|
1
|
Roughley PJ, Rauch F and Glorieux FH:
Osteogenesis Imperfecta-clinical and molecular diversity. Eur Cell
Mater. 5:41–47. 2003.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Cheung MS and Glorieux FH: Osteogenesis
imperfecta: Update on presentation and management. Rev Endocr Metab
Disord. 9:153–160. 2008.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Panzaru MC, Florea A, Caba L and Gorduza
EV: Classification of osteogenesis imperfecta: Importance for
prophylaxis and genetic counseling. World J Clin Cases Apr.
11:2604–2620. 2023.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Kuivaniemi H, Tromp G and Prockop DJ:
Mutations in fibrillar collagens (types I, II, III, and XI),
fibril-associated collagen (type IX), and Network-forming collagen
(type X) cause a spectrum of diseases of bone, cartilage, and blood
vessels. Hum Mut. 9:300–315. 1997.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Glorieux FH: Osteogenesis imperfecta. Best
Pract Res Clin Rheumatol. 22:85–100. 2008.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Carter EM and Raggio CL: Genetic and
orthopedic aspects of collagen disorders. Curr Opin Pediatr.
21:46–54. 2009.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Hulmes DJS: Collagen diversity, synthesis
and assembly. In Collagen. Springer London: 15-47, 2008.
|
|
8
|
Forlino A, Cabral WA, Barnes AM and Marini
JC: New perspectives on osteogenesis imperfecta. Nat Rev
Endocrinol. 7:540–557. 2011.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Sillence DO, Senn A and Danks DM: Genetic
heterogeneity in osteogenesis imperfecta. J Med Genet. 16:101–116.
1979.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Sam JE and Dharmalingam M: Osteogenesis
Imperfecta. Indian J Endocrinol Metab. 21:903–908. 2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Swinnen FK, Coucke PJ, De Paepe AM,
Symoens S, Malfait F, Gentile FV, Sangiorgi L, D'Eufemia P, Celli
M, Garretsen TJ, et al: Osteogenesis imperfecta: The audiological
phenotype lacks correlation with the genotype. Orphanet J Rare Dis.
6(88)2011.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Marini JC, Forlino A, Cabral WA, Barnes
AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De
Paepe A, et al: Consortium for osteogenesis imperfecta mutations in
the helical domain of type I collagen: Regions rich in lethal
mutations align with collagen binding sites for integrins and
proteoglycans. Hum Mutat. 28:209–221. 2007.PubMed/NCBI View Article : Google Scholar
|
|
13
|
van Dijk FS, Huizer M, Kariminejad A,
Marcelis CL, Plomp AS, Terhal PA, Meijers-Heijboer H, Weiss MM, van
Rijn RR, Cobben JM and Pals G: Complete COL1A1 allele deletions in
osteogenesis imperfecta. Genet Med. 12:736–741. 2010.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Sillence DO, Barlow KK, Garber AP, Hall JG
and Rimoin DL: Osteogenesis imperfect type II delineation of the
phenotype with reference to genetic heterogeneity. Am J Med Genet.
17:407–423. 1984.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Yuan J, Li S, Xu Y and Cong L: Clinical
application of antenatal genetic diagnosis of osteogenesis
imperfecta type IV. Med Sci Monit. 21:964–969. 2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Glorieux FH, Rauch F, Plotkin H, Ward L,
Travers R, Roughley P, Lalic L, Glorieux DF, Fassier F and Bishop
NJ: Type V osteogenesis imperfecta: A new form of brittle bone
disease. J Bone Miner Res. 15:1650–1658. 2000.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Marini JC and Blisset AR: New genes in
bone development: What's new in osteogenesis imperfecta. J Clin
Endocrinol Metab. 98:3095–3103. 2013.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ,
Jeon D, Lee G, Kim HN, Lee HR, Eom HH, et al: A single recurrent
mutation in 5-UTR of IFITM5 causes osteogenesis imperfecta type V.
Am J Hum Genet. 91:343–348. 2012.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Becker J, Selmer O, Gilissen C, Li Y, Bolz
HJ and Giunta C: Exome sequencing identifies truncating mutations
in human SERPINF1 in autosomal-recessive osteogenesis imperfecta.
Am J Hum Genet. 88:362–371. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Homan EP, Rauch F, Grafe I, Lietman C,
Dawson B and Bertin T: Mutations in SERPINF1 cause osteogenesis
imperfecta type VI. J Bone Miner Res. 26:2798–2803. 2011.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Jin Z, Burrage LC, Jiang MM, Lee YC,
Bertin T and Chen Y: Whole exome sequencing identifies an intronic
cryptic splice site in SERPINF1 causing osteogenesis imperfecta
type VI. J Bone Min Res Plus. 2:235–239. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Glorieux FH, Ward LM, Rauch F, Lalic L,
Roughley PJ and Travers R: Osteogenesis imperfecta type VI: A form
of brittle bone disease with a mineralization defect. J Bone Miner
Res. 17:30–38. 2002.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Barnes AM, Chang W and Morello R:
Deficiency of Cartilage-associated protein in recessive lethal
osteogenesis imperfecta. N Engl J Med. 355:2757–2764.
2006.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Balasubramanian M, Pollitt RC, Chandler
KE, Mughal MZ, Parker MJ and Dalton A: CRTAP mutation in a patient
with Cole-carpenter syndrome. Am J Med Genet. 167:587–591.
2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Ward LM, Rauch F, Travers R, Chabot G,
Azouz EM, Lalic L, Roughley PJ and Glorieux FH: Osteogenesis
imperfecta type VII: An autosomal recessive form of brittle bone
disease. Bone. 31:12–18. 2002.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Cabral WA, Chang W, Barnes AM, Weis M,
Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft
CJ, et al: Prolyl 3-hydroxylase 1 deficiency causes a recessive
metabolic bone disorder resembling lethal/severe osteogenesis
imperfecta. Nat Genet. 39:359–365. 2007.PubMed/NCBI View
Article : Google Scholar
|
|
27
|
Peddada LB, Mc-Pherson JD, Law R, Wasmuth
JJ, Youderian P and Deans RJ: Somatic cell mapping of the human
cyclophilin B gene (PPIB) to chromosome 15. Cytogenet Cell Genet.
60:219–221. 1992.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Price ER, Zydowsky LD, Jin M, Baker CH,
McKeon FD and Walsh CT: Human cyclophilin B: A second cyclophilin
gene encodes a Peptidyl-prolyl isomerase with a signal sequence.
Proc Nat Acad Sci. 88:1903–1907. 1991.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Yao Q, Li M, Yang H, Chai H, Fisher W and
Chen C: Roles of cyclophilins in cancers and other organ systems.
World J Surg. 29:276–280. 2005.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Willaert A, Malfait F, Symoens S, Gevaert
K, Kayserili H, Megarbane A, Mortier G, Leroy JG, Coucke PJ and De
Paepe A: Recessive osteogenesis imperfecta caused by LEPRE1
mutations: Clinical documentation and identification of the splice
form responsible for prolyl 3-hydroxylation. J Med Genet.
46:233–241. 2009.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Morello R, Bertin TK, Chen Y, Hicks J,
Tonachini L and Monticone M: CRTAP is required for prolyl
3-hydroxylation and mutations cause recessive osteogenesis
imperfecta. Cell. 127:291–304. 2006.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Christiansen HE, Schwarze U, Pyott SM, Al
Swaid A, Al Balwi M and Alrasheed S: Homozygosity for a missense
mutation in SERPINH1, which encodes the collagen chaperone protein
HSP47, results in severe recessive osteogenesis imperfecta. Am J
Hum Genet. 86:389–398. 2010.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Breslau-Siderius EJ, Engelbert RH, Pals G
and van der Sluijs JA: Bruck syndrome: A rare combination of bone
fragility and multiple congenital joint contractures. J Pediatr
Orthop B. 7:35–38. 1998.PubMed/NCBI
|
|
34
|
Patterson CE, Gao J, Rooney AP and Davis
EC: Genomic organization of mouse and human 65 kDa FK506-binding
protein genes and evolution of the FKBP multigene family. Genomics.
79:881–889. 2002.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Shaheen R, Alazami AM, Alshammari MJ,
Faqeih E, Alhashmi N, Mousa N, Alsinani A, Ansari S, Alzahrani F,
Al-Owain M, et al: Study of autosomal recessive osteogenesis
imperfecta in Arabia reveals a novel locus defined by TMEM38B
mutation. J Med Genet. 49:630–635. 2012.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Alanay Y, Avaygan H, Camacho N, Utine GE,
Boduroglu K, Aktas D, Alikasifoglu M, Tuncbilek E, Orhan D, Bakar
FT, et al: Mutations in the gene encoding the RER protein FKBP65
cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet.
86:551–559. 2010.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Kelley BP, Malfait F, Bonafe L, Baldridge
D, Homan E, Symoens S, Willaert A, Elcioglu N, Van Maldergem L,
Verellen-Dumoulin C, et al: Mutations in FKBP10 cause recessive
osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res.
26:666–672. 2011.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Umair M, Hassan A, Jan A, Ahmad F, Imran
M, Samman MI, Basit S and Ahmad W: Homozygous sequence variants in
the FKBP10 gene underlie osteogenesis imperfecta in consanguineous
families. J Hum Genet. 61:207–213. 2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Fiscaletti M, Biggin A, Bennetts B, Wong
K, Briody J, Pacey V, Birman C and Munns CF: Novel variant in
Sp7/Osx associated with recessive osteogenesis imperfecta with bone
fragility and hearing impairment. Bone. 110:66–75. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Ludwig K, Ward LM, Khan N, Robinson ME,
Miranda V, Bardai G, Moffatt P and Rauch F: Dominant osteogenesis
imperfecta with low bone turnover caused by a heterozygous SP7
variant. Bone. 160(116400)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Lapunzina P, Aglan M, Temtamy S,
Caparrós-Martín JA, Valencia M, Letón R, Martínez-Glez V, Elhossini
R, Amr K, Vilaboa N and Ruiz-Perez VL: Identification of a
frameshift mutation in Osterix in a patient with recessive
osteogenesis imperfecta. Am J Hum Genet. 87:110–114.
2010.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Martínez-Glez V, Valencia M,
Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J, Pulido V,
Lindert U, Rohrbach M, Eyre D, et al: Identification of a mutation
causing deficient BMP1/mTLD proteolytic activity in autosomal
recessive osteogenesis imperfecta. Hum Mutat. 33:343–350.
2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Fahiminiya S, Majewski J, Mort J, Moffatt
P, Glorieux FH and Rauch F: Mutations in WNT1 are a cause of
osteogenesis imperfecta. J Med Genet. 50:345–348. 2013.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Keupp K, Beleggia F, Kayserili H, Barnes
AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, et
al: Mutations in WNT1 cause different forms of bone fragility. Am J
Hum Genet. 92:565–574. 2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Umair M, Alhaddad B, Rafique A, Jan A,
Haack TB, Graf E, Ullah A, Ahmad F, Strom TM, Meitinger T and Ahmad
W: Exome sequencing reveals a novel homozygous splice site variant
in the WNT1 gene underlying osteogenesis imperfecta type 3. Pediatr
Res. 82:753–758. 2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Laine CM, Joeng KS, Campeau PM, Kiviranta
R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ,
et al: WNT1 mutations in Early-onset osteoporosis and osteogenesis
imperfecta. N Engl J Med. 368:1809–1816. 2013.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Symoens S, Malfait F, D'hondt S,
Callewaert B, Dheedene A, Steyaert W, Bächinger HP, De Paepe A,
Kayserili H, Coucke PJ, et al: Deficiency for the ER-stress
transducer OASIS causes severe recessive osteogenesis imperfecta in
humans. Orphanet J Rare Dis. 8(154)2013.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Mellor P, Deibert L, Calvert B, Bonham K,
Carlsen SA and Anderson DH: CREB3L1 is a metastasis suppressor that
represses expression of genes regulating metastasis, invasion, and
angiogenesis. Mol Cell Biol. 33:4985–4995. 2013.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Villarreal XC, Mann KG and Long GL:
Structure of human osteonectin based upon analysis of cDNA and
genomic sequences. Biochemistry. 28:6483–6491. 1989.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Bradshaw AD, Graves DC, Motamed K and Sage
EH: SPARC-null mice exhibit increased adiposity without significant
differences in overall body weight. Proc Natl Acad Sci USA.
100:6045–6050. 2003.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Mendoza-Londono R, Fahiminiya S and
Majewski J: Care4Rare Canada Consortium. Tétreault M, Nadaf J,
Kannu P, Sochett E, Howard A, Stimec J, et al: Recessive
osteogenesis imperfecta caused by missense mutations in SPARC. Am J
Hum Genet. 96:979–985. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Doyard M, Bacrot S, Huber C, Di Rocco M,
Goldenberg A, Aglan MS, Brunelle P, Temtamy S, Michot C, Otaify GA,
et al: FAM46A mutations are responsible for autosomal recessive
osteogenesis imperfecta. J Med Genet. 55:278–284. 2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Lindert U, Cabral WA, Ausavarat S,
Tongkobpetch S, Ludin K, Barnes AM, Yeetong P, Weis M, Krabichler
B, Srichomthong C, et al: MBTPS2 mutations cause defective
regulated intramembrane proteolysis in X-linked osteogenesis
imperfecta. Nat Commun. 7(11920)2016.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Moosa S, Yamamoto GL, Garbes L, Keupp K,
Beleza-Meireles A, Moreno CA, Valadares ER, de Sousa SB, Maia S,
Saraiva J, et al: Autosomal-recessive mutations in MESD cause
osteogenesis imperfecta. Am J Hum Genet. 105:836–843.
2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
van Dijk FS, Semler O, Etich J, Köhler A,
Jimenez-Estrada JA, Bravenboer N, Claeys L, Riesebos E, Gegic S,
Piersma SR, et al: Interaction between KDELR2 and HSP47 as a Key
determinant in osteogenesis imperfecta caused by Bi-allelic
variants in KDELR2. Am J Hum Genet. 107:989–999. 2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Efthymiou S, Herman I, Rahman F, Anwar N,
Maroofian R, Yip J, Mitani T, Calame DG, Hunter JV, Sutton VR, et
al: Two novel bi-allelic KDELR2 missense variants cause
osteogenesis imperfecta with neurodevelopmental features. Am J Med
Genet A. 185:2241–2249. 2021.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Ruggiero C, Fragassi G, Grossi M, Picciani
B, Di Martino R, Capitani M, Buccione R, Luini A and Sallese M: A
Golgi-based KDELR-dependent signalling pathway controls
extracellular matrix degradation. Oncotarget. 6:3375–3393.
2015.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Dubail J, Brunelle P, Baujat G, Huber C,
Doyard M, Michot C, Chavassieux P, Khairouni A, Topouchian V,
Monnot S, et al: Homozygous Loss-of-function mutations in CCDC134
are responsible for a severe form of osteogenesis imperfecta. J
Bone Miner Res. 35:1470–1480. 2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ali TM, Linnenkamp BDW, Yamamoto GL, Honjo
RS, Cabral de Menezes Filho H, Kim CA and Bertola DR: The recurrent
homozygous translation start site variant in CCDC134 in an
individual with severe osteogenesis imperfecta of non-Morrocan
ancestry. Am J Med Genet A. 188:1545–1549. 2022.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Huang J, Shi T, Ma T, Zhang Y, Ma X, Lu Y,
Song Q, Liu W, Ma D and Qiu X: CCDC134, a novel secretory protein,
inhibits activation of ERK and JNK, but not p38 MAPK. Cell Mol Life
Sci. 65:338–349. 2008.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Tuysuz B, Uludag Alkaya D, Geyik F,
Alaylıoğlu M, Kasap B, Kurugoğlu S, Akman YE, Vural M and Bilguvar
K: Biallelic frameshift variants in PHLDB1 cause mild-type
osteogenesis imperfecta with regressive spondylometaphyseal
changes. J Med Genet. 60:819–826. 2023.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hu J, Li LJ, Zheng WB, Zhao DC, Wang O,
Jiang Y, Xing XP, Li M and Xia W: A novel mutation in PLS3 causes
extremely rare X-linked osteogenesis imperfecta. Mol Genet Genomic
Med. 8(e1525)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Brlek P, Antičević D, Molnar V, Matišić V,
Robinson K, Aradhya S, Krpan D and Primorac D: X-Linked
osteogenesis imperfecta possibly caused by a novel variant in PLS3.
Genes (Basel). 12(1851)2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Umair M, Ahmad F, Bilal M and Abbas S:
Syndactyly genes and classification: A mini review. JBCGenetics.
1:10–18. 2018.
|
|
65
|
Alyafee Y, Al Tuwaijri A, Alam Q, Umair M,
Haddad S, Alharbi M, Ballow M, Al Drees M, AlAbdulrahman A, Al
Khaldi A and Alfadhel M: Next generation sequencing based
Non-invasive prenatal testing (NIPT): First report from Saudi
Arabia. Front. Genet. 12(630787)2021.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Alyafee Y, Al Tuwaijri A, Umair M, Alharbi
M, Haddad S, Ballow M, Alayyar L, Alam Q, Althenayyan S, Al Ghilan
N, et al: Non-invasive prenatal testing for autosomal recessive
disorders: A new promising approach. Front Genet.
13(1047474)2022.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Umair M, Younus M, Shafiq S, Nayab A and
Alfadhel M: Clinical genetics of spondylocostal dysostosis: A mini
review. Front Genet. 13(996364)2022.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Gutta R and Louis PJ: Bisphosphonates and
osteonecrosis of the jaws: Science and rationale. Oral Surg Oral
Med Oral Pathol Oral Radiol Endod. 104:186–193. 2007.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Gatti AA, Keir PJ, Noseworthy MD and Maly
MR: Investigating acute changes in osteoarthritic cartilage by
integrating biomechanics and statistical shape models of bone: Data
from the osteoarthritis initiative. MAGMA. 35:861–873.
2022.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Nijhuis W, Verhoef M, van Bergen C,
Weinans H and Sakkers R: Fractures in osteogenesis imperfecta:
Pathogenesis, treatment, rehabilitation and prevention. Children
(Basel). 9(268)2022.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Rogers MJ, Watts DJ and Russell RG:
Overview of bisphosphonates. Cancer. 80 (Suppl 8):S1652–S1660.
1997.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Schindeler A, Lee LR, O'Donohue AK, Ginn
SL and Munns CF: Curative cell and gene therapy for osteogenesis
imperfecta. J Bone Miner Res. 37:826–836. 2022.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y,
Yang H, Bai J and Geng D: Targeting strategies for bone diseases:
Signaling pathways and clinical studies. Signal Transduct Target
Ther. 8(202)2023.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Berti S, Luppi E, Seri M and Zavatta G: A
New COL1A1 mutation associated with type I osteogenesis imperfecta:
Treatment options for a woman of childbearing age. JCEM Case Rep.
1(luad096)2023.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Matsushiro M, Harada D, Ueyama K,
Kashiwagi H, Ishiura Y, Yamada H and Seino Y: Intracranial aneurysm
as a possible complication of osteogenesis imperfecta: A case
series and literature review. Endocr J. 70:697–702. 2023.PubMed/NCBI View Article : Google Scholar
|