in tRNA by HPLC-coupled
mass spectrometry. Nat Protoc. 9:828–841. 2014.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Cupp-Sutton KA and Wu S: High-throughput
quantitative top-down proteomics. Mol Omics. 16:91–99.
2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Gao Y and Yates JR III: Protein analysis
by shotgun proteomics. In: Mass Spectrometry-Based Chemical
Proteomics. John Wiley & Sons, Ltd., Hoboken NJ, pp1-38,
2019.
|
|
33
|
Rozario LT, Sharker T and Nila TA: In
silico analysis of deleterious SNPs of human MTUS1 gene and their
impacts on subsequent protein structure and function. PLoS One.
16(e0252932)2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Huang C, Hou C, Ijaz M, Yan T, Li X, Li Y
and Zhang D: Proteomics discovery of protein biomarkers linked to
meat quality traits in post-mortem muscles: Current trends and
future prospects: A review. Trends Food Sci Technol. 105:416–432.
2020.
|
|
35
|
Yokota H: Applications of proteomics in
pharmaceutical research and development. Biochim Biophys Acta
Proteins Proteom. 1867:17–21. 2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Zhao Y, Sun Q and Huo B: Focal adhesion
regulates osteogenic differentiation of mesenchymal stem cells and
osteoblasts. Biomater Transl. 2:312–322. 2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
de Oliveira Garcia FA, de Andrade ES and
Palmero EI: Insights on variant analysis in silico tools for
pathogenicity prediction. Front Genet. 13(1010327)2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Deshpande RR, Tiwari AP, Nyayanit N and
Modak M: In silico molecular docking analysis for repurposing
therapeutics against multiple proteins from SARS-CoV-2. Eur J
Pharmacol. 886(173430)2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Cramer P: AlphaFold2 and the future of
structural biology. Nat Struct Mol Biol. 28:704–705.
2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Cavasotto CN and Phatak SS: Homology
modeling in drug discovery: Current trends and applications. Drug
Discov Today. 14:676–683. 2009.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Taha MO, Atallah N, Al-Bakri AG,
Paradis-Bleau C, Zalloum H, Younis KS and Levesque RC: Discovery of
new MurF inhibitors via pharmacophore modeling and QSAR analysis
followed by in-silico screening. Bioorg Med Chem. 16:1218–1235.
2008.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Huang YZ, Chen SY and Deng F:
Well-characterized sequence features of eukaryote genomes and
implications for ab initio gene prediction. Comput Struct
Biotechnol J. 14:298–303. 2016.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Dereeper A, Audic S, Claverie JM and Blanc
G: BLAST-EXPLORER helps you building datasets for phylogenetic
analysis. BMC Evol Biol. 10(8)2010.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Meglécz E, Pech N, Gilles A, Dubut V,
Hingamp P, Trilles A, Grenier R and Martin J: QDD version 3.1: A
user-friendly computer program for microsatellite selection and
primer design revisited: Experimental validation of variables
determining genotyping success rate. Mol Ecol Resour. 14:1302–1313.
2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Jess R, Ling T, Xiong Y, Wright CJ and
Zhao F: Mechanical environment for in vitro cartilage tissue
engineering assisted by in silico models. Biomater Transl. 4:18–26.
2023.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Wu YW, Simmons BA and Singer SW: MaxBin
2.0: An automated binning algorithm to recover genomes from
multiple metagenomic datasets. Bioinformatics. 32:605–607.
2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Xiao J and Goley ED: Redefining the roles
of the FtsZ-ring in bacterial cytokinesis. Curr Opin Microbiol.
34:90–96. 2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Paulin S, Jamshad M, Dafforn TR,
Garcia-Lara J, Foster SJ, Galley NF, Roper DI, Rosado H and Taylor
PW: Surfactant-free purification of membrane protein complexes from
bacteria: Application to the staphylococcal penicillin-binding
protein complex PBP2/PBP2a. Nanotechnology.
25(285101)2014.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Meeske AJ, Riley EP, Robins WP, Uehara T,
Mekalanos JJ, Kahne D, Walker S, Kruse AC, Bernhardt TG and Rudner
DZ: SEDS proteins are a widespread family of bacterial cell wall
polymerases. Nature. 537:634–638. 2016.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Noinaj N, Kuszak AJ, Gumbart JC, Lukacik
P, Chang H, Easley NC, Lithgow T and Buchanan SK: Structural
insight into the biogenesis of β-barrel membrane proteins. Nature.
501:385–390. 2013.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Rassam P, Copeland NA, Birkholz O, Tóth C,
Chavent M, Duncan AL, Cross SJ, Housden NG, Kaminska R, Seger U, et
al: Supramolecular assemblies underpin turnover of outer membrane
proteins in bacteria. Nature. 523:333–336. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Foster TJ: The MSCRAMM family of
cell-wall-anchored surface proteins of gram-positive cocci. Trends
Microbiol. 27:927–941. 2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Lecointe K, Cornu M, Leroy J, Coulon P and
Sendid B: Polysaccharides cell wall architecture of mucorales.
Front Microbiol. 10(469)2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Heinisch JJ and Rodicio R: Protein kinase
C in fungi-more than just cell wall integrity. FEMS Microbiol Rev
42: 10.1093/femsre/fux051, 2018.
|
|
55
|
Kermani AA: A guide to membrane protein
X-ray crystallography. FEBS J. 288:5788–5804. 2021.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Alexandrov AI, Mileni M, Chien EYT, Hanson
MA and Stevens RC: Microscale fluorescent thermal stability assay
for membrane proteins. Structure. 16:351–359. 2008.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Kwan TOC, Reis R, Siligardi G, Hussain R,
Cheruvara H and Moraes I: Selection of biophysical methods for
characterisation of membrane proteins. Int J Mol Sci.
20(2605)2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Kermani AA, Aggarwal S and Ghanbarpour A:
Chapter 11 - Advances in X-ray crystallography methods to study
structural dynamics of macromolecules. Advanced Spectroscopic
Methods to Study Biomolecular Structure and Dynamics. 2023:309–355.
2023.
|
|
59
|
Chen D, McCool EN, Yang Z, Shen X,
Lubeckyj RA, Xu T, Wang Q and Sun L: Recent advances (2019-2021) of
capillary electrophoresis-mass spectrometry for multilevel
proteomics. Mass Spectrom Rev. 42:617–642. 2023.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Wu G, Yu C, Wang W, Du J, Xu G, Fu Z and
Wang L: Charge variants analysis of a bispecific antibody using a
fully automated one-step capillary isoelectric focusing-mass
spectrometry method. Curr Pharm Anal. 18:860–870. 2022.
|
|
61
|
Giraudeau P: NMR-based metabolomics and
fluxomics: Developments and future prospects. Analyst.
145:2457–2472. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hiroaki H: Molecular mechanisms of
amyloid-β peptide fibril and oligomer formation: NMR-based
challenges. Biophys Physicobiol. 20(e200007)2023.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Sobolev AP, Thomas F, Donarskic J,
Ingallinad C, Circid S, Marincolae FC, Capitania D and Mannina L:
Use of NMR applications to tackle future food fraud issues. Trends
Food Sci Technol. 91:347–353. 2019.
|
|
64
|
Alexandrov T: Spatial metabolomics and
imaging mass spectrometry in the age of artificial intelligence.
Ann Rev Biomed Data Sci. 3:61–87. 2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Silantyev AS, Falzone L, Libra M, Gurina
OI, Kardashova KS, Nikolouzakis TK, Nosyrev AE, Sutton CW, Mitsias
PD and Tsatsakis A: Current and future trends on diagnosis and
prognosis of glioblastoma: From molecular biology to proteomics.
Cells. 8(863)2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Kuo TH, Dutkiewicz EP, Pei J and Hsu CC:
Ambient ionization mass spectrometry today and tomorrow: Embracing
challenges and opportunities. Anal Chem. 92:2353–2363.
2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Kroll AV, Fang RH and Zhang L:
Biointerfacing and applications of cell membrane-coated
nanoparticles. Bioconjug Chem. 28:23–32. 2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Ahmad R and Budnik B: A review of the
current state of single-cell proteomics and future perspective.
Anal Bioanal Chem. 415:6889–6899. 2023.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Khan WA: Chapter 3-Whole-exome and
whole-genome sequencing in the molecular diagnostic laboratory. In:
Diagnostic Molecular Pathology. Coleman WB and Tsongalis GJ (eds).
2nd edition. Academic Press, San Diego, CA pp27-38, 2024.
|
|
70
|
Wang F, Guo J, Wang S, Wang Y, Chen J, Hu
Y, Zhang H, Xu K, Wei Y, Cao L, et al: B-cell lymphoma-3 controls
mesenchymal stem cell commitment and senescence during skeletal
aging. Clin Transl Med. 12(e955)2022.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Al Huq Mohammed S and Rajamani K: Role of
chaperones and endoplasmic reticulum stress in protein complexity
associated with dyslipidemia: A future perspective to novel
therapeutics (Review). World Acad Sci J. 6:1–9. 2024.
|
|
72
|
Kingsak M, Maturavongsadit P, Jiang H and
Wang Q: Cellular responses to nanoscale substrate topography of
TiO2 nanotube arrays: Cell morphology and adhesion. Biomater
Transl. 3:221–233. 2022.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Xue X, Liu H, Wang S, Hu Y, Huang B, Li M,
Gao J, Wang X and Su J: Neutrophil-erythrocyte hybrid
membrane-coated hollow copper sulfide nanoparticles for targeted
and photothermal/ anti-inflammatory therapy of osteoarthritis.
Composites Part B: Engineering. 237(109855)2022.
|
|
74
|
Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X,
Mao X and Xue X: Outer membrane protein A (OmpA) as a potential
therapeutic target for Acinetobacter baumannii infection. J Biomed
Sci. 27(26)2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Chen Z, Wang Y, Cheng Y, Wang X, Tong S,
Yang H and Wang Z: Efficient biodegradation of highly crystallized
polyethylene terephthalate through cell surface display of
bacterial PETase. Sci Total Environ. 709(136138)2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Ding JL, Hou J, Feng MG and Ying SH:
Transcriptomic analyses reveal comprehensive responses of insect
hemocytes to mycopathogen Beauveria bassiana, and fungal
virulence-related cell wall protein assists pathogen to evade host
cellular defense. Virulence. 11:1352–1365. 2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Wang J, Xu W, Wang R, Cheng R, Tang Z and
Zhang M: The outer membrane protein Amuc_1100 of Akkermansia
muciniphila promotes intestinal 5-HT biosynthesis and extracellular
availability through TLR2 signalling. Food Funct. 12:3597–3610.
2021.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Devi SM, Raj N and Sashidhar RB: Efficacy
of short-synthetic antifungal peptides on pathogenic Aspergillus
flavus. Pestic Biochem Physiol. 174(104810)2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Peng J, Wu L, Zhang W, Zhang Q, Xing Q,
Wang X, Li X and Yan J: Systemic identification and functional
characterization of common in fungal extracellular membrane
proteins in lasiodiplodia theobromae. Front Plant Sci.
12(804696)2021.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Doyle MT and Bernstein HD: Bacterial outer
membrane proteins assemble via asymmetric interactions with the
BamA β-barrel. Nat Commun. 10(3358)2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Oluwole A, Shutin D and Bolla JR: Mass
spectrometry of intact membrane proteins: shifting towards a more
native-like context. Essays Biochem. 67:201–213. 2023.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Peterson JH, Doyle MT and Bernstein HD:
Small molecule antibiotics inhibit distinct stages of bacterial
outer membrane protein assembly. mBio. 13(e0228622)2022.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Sun J, Rutherford ST, Silhavy TJ and Huang
KC: Physical properties of the bacterial outer membrane. Nat Rev
Microbiol. 20:236–248. 2022.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Tomasek D and Kahne D: The assembly of
β-barrel outer membrane proteins. Curr Opin Microbiol. 60:16–23.
2021.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Muras V, Toulouse C, Fritz G and Steuber
J: Respiratory membrane protein complexes convert chemical energy.
Bacterial Cell Walls and Membranes. 2019:301–335. 2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
den Blaauwen T and Luirink J: Checks and
balances in bacterial cell division. MBio. 10:e00149–e00119.
2019.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Nguyen HTV, Chen X, Parada C, Luo AC, Shih
O, Jeng US, Huang CY, Shih YL and Ma C: Structure of the
heterotrimeric membrane protein complex FtsB-FtsL-FtsQ of the
bacterial divisome. Nat Commun. 14(1903)2023.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Grabowski L, Łepek K, Stasiłojć M,
Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G
and Węgrzyn A: Bacteriophage-encoded enzymes destroying bacterial
cell membranes and walls, and their potential use as antimicrobial
agents. Microbiol Res. 248(126746)2021.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Sharma U, Vipra A and Channabasappa S:
Phage-derived lysins as potential agents for eradicating biofilms
and persisters. Drug Discovery Today. 23:848–856. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Avila-Calderón ED, Ruiz-Palma MDS,
Aguilera-Arreola MG, Velázquez-Guadarrama N, Ruiz EA, Gomez-Lunar
Z, Witonsky S and Contreras-Rodríguez A: Outer membrane vesicles of
gram-negative bacteria: An outlook on biogenesis. Front Microbiol.
12(557902)2021.PubMed/NCBI View Article : Google Scholar
|
|
91
|
McDowell MA, Heimes M and Sinning I:
Structural and molecular mechanisms for membrane protein biogenesis
by the Oxa1 superfamily. Nat Struct Mol Biol. 28:234–239.
2021.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Diederichs KA, Pitt AS, Varughese JT,
Hackel TN, Buchanan SK and Shaw PL: Mechanistic insights into
fungal mitochondrial outer membrane protein biogenesis. Curr Opin
Struct Biol. 74(102383)2022.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Lübeck M and Lübeck PS: Fungal cell
factories for efficient and sustainable production of proteins and
peptides. Microorganisms. 10(753)2022.PubMed/NCBI View Article : Google Scholar
|