|
1
|
Hsieh YS, Yang SF, Sethi G and Hu DN:
Natural bioactives in cancer treatment and prevention. Biomed Res
Int. 2015(182835)2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Montané X, Kowalczyk O, Reig-Vano B, Bajek
A, Roszkowski K, Tomczyk R, Pawliszak W, Giamberini M,
Mocek-Płóciniak A and Tylkowski B: Current perspectives of the
applications of polyphenols and flavonoids in cancer therapy.
Molecules. 25(3342)2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Raina R, Hussain A and Sharma R: Molecular
insight into apoptosis mediated by flavones in cancer (review).
World Acad Sci J. 2(6)2020.
|
|
4
|
Raina R, Afroze N, Sundaram MK, Haque S,
Bajbouj K, Hamad M and Hussain A: Chrysin inhibits propagation of
HeLa cells by attenuating cell survival and inducing apoptotic
pathways. Eur Rev Med Pharmacol Sci. 25:2206–2220. 2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Muthusami S, Prabakaran DS, An Z, Yu JR
and Park WY: EGCG suppresses fused toes homolog protein through p53
in cervical cancer cells. Mol Biol Rep. 40:5587–5596.
2013.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Pratheeshkumar P, Sreekala C, Zhang Z,
Budhraja A, Ding S, Son YO, Wang X, Hitron A, Hyun-Jung K, Wang L,
et al: Cancer prevention with promising natural products:
Mechanisms of action and molecular targets. Anticancer Agents Med
Chem. 12:1159–1584. 2012.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Kasala ER, Bodduluru LN, Barua CC, Madhana
RM, Dahiya V, Budhani MK, Mallugari RR, Maramreddy SR and Gogoi R:
Chemopreventive effect of chrysin, a dietary flavone against
benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice.
Pharmacol Rep. 68:310–318. 2016.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Singh P, Tomar RS and Rath SK: Anticancer
potential of the histone deacetylase inhibitor-like effects of
flavones, a subclass of polyphenolic compounds: A review. Mol Biol
Rep. 42:1515–1531. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Abdal Dayem A, Choi HY, Yang GM, Kim K,
Saha SK and Cho SG: The anti-cancer effect of polyphenols against
breast cancer and cancer stem cells: Molecular mechanisms.
Nutrients. 8(581)2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Kasala ER, Bodduluru LN, Madana RM, V AK,
Gogoi R and Barua CC: Chemopreventive and therapeutic potential of
chrysin in cancer: Mechanistic perspectives. Toxicol Lett.
233:214–225. 2015.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Sak K: Characteristic features of
cytotoxic activity of flavonoids on human cervical cancer cells.
Asian Pacific J Cancer Prev. 15:8007–8019. 2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zhou Y, Zheng J, Li Y, Xu DP, Li S, Chen
YM and Li H: Natural polyphenols for prevention and treatment of
cancer. Nutrients. 8(515)2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wu X, Li M, Xiao Z, Daglia M, Dragan S,
Delmas D, Vong T, Wang Y, Zhao Y, Shen J, et al: Dietary
polyphenols for managing cancers: What have we ignored? Trends Food
Sci Technol. 101:150–164. 2020.
|
|
14
|
Kopustinskiene DM, Jakstas V, Savickas A
and Bernatoniene J: Flavonoids as anticancer agents. Nutrients.
12(457)2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Selvakumar P, Badgeley A, Murphy P, Anwar
H, Sharma U, Lawrence K and Lakshmikuttyamma A: Flavonoids and
other polyphenols act as epigenetic modifiers in breast cancer.
Nutrients. 12(761)2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Bodduluru LN, Kasala ER, Thota N, Barua
CC, Sistla R, Bodduluru LN, et al: Chemopreventive effect of
chrysin, a dietary flavone against benzo(a)pyrene induced lung
carcinogenesis in Swiss albino mice. Pharmacol Rep. 68:310–318.
2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Ramírez-Espinosa JJ, Saldaña-Ríos J,
García-Jiménez S, Villalobos-Molina R, Ávila-Villarreal G,
Rodríguez-Ocampo AN, Bernal-Fernández G and Estrada-Soto S: Chrysin
induces antidiabetic, antidyslipidemic and anti-inflammatory
effects in athymic nude diabetic mice. Molecules.
23(67)2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Naz S, Imran M, Rauf A, Orhan IE, Shariati
MA, Iahtisham-Ul-Haq IqraYasmin, Shahbaz M, Qaisrani TB, Shah ZA,
et al: Chrysin: Pharmacological and therapeutic properties. Life
Sci. 235(116797)2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Balta C, Herman H, Boldura OM, Gasca I,
Rosu M, Ardelean A and Hermenean A: Chrysin attenuates liver
fibrosis and hepatic stellate cell activation through TGF-β/Smad
signaling pathway. Chem Biol Interact. 240:94–101. 2015.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Tsuji PA and Walle T: Cytotoxic effects of
the dietary flavones chrysin and apigenin in a normal trout liver
cell line. Chem Biol Interact. 171:37–44. 2008.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Talebi M, Talebi M, Farkhondeh T,
Simal-Gandara J, Kopustinskiene DM, Bernatoniene J and
Samarghandian S: Emerging cellular and molecular mechanisms
underlying anticancer indications of chrysin. Cancer Cell Int.
21(214)2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Galijatovic A, Otake Y, Walle UK and Walle
T: Extensive metabolism of the flavonoid chrysin by human Caco-2
and Hep G2 cells. Xenobiotica. 29:1241–1256. 1999.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Ge S, Gao S, Yin T and Hu M: Determination
of pharmacokinetics of chrysin and its conjugates in wild-type FVB
and Bcrp1 knockout mice using a validated LC-MS/MS method. J Agric
Food Chem. 63:2902–2910. 2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Lee JA, Jung BG, Kim TH, Kim YM, Park MH,
Hyun PM, Jeon JW, Park JK, Cho CW, Suh GH and Lee BJ: Poly
D,L-lactide-co-glycolide (PLGA) nanoparticle-encapsulated honeybee
(Apis melifera) venom promotes clearance of Salmonella enterica
serovar Typhimurium infection in experimentally challenged pigs
through the up-regulation of T helper type 1 specific immune
responses. Vet Immunol Immunopathol. 161:193–204. 2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Arafa MG, Ghalwash D, El-Kersh DM and
Elmazar MM: Propolis-based niosomes as oromuco-adhesive films: A
randomized clinical trial of a therapeutic drug delivery platform
for the treatment of oral recurrent aphthous ulcers. Sci Rep.
8(18056)2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Mohammadinejad S, Akbarzadeh A,
Rahmati-Yamchi M, Hatam S, Kachalaki S, Zohreh S and Zarghami N:
Preparation and evaluation of chrysin encapsulated in PLGA-PEG
nanoparticles in the T47-D breast cancer cell line. Asian Pacific J
Cancer Prev. 16:3753–3758. 2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Brown GA, Martini ER, Kohut ML, Franke WD,
Jackson DA and King DS and King DS: Endocrine and lipid responses
to chronic androstenediol-herbal supplementation in 30 to 58 year
old men. J Am Coll Nutr. 20:520–528. 2001.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A,
Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M and Kumar
AP: Broad-spectrum preclinical antitumor activity of chrysin:
Current trends and future perspectives. Biomolecules.
10(1374)2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Slominski RM, Raman C, Chen JY and
Slominski AT: How cancer hijacks the body's homeostasis through the
neuroendocrine system. Trends Neurosci. 46:263–275. 2023.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Mishra A, Mishra PS, Bandopadhyay R,
Khurana N, Angelopoulou E, Paudel YN and Piperi C: Neuroprotective
potential of chrysin: Mechanistic insights and therapeutic
potential for neurological disorders. Molecules.
26(6456)2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
El-Sisi AE, El-Sayad ME and Abdelsalam NM:
Protective effects of mirtazapine and chrysin on experimentally
induced testicular damage in rats. Biomed Pharmacother.
95:1059–1066. 2017.PubMed/NCBI View Article : Google Scholar
|
|
32
|
El-Bassossy HM, Abo-Warda SM and Fahmy A:
Chrysin and luteolin attenuate diabetes-induced impairment in
endothelial-dependent relaxation: Effect on lipid profile, AGEs and
NO generation. Phyther Res. 27:1678–1684. 2013.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Satyanarayana K, Sravanthi K, Shaker I,
Ponnulakshmi R and Selvaraj J: Role of chrysin on expression of
insulin signaling molecules. J Ayurveda Integr Med. 6:248–258.
2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Samarghandian S, Farkhondeh T and
Azimi-Nezhad M: Protective effects of chrysin against drugs and
toxic agents. Dose Response. 15(1559325817711782)2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Mantawy EM, El-Bakly WM, Esmat A, Badr AM
and El-Demerdash E: Chrysin alleviates acute doxorubicin
cardiotoxicity in rats via suppression of oxidative stress,
inflammation and apoptosis. Eur J Pharmacol. 728:107–118.
2014.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Tahir M and Sultana S: Chrysin modulates
ethanol metabolism in Wistar rats: A promising role against organ
toxicities. Alcohol Alcohol. 46:383–392. 2011.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Raina R, Almutary AG, Bagabir SA, Afroze
N, Fagoonee S, Haque S and Hussain A: Chrysin modulates aberrant
epigenetic variations and hampers migratory behavior of human
cervical (HeLa) cells. Front Genet. 12(768130)2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Bahadori M, Baharara J and Amini E:
Anticancer properties of chrysin on colon cancer cells, in vitro
and in vivo with modulation of caspase-3,-9, Bax and Sall4. Iran J
Biotechnol. 14:177–184. 2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhang Q, Ma S, Liu B, Liu J, Zhu R and Li
M: Chrysin induces cell apoptosis via activation of the
p53/Bcl-2/caspase-9 pathway in hepatocellular carcinoma cells. Exp
Ther Med. 12:469–474. 2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Lim W, Ryu S, Bazer FW, Kim SM and Song G:
Chrysin attenuates progression of ovarian cancer cells by
regulating signaling cascades and mitochondrial dysfunction. J Cell
Physiol. 233:3129–3140. 2018.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zaric M, Mitrovic M, Nikolic I, Baskic D,
Popovic S, Djurdjevic P, Milosavljevic Z and Zelen I: Chrysin
induces apoptosis in peripheral blood lymphocytes isolated from
human chronic lymphocytic leukemia. Anticancer Agents Med Chem.
15:189–195. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ganai SA, Sheikh FA and Baba ZA: Plant
flavone chrysin as an emerging histone deacetylase inhibitor for
prosperous epigenetic-based anticancer therapy. Phyther Res.
35:823–834. 2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Lee S, Lee SK and Jung J: Potentiating
activities of chrysin in the therapeutic efficacy of 5-fluorouracil
in gastric cancer cells. Oncol Lett. 21(24)2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Liu Y, Xie S, Wang Y, Luo K, Wang Y and
Cai Y: Liquiritigenin inhibits tumor growth and vascularization in
a mouse model of HeLa cells. Molecules. 17:7206–7216.
2012.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Jin YM, Xu TM, Zhao YH, Wang YC and Cui
MH: In vitro and in vivo anti-cancer activity of formononetin on
human cervical cancer cell line HeLa. Tumor Biol. 35:2279–2284.
2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Hussain A, Harish G, Prabhu SA, Mohsin J,
Khan MA, Rizvi TA and Sharma C: Inhibitory effect of genistein on
the invasive potential of human cervical cancer cells via
modulation of matrix metalloproteinase-9 and tissue inhibitiors of
matrix metalloproteinase-1 expression. Cancer Epidemiol.
36:e387–e393. 2012.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Chou RH, Hsieh SC, Yu YL, Huang MH, Huang
YC and Hsieh YH: Fisetin inhibits migration and invasion of human
cervical cancer cells by down-regulating urokinase plasminogen
activator expression through suppressing the p38 MAPK-dependent
NF-κB signaling pathway. PLoS One. 8(e71983)2013.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Chen YJ, Kay N, Yang JM, Lin CT, Chang HL,
Wu YC, Fu CF, Chang Y, Lo S, Hou MF, et al: Total synthetic
protoapigenone WYC02 inhibits cervical cancer cell proliferation
and tumour growth through PIK3 signalling pathway. Basic Clin
Pharmacol Toxicol. 113:8–18. 2013.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Stelzle D, Tanaka LF, Lee KK, Ibrahim
Khalil A, Baussano I, Shah ASV, McAllister DA, Gottlieb SL, Klug
SJ, Winkler AS, et al: Estimates of the global burden of cervical
cancer associated with HIV. Lancet Glob Health. 9:e161–e169.
2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Ham S, Kim KH, Kwon TH, Bak Y, Lee DH,
Song YS, Park SH, Park YS, Kim MS, Kang JW, et al: Luteolin induces
intrinsic apoptosis via inhibition of E6/E7 oncogenes and
activation of extrinsic and intrinsic signaling pathways in
HPV-18-associated cells. Oncol Rep. 31:2683–2691. 2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Kim MS, Bak Y, Park YS, Lee DH, Kim JH,
Kang JW, Song HH, Oh SR and Yoon DY: Wogonin induces apoptosis by
suppressing E6 and E7 expressions and activating intrinsic
signaling pathways in HPV-16 cervical cancer cells. Cell Biol
Toxicol. 29:259–272. 2013.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Garcia FAR, Cornelison T, Nuño T,
Greenspan DL, Byron JW, Hsu CH, Alberts DS and Chow HH: Results of
a phase II randomized, double-blind, placebo-controlled trial of
Polyphenon E in women with persistent high-risk HPV infection and
low-grade cervical intraepithelial neoplasia. Gynecol Oncol.
132:377–382. 2014.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Cherry JJ, Rietz A, Malinkevich A, Liu Y,
Xie M, Bartolowits M, Davisson VJ, Baleja JD and Androphy EJ:
Structure based identification and characterization of flavonoids
that disrupt human papillomavirus-16 E6 function. PLoS One.
8(e84506)2013.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Berman TA and Schiller JT: Human
papillomavirus in cervical cancer and oropharyngeal cancer: One
cause, two diseases. Cancer. 123:2219–2229. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Yin KB: Chrysin in PI3K/AKT and other
apoptosis signalling pathways, and its effect on HeLa cells,
2014.
|
|
56
|
Khoo BY, Chua SL and Balaram P: Apoptotic
effects of chrysin in human cancer cell lines. Int J Mol Sci.
11:2188–2199. 2010.PubMed/NCBI View Article : Google Scholar
|
|
57
|
von Brandenstein MG, Abety AN, Depping R,
Roth T, Koehler M, Dienes HP and Fries JWU: A p38-p65 transcription
complex induced by endothelin-1 mediates signal transduction in
cancer cells. Biochim Biophys Acta. 1783:1613–1622. 2008.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Lirdprapamongkol K, Sakurai H, Abdelhamed
S, Yokoyama S, Athikomkulchai S, Viriyaroj A, Awale S, Ruchirawat
S, Svasti J and Saiki I: Chrysin overcomes TRAIL resistance of
cancer cells through Mcl-1 downregulation by inhibiting STAT3
phosphorylation. Int J Oncol. 43:329–337. 2013.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Kanwal R, Datt M, Liu X and Gupta S:
Dietaryflavones as dual inhibitors of DNA methyltransferases and
histone methyltransferases. PLoS One. 11(e0162956)2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Dong W, Chen A, Cao X, Li X, Cui YH, Xu C,
Cao J and Ning Y: Chrysin inhibits proinflammatory factor-induced
EMT phenotype and cancer stem cell-like features in HeLa cells by
blocking the NF-κB/Twist axis. Cell Physiol Biochem. 52:1236–1250.
2019.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Pawar JS, Mustafa S and Ghosh I: Chrysin
and Capsaicin induces premature senescence and apoptosis via
mitochondrial dysfunction and p53 elevation in Cervical cancer
cells. Saudi J Biol Sci. 29:3838–3847. 2022.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Raina R, Hussain A, Almutary AG, Haque S,
Raza T, D'Souza AC, Subramani S and Sajeevan A: Co-administration
of chrysin and luteolin with cisplatin and topotecan exhibits a
variable therapeutic value in human cancer cells, HeLa. ACS Omega.
8:41204–41213. 2023.PubMed/NCBI View Article : Google Scholar
|
|
63
|
DeSantis CE, Ma J, Gaudet MM, Newman LA,
Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer
statistics, 2019. CA Cancer J Clin. 69:438–451. 2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Pandey K, An HJ, Kim SK, Lee SA, Kim S,
Lim SM, Kim GM, Sohn J and Moon YW: Molecular mechanisms of
resistance to CDK4/6 inhibitors in breast cancer: A review. Int J
Cancer. 145:1179–1188. 2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Pandey PR, Young KH, Kumar D and Jain N:
RNA-mediated immunotherapy regulating tumor immune
microenvironment: Next wave of cancer therapeutics. Mol Cancer.
21(58)2022.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Shanmugam MK, Ahn KS, Hsu A, Woo CC, Yuan
Y, Tan KHB, Chinnathambi A, Alahmadi TA, Alharbi SA, Koh APF, et
al: Thymoquinone inhibits bone metastasis of breast cancer cells
through abrogation of the CXCR4 signaling axis. Front Pharmacol.
9(1294)2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Liu L, Ahn KS, Shanmugam MK, Wang H, Shen
H, Arfuso F, Chinnathambi A, Alharbi SA, Chang Y, Sethi G and Tang
FR: Oleuropein induces apoptosis via abrogating NF-κB activation
cascade in estrogen receptor-negative breast cancer cells. J Cell
Biochem. 120:4504–4513. 2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Yang B, Huang J, Xiang T, Yin X, Luo X,
Huang J, Luo F, Li H, Li H and Ren G: Chrysin inhibits metastatic
potential of human triple-negative breast cancer cells by
modulating matrix metalloproteinase-10, epithelial to mesenchymal
transition, and PI3K/Akt signaling pathway. J Appl Toxicol.
34:105–112. 2014.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Rasouli S and Zarghami N: Synergistic
growth inhibitory effects of chrysin and metformin combination on
breast cancer cells through hTERT and cyclin D1 suppression. Asian
Pacific J Cancer Prev. 19:977–982. 2018.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Samarghandian S, Azimi-Nezhad M, Borji A,
Hasanzadeh M, Jabbari F, Farkhondeh T and Samini M: Inhibitory and
cytotoxic activities of Chrysin on human breast adenocarcinoma
cells by induction of apoptosis. Pharmacogn Mag. 12 (Suppl
4):S436–S440. 2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Sun LP, Chen AL, Hung HC, Chien YH, Huang
JS, Huang CY, Chen YW and Chen CN: Chrysin: A histone deacetylase 8
inhibitor with anticancer activity and a suitable candidate for the
standardization of Chinese propolis. J Agric Food Chem.
60:11748–11758. 2012.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Lirdprapamongkol K, Sakurai H, Abdelhamed
S, Yokoyama S, Maruyama T, Athikomkulchai S, Viriyaroj A, Awale S,
Yagita H, Ruchirawat S, et al: A flavonoid chrysin suppresses
hypoxic survival and metastatic growth of mouse breast cancer
cells. Oncol Rep. 30:2357–2364. 2013.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Mohammadi Z, Sharif Zak M, Seidi K, Barati
M, Akbarzadeh A and Zarghami N: The effect of chrysin loaded
PLGA-PEG on metalloproteinase gene expression in mouse 4T1 tumor
model. Drug Res (Stuttg). 67:211–216. 2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Palakurthi S, Yellepeddi VK and Vangara
KK: Recent trends in cancer drug resistance reversal strategies
using nanoparticles. Expert Opin Drug Deliv. 9:287–301.
2012.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Javan Maasomi Z, Pilehvar Soltanahmadi Y,
Dadashpour M, Alipour Sh, Abolhasani S and Zarghami N: Synergistic
anticancer effects of silibinin and chrysin in T47D breast cancer
cells. Asian Pacific J Cancer Prev. 18:1283–1287. 2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Roy S, Sil A and Chakraborty T:
Potentiating apoptosis and modulation of p53, Bcl2, and Bax by a
novel chrysin ruthenium complex for effective chemotherapeutic
efficacy against breast cancer. J Cell Physiol. 234:4888–4909.
2019.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Sulaiman GM, Jabir MS and Hameed AH:
Nanoscale modification of chrysin for improved of therapeutic
efficiency and cytotoxicity. Artif Cells Nanomed Biotechnol. 46
(Suppl 1):S708–S720. 2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Davaran S, Fazeli H, Ghamkhari A, Rahimi
F, Molavi O, Anzabi M and Salehi R: Synthesis and characterization
of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of
methotrexate and chrysin in combination cancer chemotherapy. J
Biomater Sci Polym Ed. 29:1265–1286. 2018.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Anari E, Akbarzadeh A and Zarghami N:
Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect
on the breast cancer cell line. Artif Cells Nanomed Biotechnol.
44:1410–1416. 2016.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Javan N, Khadem Ansari MH, Dadashpour M,
Khojastehfard M, Bastami M, Rahmati-Yamchi M and Zarghami N:
Synergistic antiproliferative effects of co-nanoencapsulated
curcumin and chrysin on MDA-MB-231 breast cancer cells through
upregulating miR-132 and miR-502c. Nutr Cancer. 71:1201–1213.
2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Shao JJ, Zhang AP, Qin W, Zheng L, Zhu YF
and Chen X: AMP-activated protein kinase (AMPK) activation is
involved in chrysin-induced growth inhibition and apoptosis in
cultured A549 lung cancer cells. Biochem Biophys Res Commun.
423:448–453. 2012.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zhang Y, Xu X, Li W, Miao H, Huang S, Zhou
Y, Sun Y, Li Z, Guo Q and Zhao L: Activation of endoplasmic
reticulum stress and the extrinsic apoptotic pathway in human lung
cancer cells by the new synthetic flavonoid, LZ-205. Oncotarget.
7:87257–87270. 2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Pinsolle J, Terzi N, Ferrer L, Giaj Levra
M, Toffart AC and Moro-Sibilot D: Les avancées dans la prise en
charge des cancers bronchopulmonaires: Ce qui change pour le
réanimateur. Méd Intensive Réa. 28:290–299. 2019.
|
|
84
|
Mehdi SH, Zafaryab M, Nafees S, Khan A,
Ahmad I, Hafeez ZB and Rizvi MA: Chrysin sensitizes human lung
cancer cells to tumour necrosis factor related apoptosis-inducing
ligand (TRAIL) mediated apoptosis. Asian Pac J Cancer Biol.
4:27–33. 2019.
|
|
85
|
Maruhashi R, Eguchi H, Akizuki R, Hamada
S, Furuta T, Matsunaga T, Endo S, Ichihara K and Ikari A: Chrysin
enhances anticancer drug-induced toxicity mediated by the reduction
of claudin-1 and 11 expression in a spheroid culture model of lung
squamous cell carcinoma cells. Sci Rep. 9(13753)2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Lakshmi S, Suresh S, Rahul BS, Saikant R,
Maya V, Gopi M, Padmaja G and Remani P: In vitro and in vivo
studies of 5,7-dihydroxy flavones isolated from Alpinia galanga
(L.) against human lung cancer and ascetic lymphoma. Med Chem Res.
28:39–51. 2019.
|
|
87
|
Samarghandian S, Azimi Nezhad M and
Mohammadi G: Role of caspases, Bax and Bcl-2 in chrysin-induced
apoptosis in the A549 human lung adenocarcinoma epithelial cells.
Anticancer Agents Med Chem. 14:901–909. 2014.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Wu TC, Chan ST, Chang CN, Yu PS, Chuang CH
and Yeh SL: Quercetin and chrysin inhibit nickel-induced invasion
and migration by downregulation of TLR4/NF-κB signaling in A549
cells. Chem Biol Interact. 292:101–109. 2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Lim HK, Kim KM, Jeong SY, Choi EK and Jung
J: Chrysin increases the therapeutic efficacy of docetaxel and
mitigates docetaxel-induced edema. Integr Cancer Ther. 16:496–504.
2017.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Mohammad P, Nosratollah Z, Mohammad R,
Abbas A and Javad R: The inhibitory effect of Curcuma longa extract
on telomerase activity in A549 lung cancer cell line. Afr J
Biotechnol. 9:912–919. 2010.
|
|
91
|
Brechbuhl HM, Kachadourian R, Min E, Chan
D and Day BJ: Chrysin enhances doxorubicin-induced cytotoxicity in
human lung epithelial cancer cell lines: The role of glutathione.
Toxicol Appl Pharmacol. 258:1–9. 2012.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Shahbaz M, Naeem H, Imran M, Ul Hassan H,
Alsagaby SA, Al Abdulmonem W, Waqar AB, Ghorab AH, Abdelgawad MA,
Ghoneim MM, et al: Chrysin a promising anticancer agent: Recent
perspectives. Int J Food Prop. 26:2294–2337. 2023.
|
|
93
|
Khazaei Z, Ghorat F, Jarrahi AM, Adineh
HA, Sohrabivafa M and Goodarzi E: Global incidence and mortality of
skin cancer by histological subtype and its relationship with the
human development index (HDI); an ecology study in 2018 2018. World
Cancer Res J. 6(e1265)2019.
|
|
94
|
Carr S, Smith C and Wernberg J:
Epidemiology and risk factors of melanoma. Surg Clin North Am.
100:1–12. 2020.
|
|
95
|
Islam MM, Nagaraja S, Hafsa NE, Meravanige
G, Asdaq SMB and Anwer MK: Polyphenol chrysin for management of
skin disorders: Current status and future opportunities. J King
Saud Univ Sci. 34(102026)2022.
|
|
96
|
Sassi A, Maatouk M, El gueder D, Bzéouich
IM, Abdelkefi-Ben Hatira S, Jemni-Yacoub S, Ghedira K and
Chekir-Ghedira L: Chrysin, a natural and biologically active
flavonoid suppresses tumor growth of mouse B16F10 melanoma cells:
In vitro and in vivo study. Chem Biol Interact. 283:10–19.
2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Bittner M, Meltzer P, Chen Y, Jiang Y,
Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, et
al: Molecular classification of cutaneous malignant melanoma by
gene expression profiling. Nature. 406:536–540. 2000.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Slominski RM, Sarna T, Płonka PM, Raman C,
Brożyna AA and Slominski AT: Melanoma, melanin, and melanogenesis:
The Yin and Yang relationship. Front Oncol.
12(842496)2022.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Slominski RM, Zmijewski MA and Slominski
AT: The role of melanin pigment in melanoma. Exp Dermatol.
24:258–259. 2015.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Yang HZ, Zhang J, Zeng J, Liu S, Zhou F,
Zhang F, Giampieri F, Cianciosi D, Forbes-Hernandez TY, Ansary J,
et al: Resveratrol inhibits the proliferation of melanoma cells by
modulating cell cycle. Int J Food Sci Nutr. 71:84–93.
2020.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Xue C, Chen Y, Hu D, Iacob C, Lu C and
Huang Z: Chrysin induces cell apoptosis in human uveal melanoma
cells via intrinsic apoptosis. Oncol Lett. 12:4813–4820.
2016.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Folgueras AR, Pendás AM, Sánchez LM and
López-Otín C: Matrix metalloproteinases in cancer: From new
functions to improved inhibition strategies. Int J Dev Biol.
48:411–424. 2004.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Chen HY, Jiang YW, Kuo CL, Way T Der, Chou
YC, Chang YS and Chung JG: Chrysin inhibit human melanoma A375.S2
cell migration and invasion via affecting MAPK signaling and NF-κB
signaling pathway in vitro. Environ Toxicol. 34:434–442.
2019.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Yufei Z, Yuqi W, Binyue H, Lingchen T, Xi
C, Hoffelt D and Fuliang H: Chrysin Inhibits melanoma tumor
metastasis via interfering with the FOXM1/β-catenin signaling. J
Agric Food Chem. 68:9358–9367. 2020.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Tavakoli F, Jahanban-Esfahlan R, Seidi K,
Jabbari M, Behzadi R, Pilehvar-Soltanahmadi Y and Zarghami N:
Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs
and TIMPs gene expression in mouse B16F10 melanoma tumour model.
Artif Cells Nanomed Biotechnol. 46 (Suppl 2):S75–S86.
2018.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Cai Z, Zhang F, Chen W, Zhang J and Li H:
Mirnas: A promising target in the chemoresistance of bladder
cancer. Onco Targets Ther. 12:11805–11816. 2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Korac-Prlic J, Degoricija M, Vilović K,
Haupt B, Ivanišević T, Franković L, Grivennikov S and Terzić J:
Targeting Stat3 signaling impairs the progression of bladder cancer
in a mouse model. Cancer Lett. 490:89–99. 2020.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Sun N, Liang Y, Chen Y, Wang L, Li D,
Liang Z, Sun L, Wang Y and Niu H: Glutamine affects T24 bladder
cancer cell proliferation by activating STAT3 through ROS and
glutaminolysis. Int J Mol Med. 44:2189–2200. 2019.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Anand V, Khandelwal M, Appunni S, Gupta N,
Seth A, Singh P, Mathur S and Sharma A: CD44 splice variant
(CD44v3) promotes progression of urothelial carcinoma of bladder
through Akt/ERK/STAT3 pathways: Novel therapeutic approach. J
Cancer Res Clin Oncol. 145:2649–2661. 2019.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Nagavally RR: Inhibition of epithelial
mesenchymal transition (EMT) and renal fibrosis by chrysin involves
modulation of Akt signaling. PhD dissertation. St. John's
University (New York) ProQuest Dissertations & Theses.
Publication no. 10170226, 2016. https://www.proquest.com/openview/9d262b69f271cffaa41ea9e6901fe3d0/1?pq-origsite=gscholar&cbl=18750.
|
|
112
|
Xu Y, Tong Y, Ying J, Lei Z, Wan L, Zhu X,
Ye F, Mao P, Wu X, Pan R, et al: Chrysin induces cell growth
arrest, apoptosis, and ER stress and inhibits the activation of
STAT3 through the generation of ROS in bladder cancer cells. Oncol
Lett. 15:9117–9125. 2018.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Lima APB, Almeida TC, Barros TMB, Rocha
LCM, Garcia CCMH and Da Silva GN: Toxicogenetic and
antiproliferative effects of chrysin in urinary bladder cancer
cells. Mutagenesis. 35:361–371. 2020.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Talebi M, Talebi M, Kakouri E, Farkhondeh
T, Pourbagher-Shahri AM, Tarantilis PA and Samarghandian S:
Tantalizing role of p53 molecular pathways and its coherent
medications in neurodegenerative diseases. Int J Biol Macromol.
172:93–103. 2021.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Szliszka E, Gebka J, Bronikowska J and
Krol W: Dietary flavones enhance the effect of tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) on bladder cancer
cells. Cent Eur J Urol. 63:138–143. 2010.
|
|
116
|
Guo-Qing P, Yuan Y, Cai-Gao Z, Hongling Y,
Gonghua H and Yan T: A study of association between expression of
hOGG1, VDAC1, HK-2 and cervical carcinoma. J Exp Clin Cancer Res.
29(129)2010.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Khan MS, Devaraj H and Devaraj N: Chrysin
abrogates early hepatocarcinogenesis and induces apoptosis in
N-nitrosodiethylamine-induced preneoplastic nodules in rats.
Toxicol Appl Pharmacol. 251:85–94. 2011.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Xu D, Jin J, Yu H, Zhao Z, Ma D, Zhang C
and Jiang H: Chrysin inhibited tumor glycolysis and induced
apoptosis in hepatocellular carcinoma by targeting hexokinase-2. J
Exp Clin Cancer Res. 36(44)2017.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Gao AM, Ke ZP, Shi F, Sun GC and Chen H:
Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin
by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol
Interact. 206:100–108. 2013.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Li X, Huang JM, Wang JN, Xiong XK, Yang XF
and Zou F: Combination of chrysin and cisplatin promotes the
apoptosis of Hep G2 cells by up-regulating p53. Chem Biol Interact.
232:12–20. 2015.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Xia Y, Lian S, Khoi PN, Yoon HJ, Han JY,
Chay KO, Kim KK and Jung YD: Chrysin inhibits cell invasion by
inhibition of recepteur d'origine Nantais via suppressing early
growth response-1 and NF-κB transcription factor activities in
gastric cancer cells. Int J Oncol. 46:1835–1843. 2015.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Xia Y, Lian S, Khoi PN, Yoon HJ, Joo YE,
Chay KO, Kim KK and Do Jung Y: Chrysin inhibits tumor
promoter-induced MMP-9 expression by blocking AP-1 via suppression
of ERK and JNK pathways in gastric cancer cells. PLoS One.
10(e0124007)2015.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Zhong X, Liu D, Jiang Z, Li C, Chen L, Xia
Y, Liu D, Yao Q and Wang D: Chrysin induced cell apoptosis and
inhibited invasion through regulation of TET1 expression in gastric
cancer cells. Onco Targets Ther. 13:3277–3287. 2020.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Wang J, Zhang L, Jiang W, Zhang R, Zhang
B, Silayiding A and Duan X: MicroRNA-135a promotes proliferation,
migration, invasion and induces chemoresistance of endometrial
cancer cells. Eur J Obstet Gynecol Reprod Biol X.
5(100103)2019.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Xu C, Li B, Zhao S, Jin B, Jia R, Ge J and
Xu H: MicroRNA-186-5p inhibits proliferation and metastasis of
esophageal cancer by mediating HOXA9. Onco Targets Ther.
12:8905–8914. 2019.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Mohammadian F, Pilehvar-Soltanahmadi Y,
Alipour S, Dadashpour M and Zarghami N: Chrysin alters microRNAs
expression levels in gastric cancer cells: Possible molecular
mechanism. Drug Res (Stuttg). 67:509–514. 2017.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Mohammadian F, Abhari A, Dariushnejad H,
Nikanfar A, Pilehvar-Soltanahmadi Y and Zarghami N: Effects of
chrysin-PLGA-PEG nanoparticles on proliferation and gene expression
of miRNAs in gastric cancer cell line. Iran J Cancer Prev.
9(e4190)2016.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Mohammadian F, Pilehvar-Soltanahmadi Y,
Mofarrah M, Dastani-Habashi M and Zarghami N: Down regulation of
miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by
chrysin-loaded PLGA-PEG nanoparticles. Artif Cells Nanomed
Biotechnol. 44:1972–1978. 2016.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Mohammadian F, Pilehvar-Soltanahmadi Y,
Zarghami F, Akbarzadeh A and Zarghami N: Upregulation of miR-9 and
Let-7a by nanoencapsulated chrysin in gastric cancer cells. Artif
Cells Nanomed Biotechnol. 45:1–6. 2017.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Zhang MM, Huang SS, Long D and Lin X:
Anti-proliferative action of chrysin in colon cancer cells and its
effects on signaling pathways. Int J Clin Exp Med. 9:22784–22792.
2016.
|
|
131
|
Song HY, Kim HM, Mushtaq S, Kim WS, Kim
YJ, Lim ST and Byun EB: Gamma-irradiated chrysin improves
anticancer activity in HT-29 colon cancer cells through
mitochondria-related pathway. J Med Food. 22:713–721.
2019.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Lee CS, Ryan EJ and Doherty GA:
Gastro-intestinal toxicity of chemotherapeutics in colorectal
cancer: The role of inflammation. World J Gastroenterol.
20:3751–3761. 2014.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Crea F, Nobili S, Paolicchi E, Perrone G,
Napoli C, Landini I, Danesi R and Mini E: Epigenetics and
chemoresistance in colorectal cancer: An opportunity for treatment
tailoring and novel therapeutic strategies. Drug Resist Updat.
14:280–296. 2011.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Lin YM, Chen CI, Hsiang YP, Hsu YC, Cheng
KC, Chien PH, Pan HL, Lu CC and Chen YJ: Chrysin attenuates cell
viability of human colorectal cancer cells through autophagy
induction unlike 5-fluorouracil/oxaliplatin. Int J Mol Sci.
19(1763)2018.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Patra S, Mishra SR, Behera BP, Mahapatra
KK, Panigrahi DP, Bhol CS, Praharaj PP, Sethi G, Patra SK and
Bhutia SK: Autophagy-modulating phytochemicals in cancer
therapeutics: Current evidences and future perspectives. Semin
Cancer Biol. 80:205–217. 2022.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Bagheri R, Sanaat Z and Zarghami N:
Synergistic effect of free and nano-encapsulated chrysin-curcumin
on inhibition of hTERT gene expression in SW480 colorectal cancer
cell line. Drug Res (Stuttg). 68:335–343. 2018.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Zhang X, Zhang W, Chen F and Lu Z:
Combined effect of chrysin and apigenin on inhibiting the
development and progression of colorectal cancer by suppressing the
activity of P38-MAPK/AKT pathway. IUBMB Life. 73:774–783.
2021.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Lotfi-Attari J, Pilehvar-Soltanahmadi Y,
Dadashpour M, Alipour S, Farajzadeh R, Javidfar S and Zarghami N:
Co-delivery of curcumin and chrysin by polymeric nanoparticles
inhibit synergistically growth and hTERT gene expression in human
colorectal cancer cells. Nutr Cancer. 69:1290–1299. 2017.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Casper AC, Parsons MW, Chipman J, Burt LM
Jr, Suneja G, Maurer KA and Gaffney DK: Risk of secondary
malignancies in ovarian cancer survivors: 52,680 Patients analyzed
with over 40 years of follow-up. Gynecol Oncol. 162:454–460.
2021.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Jessmon P, Boulanger T, Zhou W and
Patwardhan P: Epidemiology and treatment patterns of epithelial
ovarian cancer. Expert Rev Anticancer Ther. 17:427–437.
2017.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Ulbright TM and Roth LM: Common epithelial
tumors of the ovary: Proliferating and of low malignant potential.
Semin Diagn Pathol. 2:2–15. 1985.PubMed/NCBI
|
|
142
|
Guo X, Mei J, Jing Y and Wang S:
Curcumin-loaded nanoparticles with low-intensity focused
ultrasound-induced phase transformation as tumor-targeted and
pH-sensitive theranostic nanoplatform of ovarian cancer. Nanoscale
Res Lett. 15(73)2020.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Amini E, Baharara J, Nikdel N and
Abdollahi FS: Cytotoxic and pro-apoptotic effects of honey bee
venom and chrysin on human ovarian cancer cells. Asia Pacific J Med
Toxicol. 4:68–73. 2015.
|
|
144
|
Tewari D, Patni P and Bishayee A, Sah AN
and Bishayee A: Natural products targeting the PI3K-Akt-mTOR
signaling pathway in cancer: A novel therapeutic strategy. Semin
Cancer Biol. 80:1–17. 2022.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Chang WC, Hsieh TC, Hsu WL, Chang FL, Tsai
HR and He MS: Diabetes and further risk of cancer: A nationwide
population-based study. BMC Med. 22(214)2024.PubMed/NCBI View Article : Google Scholar
|