|
1
|
Kelly T, Yang W, Chen CS, Reynolds K and
He J: Global burden of obesity in 2005 and projections to 2030. Int
J Obesity. 32:1431–1437. 2008.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Finucane MM, Stevens GA, Cowan MJ, Danaei
G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN,
et al: National, regional, and global trends in body-mass index
since 1980: Systematic analysis of health examination surveys and
epidemiological studies with 960 country-years and 9·1 million
participants. Lancet. 377:557–567. 2011.PubMed/NCBI View Article : Google Scholar
|
|
3
|
de Oliveira S, Feijó GDS, Neto J, Jantsch
J, Braga MF, Castro LFDS, Giovenardi M, Porawski M and Guedes RP:
Zinc supplementation decreases obesity-related neuroinflammation
and improves metabolic function and memory in rats. Obesity (Silver
Spring). 29:116–124. 2021.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Murphy L, Schwartz TA, Helmick CG, Renner
JB, Tudor G, Koch G, Dragomir A, Kalsbeek WD, Luta G and Jordan JM:
Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum.
59:1207–1213. 2008.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Nedunchezhiyan U, Varughese I, Sun AR, Wu
X, Crawford R and Prasadam I: Obesity, inflammation, and immune
system in osteoarthritis. Front Immunol. 13(907750)2022.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Hashimoto K and Akagi M: The role of
oxidation of low-density lipids in pathogenesis of osteoarthritis:
A narrative review. J Int Med Res.
48(300060520931609)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Abdali D, Samson SE and Grover AK: How
effective are antioxidant supplements in obesity and diabetes? Med
Princ Pract. 24:201–215. 2015.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Reilly JJ and Kelly J: Long-term impact of
overweight and obesity in childhood and adolescence on morbidity
and premature mortality in adulthood: Systematic review. Int J Obes
(Lond). 35:891–898. 2011.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Abdollahi S, Toupchian O, Jayedi A, Meyre
D, Tam V and Soltani S: Zinc supplementation and body weight: A
systematic review and dose-response Meta-analysis of randomized
controlled trials. Adv Nutr. 11:398–411. 2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Rios-Lugo MJ, Madrigal-Arellano C,
Gaytán-Hernández D, Hernández-Mendoza H and Romero-Guzmán ET:
Association of serum zinc levels in overweight and obesity. Biol
Trace Elem Res. 198:51–57. 2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Gunanti IR, Al-Mamun A, Schubert L and
Long KZ: The effect of zinc supplementation on body composition and
hormone levels related to adiposity among children: A systematic
review. Public Health Nutr. 19:2924–2939. 2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Costarelli L, Muti E, Malavolta M,
Cipriano C, Giacconi R, Tesei S, Piacenza F, Pierpaoli S, Gasparini
N, Faloia E, et al: Distinctive modulation of inflammatory and
metabolic parameters in relation to zinc nutritional status in
adult overweight/obese subjects. J Nutr Biochem. 21:432–437.
2010.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Thoen RU, Barther NN, Schemitt E, Bona S,
Fernandes S, Coral G, Marroni NP, Tovo C, Guedes RP and Porawski M:
Zinc supplementation reduces diet-induced obesity and improves
insulin sensitivity in rats. Appl Physiol Nutr Metab. 44:580–586.
2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Payahoo L, Ostadrahimi A, Mobasseri M,
Khaje Bishak Y, Farrin N, Asghari Jafarabadi M and Mahluji S:
Effects of zinc supplementation on the anthropometric measurements,
lipid profiles and fasting blood glucose in the healthy obese
adults. Adv Pharm Bull. 3:161–165. 2013.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Khorsandi H, Nikpayam O, Yousefi R,
Parandoosh M, Hosseinzadeh N, Saidpour A and Ghorbani A: Zinc
supplementation improves body weight management, inflammatory
biomarkers and insulin resistance in individuals with obesity: A
randomized, placebo-controlled, double-blind trial. Diabetol Metab
Syndr. 11(101)2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Fukunaka A and Fujitani Y: Role of zinc
homeostasis in the pathogenesis of diabetes and obesity. Int J Mol
Sci. 19(476)2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Franco C and Canzoniero LMT: Zinc
homeostasis and redox alterations in obesity. Front Endocrinol
(Lausanne). 14(1273177)2023.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Wen X, Zhang B, Wu B, Xiao H, Li Z, Li R,
Xu X and Li T: Signaling pathways in obesity: Mechanisms and
therapeutic interventions. Signal Transduct Target Ther.
7(298)2022.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Monsalve FA, Pyarasani RD, Delgado-Lopez F
and Moore-Carrasco R: Peroxisome proliferator-activated receptor
targets for the treatment of metabolic diseases. Mediators Inflamm.
2013(549627)2013.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Severo JS, Morais JBS, Beserra JB, Dos
Santos LR, de Sousa Melo SR, de Sousa GS, de Matos Neto EM,
Henriques GS and do Nascimento Marreiro D: Role of Zinc in
Zinc-α2-glycoprotein metabolism in obesity: A review of literature.
Biol Trace Elem Res. 193:81–88. 2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Bao B, Prasad AS, Beck FW, Fitzgerald JT,
Snell D, Bao GW, Singh T and Cardozo LJ: Zinc decreases C-reactive
protein, lipid peroxidation, and inflammatory cytokines in elderly
subjects: A potential implication of zinc as an atheroprotective
agent. Am J Clin Nutr. 91:1634–1641. 2010.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Olechnowicz J, Tinkov A, Skalny A and
Suliburska J: Zinc status is associated with inflammation,
oxidative stress, lipid, and glucose metabolism. J Physiol Sci.
68:19–31. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Bays HE, Toth PP, Kris-Etherton PM, Abate
N, Aronne LJ, Brown WV, Gonzalez-Campoy JM, Jones SR, Kumar R, La
Forge R and Samuel VT: Obesity, adiposity, and dyslipidemia: A
consensus statement from the National Lipid Association. J Clin
Lipidol. 7:304–383. 2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Feingold KR: Obesity and Dyslipidemia: In:
Feingold KR, Anawalt B, Blackman MR, et al., editors.
Endotext [Internet]. South Dartmouth (MA), MDText.com, Inc.,
2000 [updated 2023 Jun 19. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305895/.
|
|
25
|
Klop B, Elte JW and Cabezas MC:
Dyslipidemia in obesity: Mechanisms and potential targets.
Nutrients. 5:1218–1240. 2013.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Jacome-Sosa MM and Parks EJ: Fatty acid
sources and their fluxes as they contribute to plasma triglyceride
concentrations and fatty liver in humans. Curr Opin Lipidol.
25:213–220. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Li S, Brown MS and Goldstein JL:
Bifurcation of insulin signaling pathway in rat liver: mTORC1
required for stimulation of lipogenesis, but not inhibition of
gluconeogenesis. Proc Natl Acad Sci USA. 107:3441–3446.
2010.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Yu YH and Ginsberg HN: Adipocyte signaling
and lipid homeostasis: Sequelae of insulin-resistant adipose
tissue. Circ Res. 96:1042–1052. 2005.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Franssen R, Monajemi H, Stroes ESG and
Kastelein JJP: Obesity and Dyslipidemia. Endocrinol Metab Clin
North Am. 37:623–633. 2008.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Mangaraj M, Nanda R and Panda S:
Apolipoprotein A-I: A molecule of diverse function. Indian J Clin
Biochem. 31:253–259. 2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Björnson E, Adiels M, Taskinen MR and
Borén J: Kinetics of plasma triglycerides in abdominal obesity.
Curr Opin Lipidol. 28:11–18. 2017.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kohan AB: Apolipoprotein C-III: A potent
modulator of hypertriglyceridemia and cardiovascular disease. Curr
Opin Endocrinol Diabetes Obes. 22:119–125. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Christou GA and Kiortsis DN: Adiponectin
and lipoprotein metabolism. Obesity Rev. 14:939–949.
2013.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Rashid S and Kastelein JJ: PCSK9 and
resistin at the crossroads of the atherogenic dyslipidemia. Expert
Rev Cardiovasc Ther. 11:1567–1577. 2013.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Ranasinghe P, Wathurapatha WS, Ishara MH,
Jayawardana R, Galappatthy P, Katulanda P and Constantine GR:
Effects of Zinc supplementation on serum lipids: A systematic
review and meta-analysis. Nutr Metab (Lond). 12(26)2015.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Braun LA, Ou R, Kure C, Trang A and
Rosenfeldt F: Prevalence of zinc deficiency in cardiac surgery
patients. Heart Lung Circ. 27:760–762. 2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Hernández-Mendoza H, Martínez-Navarro I,
Hernández-Ochoa E, Espinoza-Ruiz M, Lugo-Trampe A, Trujillo-Murillo
KDC, López-García MA, Rios-Lugo MJ and Chang-Rueda C: Serum zinc
levels are associated with obesity and low-density lipoprotein
cholesterol in Mexican adults. J Trace Elem Med Biol.
73(127002)2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Zaky DSE, Sultan EA, Salim MF and Dawod
RS: Zinc level and obesity. Egyp J Internal Med. 25:209–212.
2013.
|
|
39
|
Laillou A, Yakes E, Le TH, Wieringa FT, Le
BM, Moench-Pfanner R and Berger J: Intra-individual double burden
of overweight and micronutrient deficiencies among Vietnamese
women. PLoS One. 9(e110499)2014.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Via M: The malnutrition of obesity:
Micronutrient deficiencies that promote diabetes. ISRN Endocrinol.
2012(103472)2012.PubMed/NCBI View Article : Google Scholar
|
|
41
|
de Vargas LDS, Jantsch J, Fontoura JR,
Dorneles GP, Peres A and Guedes RP: Effects of zinc supplementation
on inflammatory and cognitive parameters in middle-aged women with
overweight or obesity. Nutrients. 15(4396)2023.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Friedman JM: Leptin and the endocrine
control of energy balance. Nat Metab. 1:754–764. 2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Briggs DB, Giron RM, Schnittker K, Hart
MV, Park CK, Hausrath AC and Tsao TS: Zinc enhances adiponectin
oligomerization to octadecamers but decreases the rate of disulfide
bond formation. Biometals. 25:469–486. 2012.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Asghari S, Hosseinzadeh-Attar MJ, Alipoor
E, Sehat M and Mohajeri-Tehrani MR: Effects of zinc supplementation
on serum adiponectin concentration and glycemic control in patients
with type 2 diabetes. J Trace Elem Med Biol. 55:20–25.
2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Soheylikhah S, Dehestani MR, Mohammadi SM,
Afkhami-Ardekani M, Eghbali SA and Dehghan F: The effect of zinc
supplementation on serum adiponectin concentration and insulin
resistance in first degree relatives of diabetic patients. IJDO.
4:57–62. 2012.
|
|
46
|
Banaszak M, Górna I and Przysławski J:
Zinc and the innovative Zinc-α2-glycoprotein Adipokine play an
important role in lipid metabolism: A critical review. Nutrients.
13(2023)2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Bing C, Mracek T, Gao D and Trayhurn P:
Zinc-α2-glycoprotein: An adipokine modulator of body fat mass? Int
J Obes (Lond). 34:1559–1565. 2010.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Elattar S, Dimri M and Satyanarayana A:
The tumor secretory factor ZAG promotes white adipose tissue
browning and energy wasting. FASEB J. 32:4727–4743. 2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Althaher AR: An overview of
hormone-sensitive lipase (HSL). ScientificWorldJournal.
2022(1964684)2022.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Wang Y, Yu W, Li S, Guo D, He J and Wang
Y: Acetyl-CoA carboxylases and diseases. Front Oncol.
12(836058)2022.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Demirci Ş and Gün C: Zinc supplementation
improved neuropeptide Y, Nesfatin-1, Leptin, C-reactive protein,
and HOMA-IR of Diet-induced obese rats. Biol Trace Elem Res.
200:3996–4006. 2022.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Leachman JR, Cincinelli C, Ahmed N,
Dalmasso C, Xu M, Gatineau E, Nikolajczyk BS, Yiannikouris F, Hinds
TD Jr and Loria AS: Early life stress exacerbates obesity in adult
female mice via mineralocorticoid receptor-dependent increases in
adipocyte triglyceride and glycerol content. Life Sci.
304(120718)2022.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Chen Y, Lin YC, Zimmerman CA, Essner RA
and Knight ZA: Hunger neurons drive feeding through a sustained,
positive reinforcement signal. Elife. 5(e18640)2016.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Krashes MJ, Shah BP, Madara JC, Olson DP,
Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M, Uchida
N, et al: An excitatory paraventricular nucleus to AgRP neuron
circuit that drives hunger. Nature. 507:238–242. 2014.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Berrios J, Li C, Madara JC, Garfield AS,
Steger JS, Krashes MJ and Lowell BB: Food cue regulation of AGRP
hunger neurons guides learning. Nature. 595:695–700.
2021.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Baver SB, Hope K, Guyot S, Bjørbaek C,
Kaczorowski C and O'Connell KM: Leptin modulates the intrinsic
excitability of AgRP/NPY neurons in the arcuate nucleus of the
hypothalamus. J Neurosci. 34:5486–5496. 2014.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Yu JH and Kim MS: Molecular mechanisms of
appetite regulation. Diabetes Metab J. 36:391–398. 2012.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Ye Z, Liu G, Guo J and Su Z: Hypothalamic
endoplasmic reticulum stress as a key mediator of obesity-induced
leptin resistance. Obes Rev. 19:770–785. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
de Git KCG, den Outer JA,
Wolterink-Donselaar IG, Luijendijk MCM, Schéle E, Dickson SL and
Adan RAH: Rats that are predisposed to excessive obesity show
reduced (leptin-induced) thermoregulation even in the preobese
state. Physiol Rep. 7(e14102)2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Myers MG Jr, Heymsfield SB, Haft C, Kahn
BB, Laughlin M, Leibel RL, Tschöp MH and Yanovski JA: Challenges
and opportunities of defining clinical leptin resistance. Cell
Metab. 15:150–156. 2012.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Jung CH and Kim MS: Molecular mechanisms
of central leptin resistance in obesity. Arch Pharm Res.
36:201–207. 2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Khorshidi M, Zarezadeh M, Sadeghi A,
Teymouri A, Emami MR, Kord-Varkaneh H, Aryaeian N, Rahmani J and
Mousavi SM: The effect of zinc supplementation on serum leptin
levels: A systematic review and meta-analysis of randomized
controlled trials. Horm Metab Res. 51:503–510. 2019.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Kwun IS, Cho YE, Lomeda RA, Kwon ST, Kim Y
and Beattie JH: Marginal zinc deficiency in rats decreases leptin
expression independently of food intake and
corticotrophin-releasing hormone in relation to food intake. Br J
Nutr. 98:485–489. 2007.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Hasani M, Saidpour A, Irandoost P, Golab
F, Khazdouz M, Qorbani M, Agh F, Mohammad Sharifi A and Vafa M:
Beneficial effects of Se/Zn co-supplementation on body weight and
adipose tissue inflammation in high-fat diet-induced obese rats.
Food Sci Nutr. 9:3414–3425. 2021.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Baltaci AK and Mogulkoc R: Leptin and zinc
relation: In regulation of food intake and immunity. Indian J
Endocrinol Metab. 16 (Suppl 3):S611–S616. 2012.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lee RG, Rains TM, Tovar-Palacio C, Beverly
JL and Shay NF: Zinc deficiency increases hypothalamic neuropeptide
Y and neuropeptide Y mRNA levels and does not block neuropeptide
Y-induced feeding in rats. J Nutr. 128:1218–1223. 1998.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Jin X, Qiu T, Li L, Yu R, Chen X, Li C,
Proud CG and Jiang T: Pathophysiology of obesity and its associated
diseases. Acta Pharm Sin B. 13:2403–2424. 2023.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Yudhani RD, Sari Y, Nugrahaningsih DAA,
Sholikhah EN, Rochmanti M, Purba AKR, Khotimah H, Nugrahenny D and
Mustofa M: In vitro insulin resistance model: A recent update. J
Obes. 2023(1964732)2023.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Wiza C, Nascimento EB and Ouwens DM: Role
of PRAS40 in Akt and mTOR signaling in health and disease. Am J
Physiol Endocrinol Metab. 302:E1453–E1460. 2012.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Wijesekara N, Dai FF, Hardy AB, Giglou PR,
Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA and
Wheeler MB: Beta cell-specific Znt8 deletion in mice causes marked
defects in insulin processing, crystallisation and secretion.
Diabetologia. 53:1656–1668. 2010.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Chimienti F, Devergnas S, Favier A and
Seve M: Identification and cloning of a beta-cell-specific zinc
transporter, ZnT-8, localized into insulin secretory granules.
Diabetes. 53:2330–2337. 2004.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Chimienti F, Devergnas S, Pattou F, Schuit
F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L,
Grunwald D, Favier A and Seve M: In vivo expression and functional
characterization of the zinc transporter ZnT8 in glucose-induced
insulin secretion. J Cell Sci. 119:4199–4206. 2006.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Norouzi S, Adulcikas J, Sohal SS and Myers
S: Zinc stimulates glucose oxidation and glycemic control by
modulating the insulin signaling pathway in human and mouse
skeletal muscle cell lines. PLoS One. 13(e0191727)2018.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Wu Y, Lu H, Yang H, Li C, Sang Q, Liu X,
Liu Y, Wang Y and Sun Z: Zinc stimulates glucose consumption by
modulating the insulin signaling pathway in L6 myotubes: Essential
roles of Akt-GLUT4, GSK3β and mTOR-S6K1. J Nutr Biochem.
34:126–135. 2016.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Tang S, Le-Tien H, Goldstein BJ, Shin P,
Lai R and Fantus IG: Decreased in situ insulin receptor
dephosphorylation in hyperglycemia-induced insulin resistance in
rat adipocytes. Diabetes. 50:83–90. 2001.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Cruz KJC, de Oliveira ARS, Morais JBS,
Severo JS, Mendes PMV, de Sousa Melo SR, de Sousa GS and Marreiro
DDN: Zinc and insulin resistance: Biochemical and molecular
aspects. Biol Trace Elem Res. 186:407–412. 2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Vardatsikos G, Pandey NR and Srivastava
AK: Insulino-mimetic and anti-diabetic effects of zinc. J Inorg
Biochem. 120:8–17. 2013.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Bellomo E, Massarotti A, Hogstrand C and
Maret W: Zinc ions modulate protein tyrosine phosphatase 1B
activity. Metallomics. 6:1229–1239. 2014.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Koren S and Fantus IG: Inhibition of the
protein tyrosine phosphatase PTP1B: Potential therapy for obesity,
insulin resistance and type-2 diabetes mellitus. Best Pract Res
Clin Endocrinol Metab. 21:621–640. 2007.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Klaman LD, Boss O, Peroni OD, Kim JK,
Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, et
al: Increased energy expenditure, decreased adiposity, and
tissue-specific insulin sensitivity in protein-tyrosine phosphatase
1B-deficient mice. Mol Cell Biol. 20:5479–5489. 2000.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Fantuzzi G: Adipose tissue, adipokines,
and inflammation. J Allergy Clin Immunol. 115:911–920.
2005.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Harish R, Priyanka V, Kesava M, Ashakiran
S and Katherine BY: Leptin and Obesity: Understanding the Impact on
Dyslipidemia. In: Hülya Ç, (ed.). Body Mass Index. Rijeka,
IntechOpen, p. Ch. 3, 2023.
|
|
83
|
Paz-Filho G, Mastronardi C, Franco CB,
Wang KB, Wong ML and Licinio J: Leptin: Molecular mechanisms,
systemic pro-inflammatory effects, and clinical implications. Arq
Bras Endocrinol Metabol. 56:597–607. 2012.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Singla P, Bardoloi A and Parkash AA:
Metabolic effects of obesity: A review. World J Diabetes. 1:76–88.
2010.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Després JP and Lemieux I: Abdominal
obesity and metabolic syndrome. Nature. 444:881–887.
2006.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Kim J and Ahn J: Effect of zinc
supplementation on inflammatory markers and adipokines in young
obese women. Biol Trace Elem Res. 157:101–106. 2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Kelishadi R, Hashemipour M, Adeli K,
Tavakoli N, Movahedian-Attar A, Shapouri J, Poursafa P and
Rouzbahani A: Effect of zinc supplementation on markers of insulin
resistance, oxidative stress, and inflammation among prepubescent
children with metabolic syndrome. Metab Syndr Relat Disord.
8:505–510. 2010.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Martin RD, Hoeth M, Hofer-Warbinek R and
Schmid JA: The transcription factor NF-κB and the regulation of
vascular cell function. Arterioscler Thromb Vasc Biol. 20:E83–E88.
2000.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Kadhim HM, Ismail SH, Hussein KI, Bakir
IH, Sahib AS, Khalaf BH and Hussain SA: Effects of melatonin and
zinc on lipid profile and renal function in type 2 diabetic
patients poorly controlled with metformin. J Pineal Res.
41:189–193. 2006.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Khan MI, Siddique KU, Ashfaq F, Ali W,
Reddy HD and Mishra A: Effect of high-dose zinc supplementation
with oral hypoglycemic agents on glycemic control and inflammation
in type-2 diabetic nephropathy patients. J Nat Sci Biol Med.
4:336–340. 2013.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Jafarnejad S, Mahboobi S, McFarland LV,
Taghizadeh M and Rahimi F: Meta-analysis: effects of zinc
supplementation alone or with multi-nutrients, on glucose control
and lipid levels in patients with type 2 diabetes. Prev Nutr Food
Sci. 24(8)2019.PubMed/NCBI View Article : Google Scholar
|
|
92
|
EFSA Panel on Dietetic Products, Nutrition
and Allergies (NDA): Scientific opinion on dietary reference values
for zinc. EFSA J. 12(3844)2014.
|
|
93
|
Foster M, Petocz P and Samman S: Effects
of zinc on plasma lipoprotein cholesterol concentrations in humans:
A meta-analysis of randomised controlled trials. Atherosclerosis.
210:344–352. 2010.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Hughes S and Samman S: The effect of zinc
supplementation in humans on plasma lipids, antioxidant status and
thrombogenesis. J Am Coll Nutr. 25:285–291. 2006.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Hedera P, Peltier A, Fink JK, Wilcock S,
London Z and Brewer GJ: Myelopolyneuropathy and pancytopenia due to
copper deficiency and high zinc levels of unknown origin II. The
denture cream is a primary source of excessive zinc.
Neurotoxicology. 30:996–969. 2009.PubMed/NCBI View Article : Google Scholar
|